searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000415
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
St000415: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> 1
[[],[]]
=> 2
[[[]]]
=> 1
[[],[],[]]
=> 6
[[],[[]]]
=> 2
[[[]],[]]
=> 2
[[[],[]]]
=> 2
[[[[]]]]
=> 1
[[],[],[],[]]
=> 24
[[],[],[[]]]
=> 6
[[],[[]],[]]
=> 6
[[],[[],[]]]
=> 4
[[],[[[]]]]
=> 2
[[[]],[],[]]
=> 6
[[[]],[[]]]
=> 2
[[[],[]],[]]
=> 4
[[[[]]],[]]
=> 2
[[[],[],[]]]
=> 6
[[[],[[]]]]
=> 2
[[[[]],[]]]
=> 2
[[[[],[]]]]
=> 2
[[[[[]]]]]
=> 1
[[],[],[],[],[]]
=> 120
[[],[],[],[[]]]
=> 24
[[],[],[[]],[]]
=> 24
[[],[],[[],[]]]
=> 12
[[],[],[[[]]]]
=> 6
[[],[[]],[],[]]
=> 24
[[],[[]],[[]]]
=> 6
[[],[[],[]],[]]
=> 12
[[],[[[]]],[]]
=> 6
[[],[[],[],[]]]
=> 12
[[],[[],[[]]]]
=> 4
[[],[[[]],[]]]
=> 4
[[],[[[],[]]]]
=> 4
[[],[[[[]]]]]
=> 2
[[[]],[],[],[]]
=> 24
[[[]],[],[[]]]
=> 6
[[[]],[[]],[]]
=> 6
[[[]],[[],[]]]
=> 4
[[[]],[[[]]]]
=> 2
[[[],[]],[],[]]
=> 12
[[[[]]],[],[]]
=> 6
[[[],[]],[[]]]
=> 4
[[[[]]],[[]]]
=> 2
[[[],[],[]],[]]
=> 12
[[[],[[]]],[]]
=> 4
[[[[]],[]],[]]
=> 4
[[[[],[]]],[]]
=> 4
[[[[[]]]],[]]
=> 2
Description
The size of the automorphism group of the rooted tree underlying the ordered tree.
Matching statistic: St001106
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> 6
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 24
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 6
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> 120
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 12
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 6
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 6
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 12
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 6
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 12
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 6
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 6
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 4
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 12
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 6
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 4
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 12
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[[],[],[[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7)
=> ? = 12
[[],[],[[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7)
=> ? = 12
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,2),(0,3),(0,6),(4,5),(5,1),(6,4)],7)
=> ? = 6
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7)
=> ? = 6
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7)
=> ? = 6
[[],[[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7)
=> ? = 12
[[],[[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7)
=> ? = 12
[[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,2),(0,3),(0,6),(4,5),(5,1),(6,4)],7)
=> ? = 6
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7)
=> ? = 12
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7)
=> ? = 12
[[],[[],[[],[]]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,2),(5,3),(6,1),(6,5)],7)
=> ? = 8
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(4,5),(5,2),(6,1),(6,4)],7)
=> ? = 4
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7)
=> ? = 12
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,3),(0,6),(4,2),(5,1),(6,4),(6,5)],7)
=> ? = 4
[[],[[[],[]],[]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,2),(5,3),(6,1),(6,5)],7)
=> ? = 8
[[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(4,5),(5,2),(6,1),(6,4)],7)
=> ? = 4
[[],[[[],[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7)
=> ([(0,4),(0,5),(5,6),(6,1),(6,2),(6,3)],7)
=> ? = 12
[[],[[[],[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(0,3),(0,5),(4,2),(5,6),(6,1),(6,4)],7)
=> ? = 4
[[],[[[[]],[]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(0,3),(0,5),(4,2),(5,6),(6,1),(6,4)],7)
=> ? = 4
[[],[[[[],[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ([(0,3),(0,5),(4,6),(5,4),(6,1),(6,2)],7)
=> ? = 4
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 2
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7)
=> ? = 6
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7)
=> ? = 6
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(4,3),(5,1),(6,2),(6,4)],7)
=> ? = 4
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(4,3),(5,1),(6,2),(6,4)],7)
=> ? = 4
[[[]],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(0,4),(0,5),(4,3),(5,6),(6,1),(6,2)],7)
=> ? = 4
[[[]],[[[[]]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 2
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7)
=> ? = 6
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7)
=> ? = 6
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(4,3),(5,4),(6,1),(6,2)],7)
=> ? = 4
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(4,3),(5,4),(6,1),(6,2)],7)
=> ? = 4
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 2
[[[],[[]]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7)
=> ? = 12
[[[[]],[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7)
=> ? = 12
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,2),(0,3),(0,6),(4,5),(5,1),(6,4)],7)
=> ? = 6
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(4,3),(5,1),(6,2),(6,4)],7)
=> ? = 4
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(4,3),(5,1),(6,2),(6,4)],7)
=> ? = 4
[[[[],[]]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(0,4),(0,5),(4,3),(5,6),(6,1),(6,2)],7)
=> ? = 4
[[[[[]]]],[[]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 2
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7)
=> ? = 12
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7)
=> ? = 12
[[[],[[],[]]],[]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,2),(5,3),(6,1),(6,5)],7)
=> ? = 8
[[[],[[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(4,5),(5,2),(6,1),(6,4)],7)
=> ? = 4
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7)
=> ? = 12
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,3),(0,6),(4,2),(5,1),(6,4),(6,5)],7)
=> ? = 4
[[[[],[]],[]],[]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(0,4),(0,6),(5,2),(5,3),(6,1),(6,5)],7)
=> ? = 8
[[[[[]]],[]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(4,5),(5,2),(6,1),(6,4)],7)
=> ? = 4
[[[[],[],[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7)
=> ([(0,4),(0,5),(5,6),(6,1),(6,2),(6,3)],7)
=> ? = 12
[[[[],[[]]]],[]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(0,3),(0,5),(4,2),(5,6),(6,1),(6,4)],7)
=> ? = 4
[[[[[]],[]]],[]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(0,3),(0,5),(4,2),(5,6),(6,1),(6,4)],7)
=> ? = 4
Description
The number of supergreedy linear extensions of a poset.
A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm:
* Step 1. Choose a minimal element $x_1$.
* Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$.
This statistic records the number of supergreedy linear extensions.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!