Identifier
Values
[[]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[],[]] => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
[[[]]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 6
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(3,1)],4) => 2
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(3,1)],4) => 2
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => ([(0,3),(3,1),(3,2)],4) => 2
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 24
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(4,1)],5) => 6
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(4,1)],5) => 6
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 4
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(0,4),(3,1),(4,3)],5) => 2
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(4,1)],5) => 6
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 4
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(0,4),(3,1),(4,3)],5) => 2
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => ([(0,4),(4,1),(4,2),(4,3)],5) => 6
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,4),(3,2),(4,1),(4,3)],5) => 2
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,4),(3,2),(4,1),(4,3)],5) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,3),(3,4),(4,1),(4,2)],5) => 2
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 120
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 24
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 24
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 12
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => 6
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 24
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 6
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 12
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => 6
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 12
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => 4
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => 4
[[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => 4
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => 2
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 24
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 6
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 6
[[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 4
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => 2
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 12
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => 6
[[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 4
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => 2
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 12
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => 4
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => 4
[[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => 4
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => 2
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => ([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => 24
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => 6
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => 6
[[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => 4
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => 2
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => 6
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => ([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => 2
[[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => 4
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => 2
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => ([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => 6
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => 2
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => 2
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => 2
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7) => 720
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => 120
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => 120
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => 48
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => 24
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => 120
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => 24
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => 48
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => 24
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) => 36
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => 12
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => 120
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => 24
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => 24
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => 12
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => 48
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => 24
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => 12
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) => 36
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => 12
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,5),(0,6),(6,1),(6,2),(6,3),(6,4)],7) => 48
[[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => 120
[[[]],[],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => 24
[[[]],[],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => 24
[[[]],[],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => 12
[[[]],[[]],[],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => 24
[[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(4,3),(5,2),(6,1)],7) => 6
[[[]],[[],[]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => 12
[[[]],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7) => ([(0,5),(0,6),(5,4),(6,1),(6,2),(6,3)],7) => 12
[[[],[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => 48
[[[[]]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => 24
[[[],[]],[],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => 12
[[[],[]],[[]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => 12
[[[],[]],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(5,3),(5,4),(6,1),(6,2)],7) => 8
[[[],[],[]],[],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) => 36
[[[[],[]]],[],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => 12
[[[],[],[]],[[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7) => ([(0,5),(0,6),(5,4),(6,1),(6,2),(6,3)],7) => 12
>>> Load all 104 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of supergreedy linear extensions of a poset.
A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm:
A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm:
- Step 1. Choose a minimal element $x_1$.
- Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
Map
dual poset
Description
The dual of a poset.
The dual (or opposite) of a poset $(\mathcal P,\leq)$ is the poset $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
The dual (or opposite) of a poset $(\mathcal P,\leq)$ is the poset $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!