Processing math: 27%

Your data matches 153 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00198: Posets incomparability graphGraphs
St000449: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 0
([],2)
=> ([(0,1)],2)
=> 0
([(0,1)],2)
=> ([],2)
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 0
([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> 0
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
Description
The number of pairs of vertices of a graph with distance 4. This is the coefficient of the quartic term of the Wiener polynomial.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
Mp00274: Graphs block-cut treeGraphs
St000379: Graphs ⟶ ℤResult quality: 20% values known / values provided: 68%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> ([],1)
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> 0
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> 0
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> 0
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 0
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> 0
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> 0
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(5,1),(5,2),(5,3),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
Description
The number of Hamiltonian cycles in a graph. A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$. Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Mp00198: Posets incomparability graphGraphs
Mp00157: Graphs connected complementGraphs
Mp00274: Graphs block-cut treeGraphs
St000456: Graphs ⟶ ℤResult quality: 20% values known / values provided: 47%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 + 1
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? = 0 + 1
([(0,1)],2)
=> ([],2)
=> ([],2)
=> ([],2)
=> ? = 0 + 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 0 + 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 0 + 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> ([],3)
=> ? = 0 + 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 0 + 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0 + 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0 + 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 0 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 0 + 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 0 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> ([],4)
=> ? = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 + 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 + 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 0 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 0 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 0 + 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 0 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 + 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 0 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(1,5),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,5),(5,2),(5,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,5),(2,5),(5,3),(5,4)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(5,3),(5,4)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 1 = 0 + 1
