searching the database
Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000428
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00064: Permutations —reverse⟶ Permutations
St000428: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000428: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [2,1] => 0
[2,1] => [1,2] => 0
[1,2,3] => [3,2,1] => 0
[1,3,2] => [2,3,1] => 0
[2,1,3] => [3,1,2] => 0
[2,3,1] => [1,3,2] => 0
[3,1,2] => [2,1,3] => 1
[3,2,1] => [1,2,3] => 1
[1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [3,4,2,1] => 0
[1,3,2,4] => [4,2,3,1] => 0
[1,3,4,2] => [2,4,3,1] => 0
[1,4,2,3] => [3,2,4,1] => 1
[1,4,3,2] => [2,3,4,1] => 1
[2,1,3,4] => [4,3,1,2] => 0
[2,1,4,3] => [3,4,1,2] => 0
[2,3,1,4] => [4,1,3,2] => 0
[2,3,4,1] => [1,4,3,2] => 0
[2,4,1,3] => [3,1,4,2] => 1
[2,4,3,1] => [1,3,4,2] => 1
[3,1,2,4] => [4,2,1,3] => 1
[3,1,4,2] => [2,4,1,3] => 1
[3,2,1,4] => [4,1,2,3] => 1
[3,2,4,1] => [1,4,2,3] => 1
[3,4,1,2] => [2,1,4,3] => 2
[3,4,2,1] => [1,2,4,3] => 2
[4,1,2,3] => [3,2,1,4] => 3
[4,1,3,2] => [2,3,1,4] => 3
[4,2,1,3] => [3,1,2,4] => 3
[4,2,3,1] => [1,3,2,4] => 3
[4,3,1,2] => [2,1,3,4] => 4
[4,3,2,1] => [1,2,3,4] => 4
[1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [4,5,3,2,1] => 0
[1,2,4,3,5] => [5,3,4,2,1] => 0
[1,2,4,5,3] => [3,5,4,2,1] => 0
[1,2,5,3,4] => [4,3,5,2,1] => 1
[1,2,5,4,3] => [3,4,5,2,1] => 1
[1,3,2,4,5] => [5,4,2,3,1] => 0
[1,3,2,5,4] => [4,5,2,3,1] => 0
[1,3,4,2,5] => [5,2,4,3,1] => 0
[1,3,4,5,2] => [2,5,4,3,1] => 0
[1,3,5,2,4] => [4,2,5,3,1] => 1
[1,3,5,4,2] => [2,4,5,3,1] => 1
[1,4,2,3,5] => [5,3,2,4,1] => 1
[1,4,2,5,3] => [3,5,2,4,1] => 1
[1,4,3,2,5] => [5,2,3,4,1] => 1
[1,4,3,5,2] => [2,5,3,4,1] => 1
[1,4,5,2,3] => [3,2,5,4,1] => 2
Description
The number of occurrences of the pattern 123 or of the pattern 213 in a permutation.
Matching statistic: St000423
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00066: Permutations —inverse⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000423: Permutations ⟶ ℤResult quality: 77% ●values known / values provided: 77%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
St000423: Permutations ⟶ ℤResult quality: 77% ●values known / values provided: 77%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [1,2] => [2,1] => 0
[2,1] => [2,1] => [1,2] => 0
[1,2,3] => [1,2,3] => [3,2,1] => 0
[1,3,2] => [1,3,2] => [2,3,1] => 0
[2,1,3] => [2,1,3] => [3,1,2] => 0
[2,3,1] => [3,1,2] => [2,1,3] => 0
[3,1,2] => [2,3,1] => [1,3,2] => 1
[3,2,1] => [3,2,1] => [1,2,3] => 1
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [1,2,4,3] => [3,4,2,1] => 0
