searching the database
Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000415
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000415: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> 1
[[],[]]
=> 2
[[[]]]
=> 1
[[],[],[]]
=> 6
[[],[[]]]
=> 2
[[[]],[]]
=> 2
[[[],[]]]
=> 2
[[[[]]]]
=> 1
[[],[],[],[]]
=> 24
[[],[],[[]]]
=> 6
[[],[[]],[]]
=> 6
[[],[[],[]]]
=> 4
[[],[[[]]]]
=> 2
[[[]],[],[]]
=> 6
[[[]],[[]]]
=> 2
[[[],[]],[]]
=> 4
[[[[]]],[]]
=> 2
[[[],[],[]]]
=> 6
[[[],[[]]]]
=> 2
[[[[]],[]]]
=> 2
[[[[],[]]]]
=> 2
[[[[[]]]]]
=> 1
[[],[],[],[],[]]
=> 120
[[],[],[],[[]]]
=> 24
[[],[],[[]],[]]
=> 24
[[],[],[[],[]]]
=> 12
[[],[],[[[]]]]
=> 6
[[],[[]],[],[]]
=> 24
[[],[[]],[[]]]
=> 6
[[],[[],[]],[]]
=> 12
[[],[[[]]],[]]
=> 6
[[],[[],[],[]]]
=> 12
[[],[[],[[]]]]
=> 4
[[],[[[]],[]]]
=> 4
[[],[[[],[]]]]
=> 4
[[],[[[[]]]]]
=> 2
[[[]],[],[],[]]
=> 24
[[[]],[],[[]]]
=> 6
[[[]],[[]],[]]
=> 6
[[[]],[[],[]]]
=> 4
[[[]],[[[]]]]
=> 2
[[[],[]],[],[]]
=> 12
[[[[]]],[],[]]
=> 6
[[[],[]],[[]]]
=> 4
[[[[]]],[[]]]
=> 2
[[[],[],[]],[]]
=> 12
[[[],[[]]],[]]
=> 4
[[[[]],[]],[]]
=> 4
[[[[],[]]],[]]
=> 4
[[[[[]]]],[]]
=> 2
Description
The size of the automorphism group of the rooted tree underlying the ordered tree.
Matching statistic: St001106
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> 6
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 24
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 6
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> 120
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 12
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 6
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 6
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 12
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 6
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 12
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 24
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 6
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 6
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 4
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 12
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 6
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 4
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 12
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
Description
The number of supergreedy linear extensions of a poset.
A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm:
* Step 1. Choose a minimal element $x_1$.
* Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$.
This statistic records the number of supergreedy linear extensions.
Matching statistic: St000038
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000038: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000038: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1] => [1,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 1
[[[]]]
=> [1,1,0,0]
=> [2] => [1,1,0,0]
=> 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 6
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 4
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 6
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 4
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 6
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 6
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 24
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 24
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 4
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 12
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 6
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 4
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 12
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 6
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 6
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 24
Description
The product of the heights of the descending steps of a Dyck path.
A Dyck path with 2n letters defines a partition inside an [n] x [n] board. This statistic counts the number of placements of n non-attacking rooks on the board.
By the Gessel-Viennot theory of orthogonal polynomials this corresponds to the 0-moment of the Hermite polynomials.
Summing the values of the statistic over all Dyck paths of fixed size n the number of perfect matchings (2n+1)!! is obtained: up steps are openers, down steps closers and the rooks determine a pairing of openers and closers.
Matching statistic: St000040
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000040: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000040: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [[1]]
=> [1] => 1
[[],[]]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 1
[[[]]]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 6
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 24
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 24
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 4
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 12
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,2,1,4,5] => 6
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 12
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 4
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [4,3,2,1,5] => 24
Description
The number of regions of the inversion arrangement of a permutation.
The inversion arrangement $\mathcal{A}_w$ consists of the hyperplanes $x_i-x_j=0$ such that $(i,j)$ is an inversion of $w$.
Postnikov [4] conjectured that the number of regions in $\mathcal{A}_w$ equals the number of permutations in the interval $[id,w]$ in the strong Bruhat order if and only if $w$ avoids $4231$, $35142$, $42513$, $351624$. This conjecture was proved by Hultman-Linusson-Shareshian-Sjöstrand [1].
Oh-Postnikov-Yoo [3] showed that the number of regions of $\mathcal{A}_w$ is $|\chi_{G_w}(-1)|$ where $\chi_{G_w}$ is the chromatic polynomial of the inversion graph $G_w$. This is the graph with vertices ${1,2,\ldots,n}$ and edges $(i,j)$ for $i\lneq j$ $w_i\gneq w_j$.
For a permutation $w=w_1\cdots w_n$, Lewis-Morales [2] and Hultman (see appendix in [2]) showed that this number equals the number of placements of $n$ non-attacking rooks on the south-west Rothe diagram of $w$.
Matching statistic: St000109
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000109: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000109: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [[1]]
=> [1] => 1
[[],[]]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 1
[[[]]]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 6
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 24
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 24
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 4
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 12
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,2,1,4,5] => 6
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 12
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 4
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [4,3,2,1,5] => 24
Description
The number of elements less than or equal to the given element in Bruhat order.