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Mp00074: Posets to graphGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001651: Lattices ⟶ ℤResult quality: 20% values known / values provided: 37%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],2)
=> ([],1)
=> ? = 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],3)
=> ([],3)
=> ([],1)
=> ? = 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([],4)
=> ([],4)
=> ([],1)
=> ? = 0
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([],5)
=> ([],5)
=> ([],1)
=> ? = 0
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([],6)
=> ([],6)
=> ([],1)
=> ? = 0
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 0
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,23),(1,24),(1,25),(1,26),(1,27),(1,28),(2,10),(2,12),(2,16),(2,21),(2,22),(2,24),(3,10),(3,11),(3,15),(3,19),(3,20),(3,23),(4,9),(4,14),(4,18),(4,20),(4,22),(4,26),(5,9),(5,13),(5,17),(5,19),(5,21),(5,25),(6,8),(6,15),(6,16),(6,17),(6,18),(6,28),(7,8),(7,11),(7,12),(7,13),(7,14),(7,27),(8,31),(8,61),(8,62),(9,30),(9,60),(9,62),(10,29),(10,60),(10,61),(11,32),(11,44),(11,45),(11,61),(12,33),(12,46),(12,47),(12,61),(13,34),(13,44),(13,46),(13,62),(14,35),(14,45),(14,47),(14,62),(15,36),(15,48),(15,49),(15,61),(16,37),(16,50),(16,51),(16,61),(17,38),(17,48),(17,50),(17,62),(18,39),(18,49),(18,51),(18,62),(19,40),(19,44),(19,48),(19,60),(20,41),(20,45),(20,49),(20,60),(21,42),(21,46),(21,50),(21,60),(22,43),(22,47),(22,51),(22,60),(23,29),(23,32),(23,36),(23,40),(23,41),(24,29),(24,33),(24,37),(24,42),(24,43),(25,30),(25,34),(25,38),(25,40),(25,42),(26,30),(26,35),(26,39),(26,41),(26,43),(27,31),(27,32),(27,33),(27,34),(27,35),(28,31),(28,36),(28,37),(28,38),(28,39),(29,63),(29,64),(30,63),(30,65),(31,64),(31,65),(32,52),(32,53),(32,64),(33,54),(33,55),(33,64),(34,52),(34,54),(34,65),(35,53),(35,55),(35,65),(36,56),(36,57),(36,64),(37,58),(37,59),(37,64),(38,56),(38,58),(38,65),(39,57),(39,59),(39,65),(40,52),(40,56),(40,63),(41,53),(41,57),(41,63),(42,54),(42,58),(42,63),(43,55),(43,59),(43,63),(44,52),(44,66),(45,53),(45,66),(46,54),(46,66),(47,55),(47,66),(48,56),(48,66),(49,57),(49,66),(50,58),(50,66),(51,59),(51,66),(52,67),(53,67),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,63),(60,66),(61,64),(61,66),(62,65),(62,66),(63,67),(64,67),(65,67),(66,67)],68)
=> ? = 0
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(1,14),(1,18),(1,23),(1,24),(1,26),(1,32),(2,12),(2,13),(2,17),(2,21),(2,22),(2,25),(2,31),(3,11),(3,16),(3,20),(3,22),(3,24),(3,28),(3,34),(4,11),(4,15),(4,19),(4,21),(4,23),(4,27),(4,33),(5,10),(5,17),(5,18),(5,19),(5,20),(5,30),(5,36),(6,10),(6,13),(6,14),(6,15),(6,16),(6,29),(6,35),(7,9),(7,31),(7,32),(7,33),(7,34),(7,35),(7,36),(8,9),(8,25),(8,26),(8,27),(8,28),(8,29),(8,30),(9,88),(9,89),(9,90),(10,86),(10,87),(10,90),(11,85),(11,87),(11,89),(12,85),(12,86),(12,88),(13,37),(13,49),(13,61),(13,62),(13,86),(14,38),(14,50),(14,63),(14,64),(14,86),(15,39),(15,51),(15,61),(15,63),(15,87),(16,40),(16,52),(16,62),(16,64),(16,87),(17,41),(17,53),(17,65),(17,66),(17,86),(18,42),(18,54),(18,67),(18,68),(18,86),(19,43),(19,55),(19,65),(19,67),(19,87),(20,44),(20,56),(20,66),(20,68),(20,87),(21,45),(21,57),(21,61),(21,65),(21,85),(22,46),(22,58),(22,62),(22,66),(22,85),(23,47),(23,59),(23,63),(23,67),(23,85),(24,48),(24,60),(24,64),(24,68),(24,85),(25,37),(25,41),(25,45),(25,46),(25,88),(