[1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 0
[1,3,4,2] => [1,4,2,3] => [3,2,4,1] => 0
[1,4,2,3] => [1,3,4,2] => [2,4,3,1] => 1
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => 1
[2,1,3,4] => [2,1,3,4] => [4,3,1,2] => 0
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 0
[2,3,1,4] => [3,1,2,4] => [4,2,1,3] => 0
[2,3,4,1] => [4,1,2,3] => [3,2,1,4] => 0
[2,4,1,3] => [3,1,4,2] => [2,4,1,3] => 1
[2,4,3,1] => [4,1,3,2] => [2,3,1,4] => 1
[3,1,2,4] => [2,3,1,4] => [4,1,3,2] => 1
[3,1,4,2] => [2,4,1,3] => [3,1,4,2] => 1
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => 1
[3,2,4,1] => [4,2,1,3] => [3,1,2,4] => 1
[3,4,1,2] => [3,4,1,2] => [2,1,4,3] => 2
[3,4,2,1] => [4,3,1,2] => [2,1,3,4] => 2
[4,1,2,3] => [2,3,4,1] => [1,4,3,2] => 3
[4,1,3,2] => [2,4,3,1] => [1,3,4,2] => 3
[4,2,1,3] => [3,2,4,1] => [1,4,2,3] => 3
[4,2,3,1] => [4,2,3,1] => [1,3,2,4] => 3
[4,3,1,2] => [3,4,2,1] => [1,2,4,3] => 4
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 4
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [4,5,3,2,1] => 0
[1,2,4,3,5] => [1,2,4,3,5] => [5,3,4,2,1] => 0
[1,2,4,5,3] => [1,2,5,3,4] => [4,3,5,2,1] => 0
[1,2,5,3,4] => [1,2,4,5,3] => [3,5,4,2,1] => 1
[1,2,5,4,3] => [1,2,5,4,3] => [3,4,5,2,1] => 1
[1,3,2,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => 0
[1,3,2,5,4] => [1,3,2,5,4] => [4,5,2,3,1] => 0
[1,3,4,2,5] => [1,4,2,3,5] => [5,3,2,4,1] => 0
[1,3,4,5,2] => [1,5,2,3,4] => [4,3,2,5,1] => 0
[1,3,5,2,4] => [1,4,2,5,3] => [3,5,2,4,1] => 1
[1,3,5,4,2] => [1,5,2,4,3] => [3,4,2,5,1] => 1
[1,4,2,3,5] => [1,3,4,2,5] => [5,2,4,3,1] => 1
[1,4,2,5,3] => [1,3,5,2,4] => [4,2,5,3,1] => 1
[1,4,3,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => 1
[1,4,3,5,2] => [1,5,3,2,4] => [4,2,3,5,1] => 1
[1,4,5,2,3] => [1,4,5,2,3] => [3,2,5,4,1] => 2
[2,3,6,7,5,4,1] => [7,1,2,6,5,3,4] => [4,3,5,6,2,1,7] => ? = 7
[2,3,7,6,5,4,1] => [7,1,2,6,5,4,3] => [3,4,5,6,2,1,7] => ? = 10
[2,4,5,6,7,3,1] => [7,1,6,2,3,4,5] => [5,4,3,2,6,1,7] => ? = 4
[2,4,5,7,6,3,1] => [7,1,6,2,3,5,4] => [4,5,3,2,6,1,7] => ? = 6
[2,4,6,5,7,3,1] => [7,1,6,2,4,3,5] => [5,3,4,2,6,1,7] => ? = 6
[2,4,6,7,5,3,1] => [7,1,6,2,5,3,4] => [4,3,5,2,6,1,7] => ? = 8
[2,4,7,5,6,3,1] => [7,1,6,2,4,5,3] => [3,5,4,2,6,1,7] => ? = 9
[2,4,7,6,5,3,1] => [7,1,6,2,5,4,3] => [3,4,5,2,6,1,7] => ? = 11
[2,5,4,6,7,3,1] => [7,1,6,3,2,4,5] => [5,4,2,3,6,1,7] => ? = 6
[2,5,4,7,6,3,1] => [7,1,6,3,2,5,4] => [4,5,2,3,6,1,7] => ? = 8
[2,5,6,4,7,3,1] => [7,1,6,4,2,3,5] => [5,3,2,4,6,1,7] => ? = 8