Matching statistic: St000110
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000110: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000110: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [[1]]
=> [1] => 1
[[],[]]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 1
[[[]]]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 6
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 6
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 24
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 6
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 24
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 4
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 12
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,2,1,4,5] => 6
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 12
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 4
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 6
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [4,3,2,1,5] => 24
Description
The number of permutations less than or equal to a permutation in left weak order.
This is the same as the number of permutations less than or equal to the given permutation in right weak order.
Matching statistic: St001299
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001299: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001299: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1] => [1,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> [2] => [1,1,0,0]
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 6
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 24
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 6
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 6
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 6
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 6
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 120
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 24
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 12
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 12
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 12
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 12
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 12
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 24
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 6
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 24
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 6
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 6
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 24
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 6
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 6
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
Description
The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra.
Matching statistic: St000707
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00079: Set partitions —shape⟶ Integer partitions
St000707: Integer partitions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00079: Set partitions —shape⟶ Integer partitions
St000707: Integer partitions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> {{1}}
=> [1]
=> ? = 1
[[],[]]
=> [1,0,1,0]
=> {{1},{2}}
=> [1,1]
=> 1
[[[]]]
=> [1,1,0,0]
=> {{1,2}}
=> [2]
=> 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> [1,1,1]
=> 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> [2,1]
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> [2,1]
=> 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> [2,1]
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> [3]
=> 6
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> [1,1,1,1]
=> 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> [2,1,1]
=> 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> [2,1,1]
=> 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> [2,1,1]
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> [3,1]
=> 6
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> [2,1,1]
=> 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> [2,2]
=> 4
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> [2,1,1]
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> [3,1]
=> 6
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> [2,1,1]
=> 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> [3,1]
=> 6
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> [2,2]
=> 4
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> [3,1]
=> 6
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> [4]
=> 24
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> [3,1,1]
=> 6
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> [2,2,1]
=> 4
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> [3,1,1]
=> 6
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> [3,1,1]
=> 6
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> [2,2,1]
=> 4
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> [3,1,1]
=> 6
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> [4,1]
=> 24
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> [2,2,1]
=> 4
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> [2,2,1]
=> 4
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> [2,2,1]
=> 4
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> [3,2]
=> 12
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> [3,1,1]
=> 6
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> [2,2,1]
=> 4
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> [3,2]
=> 12
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> [3,1,1]
=> 6
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> [2,2,1]
=> 4
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> [3,1,1]
=> 6
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> [4,1]
=> 24
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> 2
Description
The product of the factorials of the parts.
Matching statistic: St001346
Mp00050: Ordered trees —to binary tree: right brother = right child⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St001346: Permutations ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St001346: Permutations ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => [1] => ? = 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => [1,2] => 2
[[[]]]
=> [[.,.],.]
=> [1,2] => [2,1] => 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [1,3,2] => 2
[[[]],[]]
=> [[.,.],[.,.]]
=> [1,3,2] => [2,3,1] => 2
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => [3,1,2] => 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [3,2,1] => 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,4,3] => 6
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [1,3,4,2] => 4
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,4,2,3] => 6
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,4,3,2] => 2
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,3,4,1] => 6
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,3,1] => 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,4,1,2] => 4
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [3,4,2,1] => 2
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,1,2,3] => 6
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [4,1,3,2] => 2
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [4,2,3,1] => 2
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [4,3,1,2] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [4,3,2,1] => 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,5,4] => 24
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [1,2,4,5,3] => 12
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,5,3,4] => 24
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,5,4,3] => 6
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [1,3,4,5,2] => 12
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [1,3,5,4,2] => 4
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [1,4,5,2,3] => 12
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [1,4,5,3,2] => 4
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,5,2,3,4] => 24
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,5,2,4,3] => 6
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,5,3,4,2] => 4
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,5,4,2,3] => 6
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,5,4,3,2] => 2
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,3,4,5,1] => 24
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [2,3,5,4,1] => 6
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [2,4,5,3,1] => 4
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,5,3,4,1] => 6
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [2,5,4,3,1] => 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [3,4,5,1,2] => 12
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [3,4,5,2,1] => 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,5,4,1,2] => 4
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [3,5,4,2,1] => 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,5,1,2,3] => 12
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [4,5,1,3,2] => 4
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [4,5,2,3,1] => 4
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [4,5,3,1,2] => 4
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [4,5,3,2,1] => 2
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [5,1,2,3,4] => 24
Description
The number of parking functions that give the same permutation.
A '''parking function''' $(a_1,\dots,a_n)$ is a list of preferred parking spots of $n$ cars entering a one-way street. Once the cars have parked, the order of the cars gives a permutation of $\{1,\dots,n\}$. This statistic records the number of parking functions that yield the same permutation of cars.
Matching statistic: St001545
Values
[[]]
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2}
[[[]]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2}
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,6}
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,6}
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,6}
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,6}
[[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,6}
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,4,6,6,6,6,24}
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,4,4,4,4,4,4,4,4,4,4,12,12,12,12,12,120}
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[[[[],[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
[[[[[[]]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$
els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k
$$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000264The girth of a graph, which is not a tree. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000454The largest eigenvalue of a graph if it is integral. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000100The number of linear extensions of a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000632The jump number of the poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001779The order of promotion on the set of linear extensions of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000455The second largest eigenvalue of a graph if it is integral. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v".
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!