26,38),(26,42),(26,47),(26,48),(26,88),(27,39),(27,43),(27,45),(27,47),(27,89),(28,40),(28,44),(28,46),(28,48),(28,89),(29,37),(29,38),(29,39),(29,40),(29,90),(30,41),(30,42),(30,43),(30,44),(30,90),(31,49),(31,53),(31,57),(31,58),(31,88),(32,50),(32,54),(32,59),(32,60),(32,88),(33,51),(33,55),(33,57),(33,59),(33,89),(34,52),(34,56),(34,58),(34,60),(34,89),(35,49),(35,50),(35,51),(35,52),(35,90),(36,53),(36,54),(36,55),(36,56),(36,90),(37,69),(37,70),(37,92),(38,71),(38,72),(38,92),(39,69),(39,71),(39,93),(40,70),(40,72),(40,93),(41,73),(41,74),(41,92),(42,75),(42,76),(42,92),(43,73),(43,75),(43,93),(44,74),(44,76),(44,93),(45,69),(45,73),(45,94),(46,70),(46,74),(46,94),(47,71),(47,75),(47,94),(48,72),(48,76),(48,94),(49,77),(49,78),(49,92),(50,79),(50,80),(50,92),(51,77),(51,79),(51,93),(52,78),(52,80),(52,93),(53,81),(53,82),(53,92),(54,83),(54,84),(54,92),(55,81),(55,83),(55,93),(56,82),(56,84),(56,93),(57,77),(57,81),(57,94),(58,78),(58,82),(58,94),(59,79),(59,83),(59,94),(60,80),(60,84),(60,94),(61,69),(61,77),(61,91),(62,70),(62,78),(62,91),(63,71),(63,79),(63,91),(64,72),(64,80),(64,91),(65,73),(65,81),(65,91),(66,74),(66,82),(66,91),(67,75),(67,83),(67,91),(68,76),(68,84),(68,91),(69,95),(70,95),(71,95),(72,95),(73,95),(74,95),(75,95),(76,95),(77,95),(78,95),(79,95),(80,95),(81,95),(82,95),(83,95),(84,95),(85,91),(85,94),(86,91),(86,92),(87,91),(87,93),(88,92),(88,94),(89,93),(89,94),(90,92),(90,93),(91,95),(92,95),(93,95),(94,95)],96)
=> ? = 0
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,23),(1,24),(1,25),(1,26),(1,27),(1,28),(2,10),(2,12),(2,16),(2,21),(2,22),(2,24),(3,10),(3,11),(3,15),(3,19),(3,20),(3,23),(4,9),(4,14),(4,18),(4,20),(4,22),(4,26),(5,9),(5,13),(5,17),(5,19),(5,21),(5,25),(6,8),(6,15),(6,16),(6,17),(6,18),(6,28),(7,8),(7,11),(7,12),(7,13),(7,14),(7,27),(8,31),(8,61),(8,62),(9,30),(9,60),(9,62),(10,29),(10,60),(10,61),(11,32),(11,44),(11,45),(11,61),(12,33),(12,46),(12,47),(12,61),(13,34),(13,44),(13,46),(13,62),(14,35),(14,45),(14,47),(14,62),(15,36),(15,48),(15,49),(15,61),(16,37),(16,50),(16,51),(16,61),(17,38),(17,48),(17,50),(17,62),(18,39),(18,49),(18,51),(18,62),(19,40),(19,44),(19,48),(19,60),(20,41),(20,45),(20,49),(20,60),(21,42),(21,46),(21,50),(21,60),(22,43),(22,47),(22,51),(22,60),(23,29),(23,32),(23,36),(23,40),(23,41),(24,29),(24,33),(24,37),(24,42),(24,43),(25,30),(25,34),(25,38),(25,40),(25,42),(26,30),(26,35),(26,39),(26,41),(26,43),(27,31),(27,32),(27,33),(27,34),(27,35),(28,31),(28,36),(28,37),(28,38),(28,39),(29,63),(29,64),(30,63),(30,65),(31,64),(31,65),(32,52),(32,53),(32,64),(33,54),(33,55),(33,64),(34,52),(34,54),(34,65),(35,53),(35,55),(35,65),(36,56),(36,57),(36,64),(37,58),(37,59),(37,64),(38,56),(38,58),(38,65),(39,57),(39,59),(39,65),(40,52),(40,56),(40,63),(41,53),(41,57),(41,63),(42,54),(42,58),(42,63),(43,55),(43,59),(43,63),(44,52),(44,66),(45,53),(45,66),(46,54),(46,66),(47,55),(47,66),(48,56),(48,66),(49,57),(49,66),(50,58),(50,66),(51,59),(51,66),(52,67),(53,67),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,63),(60,66),(61,64),(61,66),(62,65),(62,66),(63,67),(64,67),(65,67),(66,67)],68)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,10),(1,16),(1,26),(1,27),(1,28),(2,8),(2,10),(2,15),(2,23),(2,24),(2,25),(3,8),(3,9),(3,14),(3,20),(3,21),(