[2,5,6,7,3,4,1] => [7,1,5,6,2,3,4] => [4,3,2,6,5,1,7] => ? = 9
[2,5,6,7,4,3,1] => [7,1,6,5,2,3,4] => [4,3,2,5,6,1,7] => ? = 10
[2,5,7,3,6,4,1] => [7,1,4,6,2,5,3] => [3,5,2,6,4,1,7] => ? = 10
[2,5,7,4,6,3,1] => [7,1,6,4,2,5,3] => [3,5,2,4,6,1,7] => ? = 11
[2,5,7,6,3,4,1] => [7,1,5,6,2,4,3] => [3,4,2,6,5,1,7] => ? = 12
[2,5,7,6,4,3,1] => [7,1,6,5,2,4,3] => [3,4,2,5,6,1,7] => ? = 13
[2,6,3,7,5,4,1] => [7,1,3,6,5,2,4] => [4,2,5,6,3,1,7] => ? = 10
[2,6,4,5,7,3,1] => [7,1,6,3,4,2,5] => [5,2,4,3,6,1,7] => ? = 9
[2,6,4,7,5,3,1] => [7,1,6,3,5,2,4] => [4,2,5,3,6,1,7] => ? = 11
[2,6,5,4,7,3,1] => [7,1,6,4,3,2,5] => [5,2,3,4,6,1,7] => ? = 11
[2,6,5,7,3,4,1] => [7,1,5,6,3,2,4] => [4,2,3,6,5,1,7] => ? = 12
[2,6,5,7,4,3,1] => [7,1,6,5,3,2,4] => [4,2,3,5,6,1,7] => ? = 13
[2,6,7,3,5,4,1] => [7,1,4,6,5,2,3] => [3,2,5,6,4,1,7] => ? = 13
[2,6,7,4,5,3,1] => [7,1,6,4,5,2,3] => [3,2,5,4,6,1,7] => ? = 14
[2,6,7,5,3,4,1] => [7,1,5,6,4,2,3] => [3,2,4,6,5,1,7] => ? = 15
[2,6,7,5,4,3,1] => [7,1,6,5,4,2,3] => [3,2,4,5,6,1,7] => ? = 16
[2,7,3,5,6,4,1] => [7,1,3,6,4,5,2] => [2,5,4,6,3,1,7] => ? = 12
[2,7,3,6,5,4,1] => [7,1,3,6,5,4,2] => [2,4,5,6,3,1,7] => ? = 14
[2,7,4,5,6,3,1] => [7,1,6,3,4,5,2] => [2,5,4,3,6,1,7] => ? = 13
[2,7,4,6,5,3,1] => [7,1,6,3,5,4,2] => [2,4,5,3,6,1,7] => ? = 15
[2,7,5,3,6,4,1] => [7,1,4,6,3,5,2] => [2,5,3,6,4,1,7] => ? = 14
[2,7,5,4,6,3,1] => [7,1,6,4,3,5,2] => [2,5,3,4,6,1,7] => ? = 15
[2,7,5,6,3,4,1] => [7,1,5,6,3,4,2] => [2,4,3,6,5,1,7] => ? = 16
[2,7,5,6,4,3,1] => [7,1,6,5,3,4,2] => [2,4,3,5,6,1,7] => ? = 17
[2,7,6,3,5,4,1] => [7,1,4,6,5,3,2] => [2,3,5,6,4,1,7] => ? = 17
[2,7,6,4,5,3,1] => [7,1,6,4,5,3,2] => [2,3,5,4,6,1,7] => ? = 18
[2,7,6,5,3,4,1] => [7,1,5,6,4,3,2] => [2,3,4,6,5,1,7] => ? = 19
[2,7,6,5,4,3,1] => [7,1,6,5,4,3,2] => [2,3,4,5,6,1,7] => ? = 20
[3,2,6,7,5,4,1] => [7,2,1,6,5,3,4] => [4,3,5,6,1,2,7] => ? = 8
[3,2,7,6,5,4,1] => [7,2,1,6,5,4,3] => [3,4,5,6,1,2,7] => ? = 11
[3,4,5,6,7,2,1] => [7,6,1,2,3,4,5] => [5,4,3,2,1,6,7] => ? = 5
[3,4,5,7,6,2,1] => [7,6,1,2,3,5,4] => [4,5,3,2,1,6,7] => ? = 7
[3,4,6,5,7,2,1] => [7,6,1,2,4,3,5] => [5,3,4,2,1,6,7] => ? = 7
[3,4,6,7,5,2,1] => [7,6,1,2,5,3,4] => [4,3,5,2,1,6,7] => ? = 9
[3,4,7,5,6,2,1] => [7,6,1,2,4,5,3] => [3,5,4,2,1,6,7] => ? = 10
[3,4,7,6,5,2,1] => [7,6,1,2,5,4,3] => [3,4,5,2,1,6,7] => ? = 12
[3,5,4,6,7,2,1] => [7,6,1,3,2,4,5] => [5,4,2,3,1,6,7] => ? = 7
[3,5,4,7,6,2,1] => [7,6,1,3,2,5,4] => [4,5,2,3,1,6,7] => ? = 9
[3,5,6,4,7,2,1] => [7,6,1,4,2,3,5] => [5,3,2,4,1,6,7] => ? = 9
Description
The number of occurrences of the pattern 123 or of the pattern 132 in a permutation.
Matching statistic: St000437
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00066: Permutations —inverse⟶ Permutations
Mp00257: Permutations —Alexandersson Kebede⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000437: Permutations ⟶ ℤResult quality: 58% ●values known / values provided: 73%●distinct values known / distinct values provided: 58%
Mp00257: Permutations —Alexandersson Kebede⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000437: Permutations ⟶ ℤResult quality: 58% ●values known / values provided: 73%●distinct values known / distinct values provided: 58%
Values
[1] => [1] => [1] => [1] => ? = 0
[1,2] => [1,2] => [1,2] => [1,2] => 0
[2,1] => [2,1] => [2,1] => [2,1] => 0
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [3,1,2] => [2,3,1] => 0
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 0
[2,3,1] => [3,1,2] => [1,3,2] => [1,3,2] => 0
[3,1,2] => [2,3,1] => [3,2,1] => [3,2,1] => 1
[3,2,1] => [3,2,1] => [2,3,1] => [3,1,2] => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,3,2,4] => [1,3,2,4] => [3,1,2,4] => [2,3,1,4] => 0
[1,3,4,2] => [1,4,2,3] => [4,1,2,3] => [2,3,4,1] => 0
[1,4,2,3] => [1,3,4,2] => [3,1,4,2] => [2,4,1,3] => 1
[1,4,3,2] => [1,4,3,2] => [4,1,3,2] => [2,4,3,1] => 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[2,3,1,4] => [3,1,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[2,3,4,1] => [4,1,2,3] => [1,4,2,3] => [1,3,4,2] => 0
[2,4,1,3] => [3,1,4,2] => [1,3,4,2] => [1,4,2,3] => 1
[2,4,3,1] => [4,1,3,2] => [1,4,3,2] => [1,4,3,2] => 1
[3,1,2,4] => [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[3,1,4,2] => [2,4,1,3] => [4,2,1,3] => [3,2,4,1] => 1
[3,2,1,4] => [3,2,1,4] => [2,3,1,4] => [3,1,2,4] => 1
[3,2,4,1] => [4,2,1,3] => [2,4,1,3] => [3,1,4,2] => 1
[3,4,1,2] => [3,4,1,2] => [4,3,1,2] => [3,4,2,1] => 2
[3,4,2,1] => [4,3,1,2] => [3,4,1,2] => [3,4,1,2] => 2
[4,1,2,3] => [2,3,4,1] => [3,2,4,1] => [4,2,1,3] => 3
[4,1,3,2] => [2,4,3,1] => [4,2,3,1] => [4,2,3,1] => 3
[4,2,1,3] => [3,2,4,1] => [2,3,4,1] => [4,1,2,3] => 3
[4,2,3,1] => [4,2,3,1] => [2,4,3,1] => [4,1,3,2] => 3
[4,3,1,2] => [3,4,2,1] => [4,3,2,1] => [4,3,2,1] => 4
[4,3,2,1] => [4,3,2,1] => [3,4,2,1] => [4,3,1,2] => 4
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,5,3,4] => [1,2,4,5,3] => 0
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,5,3,4] => [1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => [1,2,5,3,4] => 1
[1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => [2,3,1,4,5] => 0