3,22),(4,12),(4,13),(4,19),(4,22),(4,25),(4,28),(5,11),(5,13),(5,18),(5,21),(5,24),(5,27),(6,11),(6,12),(6,17),(6,20),(6,23),(6,26),(7,14),(7,15),(7,16),(7,17),(7,18),(7,19),(8,35),(8,36),(8,37),(8,66),(9,29),(9,30),(9,31),(9,66),(10,32),(10,33),(10,34),(10,66),(11,40),(11,43),(11,46),(11,65),(12,38),(12,41),(12,44),(12,65),(13,39),(13,42),(13,45),(13,65),(14,47),(14,48),(14,49),(14,66),(15,50),(15,51),(15,52),(15,66),(16,53),(16,54),(16,55),(16,66),(17,47),(17,50),(17,53),(17,65),(18,48),(18,51),(18,54),(18,65),(19,49),(19,52),(19,55),(19,65),(20,29),(20,35),(20,38),(20,40),(20,47),(21,30),(21,36),(21,39),(21,40),(21,48),(22,31),(22,37),(22,38),(22,39),(22,49),(23,32),(23,35),(23,41),(23,43),(23,50),(24,33),(24,36),(24,42),(24,43),(24,51),(25,34),(25,37),(25,41),(25,42),(25,52),(26,29),(26,32),(26,44),(26,46),(26,53),(27,30),(27,33),(27,45),(27,46),(27,54),(28,31),(28,34),(28,44),(28,45),(28,55),(29,56),(29,58),(29,67),(30,57),(30,58),(30,68),(31,56),(31,57),(31,69),(32,59),(32,61),(32,67),(33,60),(33,61),(33,68),(34,59),(34,60),(34,69),(35,62),(35,64),(35,67),(36,63),(36,64),(36,68),(37,62),(37,63),(37,69),(38,56),(38,62),(38,70),(39,57),(39,63),(39,70),(40,58),(40,64),(40,70),(41,59),(41,62),(41,71),(42,60),(42,63),(42,71),(43,61),(43,64),(43,71),(44,56),(44,59),(44,72),(45,57),(45,60),(45,72),(46,58),(46,61),(46,72),(47,67),(47,70),(48,68),(48,70),(49,69),(49,70),(50,67),(50,71),(51,68),(51,71),(52,69),(52,71),(53,67),(53,72),(54,68),(54,72),(55,69),(55,72),(56,73),(57,73),(58,73),(59,73),(60,73),(61,73),(62,73),(63,73),(64,73),(65,70),(65,71),(65,72),(66,67),(66,68),(66,69),(67,73),(68,73),(69,73),(70,73),(71,73),(72,73)],74)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(1,21),(1,22),(1,23),(1,24),(1,35),(1,36),(2,14),(2,17),(2,18),(2,19),(2,20),(2,33),(2,34),(3,13),(3,29),(3,30),(3,31),(3,32),(3,34),(3,36),(4,13),(4,25),(4,26),(4,27),(4,28),(4,33),(4,35),(5,10),(5,12),(5,16),(5,18),(5,22),(5,26),(5,30),(6,10),(6,11),(6,15),(6,17),(6,21),(6,25),(6,29),(7,9),(7,11),(7,16),(7,19),(7,23),(7,27),(7,31),(8,9),(8,12),(8,15),(8,20),(8,24),(8,28),(8,32),(9,42),(9,44),(9,82),(9,84),(10,41),(10,43),(10,82),(10,83),(11,45),(11,47),(11,82),(11,85),(12,46),(12,48),(12,82),(12,86),(13,39),(13,40),(13,85),(13,86),(14,37),(14,38),(14,83),(14,84),(15,65),(15,67),(15,69),(15,71),(15,82),(16,66),(16,68),(16,70),(16,72),(16,82),(17,45),(17,49),(17,53),(17,65),(17,83),(18,46),(18,50),(18,54),(18,66),(18,83),(19,45),(19,51),(19,55),(19,66),(19,84),(20,46),(20,52),(20,56),(20,65),(20,84),(21,47),(21,57),(21,61),(21,67),(21,83),(22,48),(22,58),(22,62),(22,68),(22,83),(23,47),(23,59),(23,63),(23,68),(23,84),(24,48),(24,60),(24,64),(24,67),(24,84),(25,41),(25,49),(25,57),(25,69),(25,85),(26,41),(26,50),(26,58),(26,70),(26,86),(27,42),(27,51),(27,59),(27,70),(27,85),(28,42),(28,52),(28,60),(28,69),(28,86),(29,43),(29,53),(29,61),(29,71),(29,85),(30,43),(30,54),(30,62),(30,72),(30,86),(31,44),(31,55),(31,63),(31,72),(31,85),(32,44),(32,56),(32,64),(32,71),(32,86),(33,37),(33,39),(33,49),(33,50),(33,51),(33,52),(34,38),(34,39),(34,53),(34,54),(34,55),(34,56),(35,37),(35,40),(35,57),(35,58),(35,59),(35,60),(36,38),(36,40),(36,61),(36,62),(36,63),(36,64),(37,81),(37,87),(37,88),(38,81),(38,89),(38,90),(39,81),(39,91),(39,92),(40,81),(40,93),(