[1,3,2,5,4] => [1,3,2,5,4] => [3,1,2,5,4] => [2,3,1,5,4] => 0
[1,3,4,2,5] => [1,4,2,3,5] => [4,1,2,3,5] => [2,3,4,1,5] => 0
[1,3,4,5,2] => [1,5,2,3,4] => [5,1,2,3,4] => [2,3,4,5,1] => 0
[1,3,5,2,4] => [1,4,2,5,3] => [4,1,2,5,3] => [2,3,5,1,4] => 1
[1,3,5,4,2] => [1,5,2,4,3] => [5,1,2,4,3] => [2,3,5,4,1] => 1
[1,4,2,3,5] => [1,3,4,2,5] => [3,1,4,2,5] => [2,4,1,3,5] => 1
[1,4,2,5,3] => [1,3,5,2,4] => [3,1,5,2,4] => [2,4,1,5,3] => 1
[1,4,3,2,5] => [1,4,3,2,5] => [4,1,3,2,5] => [2,4,3,1,5] => 1
[1,4,3,5,2] => [1,5,3,2,4] => [5,1,3,2,4] => [2,4,3,5,1] => 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,1,5,2,3] => [2,4,5,1,3] => 2
[1,4,5,3,2] => [1,5,4,2,3] => [5,1,4,2,3] => [2,4,5,3,1] => 2
[2,4,6,5,7,3,1] => [7,1,6,2,4,3,5] => [1,7,6,2,4,3,5] => [1,4,6,5,7,3,2] => ? = 6
[2,4,6,7,5,3,1] => [7,1,6,2,5,3,4] => [1,7,6,2,5,3,4] => [1,4,6,7,5,3,2] => ? = 8
[2,4,7,5,6,3,1] => [7,1,6,2,4,5,3] => [1,7,6,2,4,5,3] => [1,4,7,5,6,3,2] => ? = 9
[2,4,7,6,5,3,1] => [7,1,6,2,5,4,3] => [1,7,6,2,5,4,3] => [1,4,7,6,5,3,2] => ? = 11
[2,5,4,6,7,3,1] => [7,1,6,3,2,4,5] => [1,7,6,3,2,4,5] => [1,5,4,6,7,3,2] => ? = 6
[2,5,4,7,6,3,1] => [7,1,6,3,2,5,4] => [1,7,6,3,2,5,4] => [1,5,4,7,6,3,2] => ? = 8
[2,5,6,4,7,3,1] => [7,1,6,4,2,3,5] => [1,7,6,4,2,3,5] => [1,5,6,4,7,3,2] => ? = 8
[2,5,6,7,3,4,1] => [7,1,5,6,2,3,4] => [1,7,5,6,2,3,4] => [1,5,6,7,3,4,2] => ? = 9
[2,5,6,7,4,3,1] => [7,1,6,5,2,3,4] => [1,7,6,5,2,3,4] => [1,5,6,7,4,3,2] => ? = 10
[2,5,7,3,6,4,1] => [7,1,4,6,2,5,3] => [1,7,4,6,2,5,3] => [1,5,7,3,6,4,2] => ? = 10
[2,5,7,4,6,3,1] => [7,1,6,4,2,5,3] => [1,7,6,4,2,5,3] => [1,5,7,4,6,3,2] => ? = 11
[2,5,7,6,3,4,1] => [7,1,5,6,2,4,3] => [1,7,5,6,2,4,3] => [1,5,7,6,3,4,2] => ? = 12
[2,5,7,6,4,3,1] => [7,1,6,5,2,4,3] => [1,7,6,5,2,4,3] => [1,5,7,6,4,3,2] => ? = 13
[2,6,3,7,5,4,1] => [7,1,3,6,5,2,4] => [1,7,3,6,5,2,4] => [1,6,3,7,5,4,2] => ? = 10
[2,6,4,5,7,3,1] => [7,1,6,3,4,2,5] => [1,7,6,3,4,2,5] => [1,6,4,5,7,3,2] => ? = 9
[2,6,4,7,5,3,1] => [7,1,6,3,5,2,4] => [1,7,6,3,5,2,4] => [1,6,4,7,5,3,2] => ? = 11
[2,6,5,4,7,3,1] => [7,1,6,4,3,2,5] => [1,7,6,4,3,2,5] => [1,6,5,4,7,3,2] => ? = 11
[2,6,5,7,3,4,1] => [7,1,5,6,3,2,4] => [1,7,5,6,3,2,4] => [1,6,5,7,3,4,2] => ? = 12
[2,6,5,7,4,3,1] => [7,1,6,5,3,2,4] => [1,7,6,5,3,2,4] => [1,6,5,7,4,3,2] => ? = 13
[2,6,7,3,5,4,1] => [7,1,4,6,5,2,3] => [1,7,4,6,5,2,3] => [1,6,7,3,5,4,2] => ? = 13
[2,6,7,4,5,3,1] => [7,1,6,4,5,2,3] => [1,7,6,4,5,2,3] => [1,6,7,4,5,3,2] => ? = 14
[2,6,7,5,3,4,1] => [7,1,5,6,4,2,3] => [1,7,5,6,4,2,3] => [1,6,7,5,3,4,2] => ? = 15
[2,6,7,5,4,3,1] => [7,1,6,5,4,2,3] => [1,7,6,5,4,2,3] => [1,6,7,5,4,3,2] => ? = 16
[2,7,3,5,6,4,1] => [7,1,3,6,4,5,2] => [1,7,3,6,4,5,2] => [1,7,3,5,6,4,2] => ? = 12
[2,7,3,6,5,4,1] => [7,1,3,6,5,4,2] => [1,7,3,6,5,4,2] => [1,7,3,6,5,4,2] => ? = 14
[2,7,4,5,6,3,1] => [7,1,6,3,4,5,2] => [1,7,6,3,4,5,2] => [1,7,4,5,6,3,2] => ? = 13
[2,7,4,6,5,3,1] => [7,1,6,3,5,4,2] => [1,7,6,3,5,4,2] => [1,7,4,6,5,3,2] => ? = 15
[2,7,5,3,6,4,1] => [7,1,4,6,3,5,2] => [1,7,4,6,3,5,2] => [1,7,5,3,6,4,2] => ? = 14
[2,7,5,4,6,3,1] => [7,1,6,4,3,5,2] => [1,7,6,4,3,5,2] => [1,7,5,4,6,3,2] => ? = 15
[2,7,5,6,3,4,1] => [7,1,5,6,3,4,2] => [1,7,5,6,3,4,2] => [1,7,5,6,3,4,2] => ? = 16
[2,7,5,6,4,3,1] => [7,1,6,5,3,4,2] => [1,7,6,5,3,4,2] => [1,7,5,6,4,3,2] => ? = 17
[2,7,6,3,5,4,1] => [7,1,4,6,5,3,2] => [1,7,4,6,5,3,2] => [1,7,6,3,5,4,2] => ? = 17
[2,7,6,4,5,3,1] => [7,1,6,4,5,3,2] => [1,7,6,4,5,3,2] => [1,7,6,4,5,3,2] => ? = 18
[2,7,6,5,3,4,1] => [7,1,5,6,4,3,2] => [1,7,5,6,4,3,2] => [1,7,6,5,3,4,2] => ? = 19
[2,7,6,5,4,3,1] => [7,1,6,5,4,3,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ? = 20
[3,2,6,7,5,4,1] => [7,2,1,6,5,3,4] => [2,7,1,6,5,3,4] => [3,1,6,7,5,4,2] => ? = 8
[3,2,7,6,5,4,1] => [7,2,1,6,5,4,3] => [2,7,1,6,5,4,3] => [3,1,7,6,5,4,2] => ? = 11
[3,4,5,6,7,2,1] => [7,6,1,2,3,4,5] => [6,7,1,2,3,4,5] => [3,4,5,6,7,1,2] => ? = 5
[3,4,5,7,6,2,1] => [7,6,1,2,3,5,4] => [6,7,1,2,3,5,4] => [3,4,5,7,6,1,2] => ? = 7
[3,4,6,5,7,2,1] => [7,6,1,2,4,3,5] => [6,7,1,2,4,3,5] => [3,4,6,5,7,1,2] => ? = 7
[3,4,6,7,5,2,1] => [7,6,1,2,5,3,4] => [6,7,1,2,5,3,4] => [3,4,6,7,5,1,2] => ? = 9
[3,4,7,5,6,2,1] => [7,6,1,2,4,5,3] => [6,7,1,2,4,5,3] => [3,4,7,5,6,1,2] => ? = 10
[3,4,7,6,5,2,1] => [7,6,1,2,5,4,3] => [6,7,1,2,5,4,3] => [3,4,7,6,5,1,2] => ? = 12
[3,5,4,6,7,2,1] => [7,6,1,3,2,4,5] => [6,7,1,3,2,4,5] => [3,5,4,6,7,1,2] => ? = 7
[3,5,4,7,6,2,1] => [7,6,1,3,2,5,4] => [6,7,1,3,2,5,4] => [3,5,4,7,6,1,2] => ? = 9
[3,5,6,4,7,2,1] => [7,6,1,4,2,3,5] => [6,7,1,4,2,3,5] => [3,5,6,4,7,1,2] => ? = 9
[3,5,6,7,2,4,1] => [7,5,1,6,2,3,4] => [5,7,1,6,2,3,4] => [3,5,6,7,1,4,2] => ? = 10
[3,5,6,7,4,2,1] => [7,6,1,5,2,3,4] => [6,7,1,5,2,3,4] => [3,5,6,7,4,1,2] => ? = 11
[3,5,7,2,6,4,1] => [7,4,1,6,2,5,3] => [4,7,1,6,2,5,3] => [3,5,7,1,6,4,2] => ? = 11
Description
The number of occurrences of the pattern 312 or of the pattern 321 in a permutation.