40,94),(41,87),(41,96),(42,88),(42,96),(43,89),(43,96),(44,90),(44,96),(45,91),(45,95),(46,92),(46,95),(47,93),(47,95),(48,94),(48,95),(49,73),(49,87),(49,91),(50,74),(50,87),(50,92),(51,74),(51,88),(51,91),(52,73),(52,88),(52,92),(53,75),(53,89),(53,91),(54,76),(54,89),(54,92),(55,76),(55,90),(55,91),(56,75),(56,90),(56,92),(57,77),(57,87),(57,93),(58,78),(58,87),(58,94),(59,78),(59,88),(59,93),(60,77),(60,88),(60,94),(61,79),(61,89),(61,93),(62,80),(62,89),(62,94),(63,80),(63,90),(63,93),(64,79),(64,90),(64,94),(65,73),(65,75),(65,95),(66,74),(66,76),(66,95),(67,77),(67,79),(67,95),(68,78),(68,80),(68,95),(69,73),(69,77),(69,96),(70,74),(70,78),(70,96),(71,75),(71,79),(71,96),(72,76),(72,80),(72,96),(73,97),(74,97),(75,97),(76,97),(77,97),(78,97),(79,97),(80,97),(81,97),(82,95),(82,96),(83,87),(83,89),(83,95),(84,88),(84,90),(84,95),(85,91),(85,93),(85,96),(86,92),(86,94),(86,96),(87,97),(88,97),(89,97),(90,97),(91,97),(92,97),(93,97),(94,97),(95,97),(96,97)],98)
=> ? = 0
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,14),(1,15),(1,20),(1,21),(1,30),(1,33),(1,38),(1,39),(2,11),(2,13),(2,17),(2,19),(2,29),(2,32),(2,37),(2,39),(3,10),(3,12),(3,16),(3,18),(3,28),(3,31),(3,37),(3,38),(4,12),(4,13),(4,22),(4,23),(4,30),(4,36),(4,41),(4,42),(5,10),(5,14),(5,24),(5,26),(5,29),(5,34),(5,40),(5,41),(6,11),(6,15),(6,25),(6,27),(6,28),(6,35),(6,40),(6,42),(7,18),(7,19),(7,24),(7,25),(7,33),(7,36),(7,44),(7,45),(8,16),(8,20),(8,23),(8,27),(8,32),(8,34),(8,43),(8,44),(9,17),(9,21),(9,22),(9,26),(9,31),(9,35),(9,43),(9,45),(10,64),(10,72),(10,90),(10,104),(10,106),(11,65),(11,73),(11,91),(11,105),(11,107),(12,66),(12,70),(12,88),(12,103),(12,106),(13,67),(13,71),(13,89),(13,103),(13,107),(14,69),(14,74),(14,93),(14,104),(14,108),(15,68),(15,75),(15,92),(15,105),(15,108),(16,52),(16,78),(16,88),(16,104),(16,109),(17,53),(17,79),(17,89),(17,105),(17,110),(18,54),(18,76),(18,90),(18,103),(18,109),(19,55),(19,77),(19,91),(19,103),(19,110),(20,57),(20,80),(20,92),(20,104),(20,111),(21,56),(21,81),(21,93),(21,105),(21,111),(22,58),(22,82),(22,89),(22,106),(22,111),(23,59),(23,83),(23,88),(23,107),(23,111),(24,60),(24,86),(24,90),(24,108),(24,110),(25,61),(25,87),(25,91),(25,108),(25,109),(26,62),(26,84),(26,93),(26,106),(26,110),(27,63),(27,85),(27,92),(27,107),(27,109),(28,49),(28,65),(28,68),(28,70),(28,72),(28,109),(29,50),(29,64),(29,69),(29,71),(29,73),(29,110),(30,51),(30,66),(30,67),(30,74),(30,75),(30,111),(31,49),(31,53),(31,56),(31,76),(31,78),(31,106),(32,50),(32,52),(32,57),(32,77),(32,79),(32,107),(33,51),(33,54),(33,55),(33,80),(33,81),(33,108),(34,50),(34,59),(34,63),(34,84),(34,86),(34,104),(35,49),(35,58),(35,62),(35,85),(35,87),(35,105),(36,51),(36,60),(36,61),(36,82),(36,83),(36,103),(37,48),(37,52),(37,53),(37,64),(37,65),(37,103),(38,48),(38,54),(38,56),(38,66),(38,68),(38,104),(39,48),(39,55),(39,57),(39,67),(39,69),(39,105),(40,47),(40,62),(40,63),(40,72),(40,73),(40,108),(41,47),(41,59),(41,60),(41,71),(41,74),(41,106),(42,47),(42,58),(42,61),(42,70),(42,75),(42,107),(43,46),(43,78),(43,79),(43,84),(43,85),(43,111),(44,46),(44,77),(44,80),(44,83),(44,86),(44,109),(45,46),(45,76),(45,81),(45,82),(45,87),(45,110),(46,118),(46,119),(46,120),(47,115),(47,116),(47,117),(48,112),(48,113),(48,114),(49,114),(49,115),(49,118),(50,113),(50,116),(50,119),(51,112),(51,117),(51,120),(52,97),(52,113),(52,122),(53,97),(53,114),(53,121),(54,98),(54,112),(54,125),(55,99),(55,112),(55,126),(56,98),(56,114),(56,123),(57,99),(57,113),(57,124),(58,101),(58,115),(58,124),(59,100),(59,116),(59,123),(60,100),(60,117),(60,121),(61,101),(61,117),(61,122),(62,102),(62,115),(62,126),(63,102),(63,116),(63,125),(64,94),(64,113),(64,121),(65,94),(65,114),(65,122),(66,95),(66,112),(66,123),(67,96),(67,112),(67,124),(68,95),(68,114),(68,125),(69,96),(69,113),(69,126),(70,95),(70,115),(70,122),(71,96),(71,116),(71,121),(72,94),(72,115),(72,125),(73,94),(73,116),(73,126),(74,96),(74,117),(74,123),(75,95),(75,117),(75,124),(76,98),(76,118),(76,121),(77,99),(77,119),(77,122),(78,97),(78,118),(78,123),(79,97),(79,119),(79,124),(80,99),(80,120),(80,125),(81,98),(81,120),(81,126),(82,101),(82,120),(82,121),(83,100),(83,120),(83,122),(84,102),(84,119),(84,123),(85,102),(85,118),(85,124),(86,100),(86,119),(86,125),(87,101),(87,118),(87,126),(88,122),(88,123),(89,121),(89,124),(90,121),(90,125),(91,122),(91,126),(92,124),(92,125),(93,123),(93,126),(94,127),(95,127),(96,127),(97,127),(98,127),(99,127),(100,127),(101,127),(102,127),(103,112),(103,121),(103,122),(104,113),(104,123),(104,125),(105,114),(105,124),(105,126),(106,115),(106,121),(106,123),(107,116),(107,122),(107,124),(108,117),(108,125),(108,126),(109,118),(109,122),(109,125),(110,119),(110,121),(110,126),(111,120),(111,123),(111,124),(112,127),(113,127),(114,127),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,127),(122,127),(123,127),(124,127),(125,127),(126,127)],128)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,23),(1,24),(1,25),(1,26),(1,27),(1,28),(2,10),(2,12),(2,16),(2,21),(2,22),(2,24),(3,10),(3,11),(3,15),(3,19),(3,20),(3,23),(4,9),(4,14),(4,18),(4,20),(4,22),(4,26),(5,9),(5,13),(5,17),(5,19),(5,21),(5,25),(6,8),(6,15),(6,16),(6,17),(6,18),(6,28),(7,8),(7,11),(7,12),(7,13),(7,14),(7,27),(8,31),(8,61),(8,62),(9,30),(9,60),(9,62),(10,29),(10,60),(10,61),(11,32),(11,44),(11,45),(11,61),(12,33),(12,46),(12,47),(12,61),(13,34),(13,44),(13,46),(13,62),(14,35),(14,45),(14,47),(14,62),(15,36),(15,48),(15,49),(15,61),(16,37),(16,50),(16,51),(16,61),(17,38),(17,48),(17,50),(17,62),(18,39),(18,49),(18,51),(18,62),(19,40),(19,44),(19,48),(19,60),(20,41),(20,45),(20,49),(20,60),(21,42),(21,46),(21,50),(21,60),(22,43),(22,47),(22,51),(22,60),(23,29),(23,32),(23,36),(23,40),(23,41),(24,29),(24,33),(24,37),(24,42),(24,43),(25,30),(25,34),(25,38),(25,40),(25,42),(26,30),(26,35),(26,39),(26,41),(26,43),(27,31),(27,32),(27,33),(27,34),(27,35),(28,31),(28,36),(28,37),(28,38),(28,39),(29,63),(29,64),(30,63),(30,65),(31,64),(31,65),(32,52),(32,53),(32,64),(33,54),(33,55),(33,64),(34,52),(34,54),(34,65),(35,53),(35,55),(35,65),(36,56),(36,57),(36,64),(37,58),(37,59),(37,64),(38,56),(38,58),(38,65),(39,57),(39,59),(39,65),(40,52),(40,56),(40,63),(41,53),(41,57),(41,63),(42,54),(42,58),(42,63),(43,55),(43,59),(43,63),(44,52),(44,66),(45,53),(45,66),(46,54),(46,66),(47,55),(47,66),(48,56),(48,66),(49,57),(49,66),(50,58),(50,66),(51,59),(51,66),(52,67),(53,67),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,63),(60,66),(61,64),(61,66),(62,65),(62,66),(63,67),(64,67),(65,67),(66,67)],68)