Matching statistic: St000436
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00066: Permutations —inverse⟶ Permutations
St000436: Permutations ⟶ ℤResult quality: 58% ●values known / values provided: 73%●distinct values known / distinct values provided: 58%
St000436: Permutations ⟶ ℤResult quality: 58% ●values known / values provided: 73%●distinct values known / distinct values provided: 58%
Values
[1] => [1] => ? = 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 0
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 0
[2,1,3] => [2,1,3] => 0
[2,3,1] => [3,1,2] => 0
[3,1,2] => [2,3,1] => 1
[3,2,1] => [3,2,1] => 1
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 0
[1,3,2,4] => [1,3,2,4] => 0
[1,3,4,2] => [1,4,2,3] => 0
[1,4,2,3] => [1,3,4,2] => 1
[1,4,3,2] => [1,4,3,2] => 1
[2,1,3,4] => [2,1,3,4] => 0
[2,1,4,3] => [2,1,4,3] => 0
[2,3,1,4] => [3,1,2,4] => 0
[2,3,4,1] => [4,1,2,3] => 0
[2,4,1,3] => [3,1,4,2] => 1
[2,4,3,1] => [4,1,3,2] => 1
[3,1,2,4] => [2,3,1,4] => 1
[3,1,4,2] => [2,4,1,3] => 1
[3,2,1,4] => [3,2,1,4] => 1
[3,2,4,1] => [4,2,1,3] => 1
[3,4,1,2] => [3,4,1,2] => 2
[3,4,2,1] => [4,3,1,2] => 2
[4,1,2,3] => [2,3,4,1] => 3
[4,1,3,2] => [2,4,3,1] => 3
[4,2,1,3] => [3,2,4,1] => 3
[4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => [3,4,2,1] => 4
[4,3,2,1] => [4,3,2,1] => 4
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,4,3,5] => [1,2,4,3,5] => 0
[1,2,4,5,3] => [1,2,5,3,4] => 0
[1,2,5,3,4] => [1,2,4,5,3] => 1
[1,2,5,4,3] => [1,2,5,4,3] => 1
[1,3,2,4,5] => [1,3,2,4,5] => 0
[1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,4,2,5] => [1,4,2,3,5] => 0
[1,3,4,5,2] => [1,5,2,3,4] => 0
[1,3,5,2,4] => [1,4,2,5,3] => 1
[1,3,5,4,2] => [1,5,2,4,3] => 1
[1,4,2,3,5] => [1,3,4,2,5] => 1
[1,4,2,5,3] => [1,3,5,2,4] => 1
[1,4,3,2,5] => [1,4,3,2,5] => 1
[1,4,3,5,2] => [1,5,3,2,4] => 1
[1,4,5,2,3] => [1,4,5,2,3] => 2
[1,4,5,3,2] => [1,5,4,2,3] => 2
[2,3,6,7,5,4,1] => [7,1,2,6,5,3,4] => ? = 7
[2,3,7,6,5,4,1] => [7,1,2,6,5,4,3] => ? = 10
[2,4,5,6,7,3,1] => [7,1,6,2,3,4,5] => ? = 4
[2,4,5,7,6,3,1] => [7,1,6,2,3,5,4] => ? = 6
[2,4,6,5,7,3,1] => [7,1,6,2,4,3,5] => ? = 6
[2,4,6,7,5,3,1] => [7,1,6,2,5,3,4] => ? = 8
[2,4,7,5,6,3,1] => [7,1,6,2,4,5,3] => ? = 9
[2,4,7,6,5,3,1] => [7,1,6,2,5,4,3] => ? = 11
[2,5,4,6,7,3,1] => [7,1,6,3,2,4,5] => ? = 6
[2,5,4,7,6,3,1] => [7,1,6,3,2,5,4] => ? = 8
[2,5,6,4,7,3,1] => [7,1,6,4,2,3,5] => ? = 8
[2,5,6,7,3,4,1] => [7,1,5,6,2,3,4] => ? = 9
[2,5,6,7,4,3,1] => [7,1,6,5,2,3,4] => ? = 10
[2,5,7,3,6,4,1] => [7,1,4,6,2,5,3] => ? = 10
[2,5,7,4,6,3,1] => [7,1,6,4,2,5,3] => ? = 11
[2,5,7,6,3,4,1] => [7,1,5,6,2,4,3] => ? = 12
[2,5,7,6,4,3,1] => [7,1,6,5,2,4,3] => ? = 13
[2,6,3,7,5,4,1] => [7,1,3,6,5,2,4] => ? = 10
[2,6,4,5,7,3,1] => [7,1,6,3,4,2,5] => ? = 9
[2,6,4,7,5,3,1] => [7,1,6,3,5,2,4] => ? = 11
[2,6,5,4,7,3,1] => [7,1,6,4,3,2,5] => ? = 11
[2,6,5,7,3,4,1] => [7,1,5,6,3,2,4] => ? = 12
[2,6,5,7,4,3,1] => [7,1,6,5,3,2,4] => ? = 13
[2,6,7,3,5,4,1] => [7,1,4,6,5,2,3] => ? = 13
[2,6,7,4,5,3,1] => [7,1,6,4,5,2,3] => ? = 14
[2,6,7,5,3,4,1] => [7,1,5,6,4,2,3] => ? = 15
[2,6,7,5,4,3,1] => [7,1,6,5,4,2,3] => ? = 16
[2,7,3,5,6,4,1] => [7,1,3,6,4,5,2] => ? = 12
[2,7,3,6,5,4,1] => [7,1,3,6,5,4,2] => ? = 14
[2,7,4,5,6,3,1] => [7,1,6,3,4,5,2] => ? = 13
[2,7,4,6,5,3,1] => [7,1,6,3,5,4,2] => ? = 15
[2,7,5,3,6,4,1] => [7,1,4,6,3,5,2] => ? = 14
[2,7,5,4,6,3,1] => [7,1,6,4,3,5,2] => ? = 15
[2,7,5,6,3,4,1] => [7,1,5,6,3,4,2] => ? = 16
[2,7,5,6,4,3,1] => [7,1,6,5,3,4,2] => ? = 17
[2,7,6,3,5,4,1] => [7,1,4,6,5,3,2] => ? = 17
[2,7,6,4,5,3,1] => [7,1,6,4,5,3,2] => ? = 18
[2,7,6,5,3,4,1] => [7,1,5,6,4,3,2] => ? = 19
[2,7,6,5,4,3,1] => [7,1,6,5,4,3,2] => ? = 20
[3,2,6,7,5,4,1] => [7,2,1,6,5,3,4] => ? = 8
[3,2,7,6,5,4,1] => [7,2,1,6,5,4,3] => ? = 11
[3,4,5,6,7,2,1] => [7,6,1,2,3,4,5] => ? = 5
[3,4,5,7,6,2,1] => [7,6,1,2,3,5,4] => ? = 7
[3,4,6,5,7,2,1] => [7,6,1,2,4,3,5] => ? = 7
[3,4,6,7,5,2,1] => [7,6,1,2,5,3,4] => ? = 9
[3,4,7,5,6,2,1] => [7,6,1,2,4,5,3] => ? = 10
[3,4,7,6,5,2,1] => [7,6,1,2,5,4,3] => ? = 12
[3,5,4,6,7,2,1] => [7,6,1,3,2,4,5] => ? = 7
[3,5,4,7,6,2,1] => [7,6,1,3,2,5,4] => ? = 9
Description
The number of occurrences of the pattern 231 or of the pattern 321 in a permutation.
Matching statistic: St000307
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Values
[1] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,4,3,2] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,3,1] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,1,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,1,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,2,4,1] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,4,1,2] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[3,4,2,1] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,1,2,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,1,3,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,2,1,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,2,3,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,3,1,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 4 + 1