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,13),(1,17),(1,18),(1,19),(2,8),(2,9),(2,13),(2,14),(2,15),(2,16),(3,9),(3,11),(3,12),(3,23),(3,24),(3,25),(4,8),(4,10),(4,12),(4,20),(4,21),(4,22),(5,16),(5,19),(5,22),(5,25),(5,27),(5,28),(6,15),(6,18),(6,21),(6,24),(6,26),(6,28),(7,14),(7,17),(7,20),(7,23),(7,26),(7,27),(8,35),(8,36),(8,37),(8,72),(9,38),(9,39),(9,40),(9,72),(10,41),(10,42),(10,43),(10,72),(11,44),(11,45),(11,46),(11,72),(12,32),(12,33),(12,34),(12,72),(13,29),(13,30),(13,31),(13,72),(14,29),(14,35),(14,38),(14,48),(14,49),(15,30),(15,36),(15,39),(15,48),(15,50),(16,31),(16,37),(16,40),(16,49),(16,50),(17,29),(17,41),(17,44),(17,51),(17,52),(18,30),(18,42),(18,45),(18,51),(18,53),(19,31),(19,43),(19,46),(19,52),(19,53),(20,32),(20,35),(20,41),(20,54),(20,55),(21,33),(21,36),(21,42),(21,54),(21,56),(22,34),(22,37),(22,43),(22,55),(22,56),(23,32),(23,38),(23,44),(23,57),(23,58),(24,33),(24,39),(24,45),(24,57),(24,59),(25,34),(25,40),(25,46),(25,58),(25,59),(26,47),(26,48),(26,51),(26,54),(26,57),(27,47),(27,49),(27,52),(27,55),(27,58),(28,47),(28,50),(28,53),(28,56),(28,59),(29,73),(29,76),(30,74),(30,76),(31,75),(31,76),(32,73),(32,77),(33,74),(33,77),(34,75),(34,77),(35,60),(35,61),(35,73),(36,60),(36,62),(36,74),(37,61),(37,62),(37,75),(38,63),(38,64),(38,73),(39,63),(39,65),(39,74),(40,64),(40,65),(40,75),(41,66),(41,67),(41,73),(42,66),(42,68),(42,74),(43,67),(43,68),(43,75),(44,69),(44,70),(44,73),(45,69),(45,71),(45,74),(46,70),(46,71),(46,75),(47,76),(47,77),(48,60),(48,63),(48,76),(49,61),(49,64),(49,76),(50,62),(50,65),(50,76),(51,66),(51,69),(51,76),(52,67),(52,70),(52,76),(53,68),(53,71),(53,76),(54,60),(54,66),(54,77),(55,61),(55,67),(55,77),(56,62),(56,68),(56,77),(57,63),(57,69),(57,77),(58,64),(58,70),(58,77),(59,65),(59,71),(59,77),(60,78),(61,78),(62,78),(63,78),(64,78),(65,78),(66,78),(67,78),(68,78),(69,78),(70,78),(71,78),(72,73),(72,74),(72,75),(73,78),(74,78),(75,78),(76,78),(77,78)],79)
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 0
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,23),(1,24),(1,25),(1,26),(1,27),(1,28),(2,10),(2,12),(2,16),(2,21),(2,22),(2,24),(3,10),(3,11),(3,15),(3,19),(3,20),(3,23),(4,9),(4,14),(4,18),(4,20),(4,22),(4,26),(5,9),(5,13),(5,17),(5,19),(5,21),(5,25),(6,8),(6,15),(6,16),(6,17),(6,18),(6,28),(7,8),(7,11),(7,12),(7,13),(7,14),(7,27),(8,31),(8,61),(8,62),(9,30),(9,60),(9,62),(10,29),(10,60),(10,61),(11,32),(11,44),(11,45),(11,61),(12,33),(12,46),(12,47),(12,61),(13,34),(13,44),(13,46),(13,62),(14,35),(14,45),(14,47),(14,62),(15,36),(15,48),(15,49),(15,61),(16,37),(16,50),(16,51),(16,61),(17,38),(17,48),(17,50),(17,62),(18,39),(18,49),(18,51),(18,62),(19,40),(19,44),(19,48),(19,60),(20,41),(20,45),(20,49),(20,60),(21,42),(21,46),(21,50),(21,60),(22,43),(22,47),(22,51),(22,60),(23,29),(23,32),(23,36),(23,40),(23,41),(24,29),(24,33),(24,37),(24,42),(24,43),(25,30),(25,34),(25,38),(25,40),(25,42),(26,30),(26,35),(26,39),(26,41),(26,43),(27,31),(27,32),(27,33),(27,34),(27,35),(28,31),(28,36),(28,37),(28,38),(28,39),(29,63),(29,64),(30,63),(30,65),(31,64),(31,65),(32,52),(32,53),(32,64),(33,54),(33,55),(33,64),(34,52),(34,54),(34,65),(35,53),(35,55),(35,65),(36,56),(36,57),(36,64),(37,58),(37,59),(37,64),(38,56),(38,58),(38,65),(39,57),(39,59),(39,65),(40,52),(40,56),(40,63),(41,53),(41,57),(41,63),(42,54),(42,58),(42,63),(43,55),(43,59),(43,63),(44,52),(44,66),(45,53),(45,66),(46,54),(46,66),(47,55),(47,66),(48,56),(48,66),(49,57),(49,66),(50,58),(50,66),(51,59),(51,66),(52,67),(53,67),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,63),(60,66),(61,64),(61,66),(62,65),(62,66),(63,67),(64,67),(65,67),(66,67)],68)