[4,3,2,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 4 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,2,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,2,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,3,2,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,3,4,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,4,2,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[1,5,4,3,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,4,1,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,1,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,1,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,3,1,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,3,4,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,4,1,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[3,1,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,2,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,4,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,1,4,5,2] => [1,3,4,5,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
[3,1,5,2,4] => [1,3,5,4,2] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,1,5,4,2] => [1,3,5,2,4] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset P. It sends an order ideal I to the order ideal generated by the minimal antichain of P∖I.
Matching statistic: St001632
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Values
[1] => [1] => [1] => ([],1)
=> ? = 0 + 1
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,4,3,2] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,3,1] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,1,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,1,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,2,4,1] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,4,1,2] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[3,4,2,1] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,1,2,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,1,3,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,2,1,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,2,3,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 3 + 1
[4,3,1,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 4 + 1
[4,3,2,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 4 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,2,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,2,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,3,2,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,3,4,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,5,4,2,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[1,5,4,3,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,4,1,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,1,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,1,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,3,1,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,3,4,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[2,5,4,1,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[3,1,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,2,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,4,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,1,4,5,2] => [1,3,4,5,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
[3,1,5,2,4] => [1,3,5,4,2] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,1,5,4,2] => [1,3,5,2,4] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset.
Matching statistic: St000259
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000302: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000302: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000466
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000466: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000466: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 5%●distinct values known / distinct values provided: 3%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 3
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 3
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The Gutman (or modified Schultz) index of a connected graph.
This is
∑{u,v}⊆Vd(u)d(v)d(u,v)
where d(u) is the degree of vertex u and d(u,v) is the distance between vertices u and v.
For trees on n vertices, the modified Schultz index is related to the Wiener index via S∗(T)=4W(T)−(n−1)(2n−1) [1].
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!