=> ? = 0
([(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 0
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,23),(1,24),(1,25),(1,26),(1,27),(1,28),(2,10),(2,12),(2,16),(2,21),(2,22),(2,24),(3,10),(3,11),(3,15),(3,19),(3,20),(3,23),(4,9),(4,14),(4,18),(4,20),(4,22),(4,26),(5,9),(5,13),(5,17),(5,19),(5,21),(5,25),(6,8),(6,15),(6,16),(6,17),(6,18),(6,28),(7,8),(7,11),(7,12),(7,13),(7,14),(7,27),(8,31),(8,61),(8,62),(9,30),(9,60),(9,62),(10,29),(10,60),(10,61),(11,32),(11,44),(11,45),(11,61),(12,33),(12,46),(12,47),(12,61),(13,34),(13,44),(13,46),(13,62),(14,35),(14,45),(14,47),(14,62),(15,36),(15,48),(15,49),(15,61),(16,37),(16,50),(16,51),(16,61),(17,38),(17,48),(17,50),(17,62),(18,39),(18,49),(18,51),(18,62),(19,40),(19,44),(19,48),(19,60),(20,41),(20,45),(20,49),(20,60),(21,42),(21,46),(21,50),(21,60),(22,43),(22,47),(22,51),(22,60),(23,29),(23,32),(23,36),(23,40),(23,41),(24,29),(24,33),(24,37),(24,42),(24,43),(25,30),(25,34),(25,38),(25,40),(25,42),(26,30),(26,35),(26,39),(26,41),(26,43),(27,31),(27,32),(27,33),(27,34),(27,35),(28,31),(28,36),(28,37),(28,38),(28,39),(29,63),(29,64),(30,63),(30,65),(31,64),(31,65),(32,52),(32,53),(32,64),(33,54),(33,55),(33,64),(34,52),(34,54),(34,65),(35,53),(35,55),(35,65),(36,56),(36,57),(36,64),(37,58),(37,59),(37,64),(38,56),(38,58),(38,65),(39,57),(39,59),(39,65),(40,52),(40,56),(40,63),(41,53),(41,57),(41,63),(42,54),(42,58),(42,63),(43,55),(43,59),(43,63),(44,52),(44,66),(45,53),(45,66),(46,54),(46,66),(47,55),(47,66),(48,56),(48,66),(49,57),(49,66),(50,58),(50,66),(51,59),(51,66),(52,67),(53,67),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,63),(60,66),(61,64),(61,66),(62,65),(62,66),(63,67),(64,67),(65,67),(66,67)],68)
=> ? = 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(1,21),(1,22),(1,23),(1,24),(1,35),(1,36),(2,14),(2,17),(2,18),(2,19),(2,20),(2,33),(2,34),(3,13),(3,29),(3,30),(3,31),(3,32),(3,34),(3,36),(4,13),(4,25),(4,26),(4,27),(4,28),(4,33),(4,35),(5,10),(5,12),(5,16),(5,18),(5,22),(5,26),(5,30),(6,10),(6,11),(6,15),(6,17),(6,21),(6,25),(6,29),(7,9),(7,11),(7,16),(7,19),(7,23),(7,27),(7,31),(8,9),(8,12),(8,15),(8,20),(8,24),(8,28),(8,32),(9,42),(9,44),(9,82),(9,84),(10,41),(10,43),(10,82),(10,83),(11,45),(11,47),(11,82),(11,85),(12,46),(12,48),(12,82),(12,86),(13,39),(13,40),(13,85),(13,86),(14,37),(14,38),(14,83),(14,84),(15,65),(15,67),(15,69),(15,71),(15,82),(16,66),(16,68),(16,70),(16,72),(16,82),(17,45),(17,49),(17,53),(17,65),(17,83),(18,46),(18,50),(18,54),(18,66),(18,83),(19,45),(19,51),(19,55),(19,66),(19,84),(20,46),(20,52),(20,56),(20,65),(20,84),(21,47),(21,57),(21,61),(21,67),(21,83),(22,48),(22,58),(22,62),(22,68),(22,83),(23,47),(23,59),(23,63),(23,68),(23,84),(24,48),(24,60),(24,64),(24,67),(24,84),(25,41),(25,49),(25,57),(25,69),(25,85),(26,41),(26,50),(26,58),(26,70),(26,86),(27,42),(27,51),(27,59),(27,70),(27,85),(28,42),(28,52),(28,60),(28,69),(28,86),(29,43),(29,53),(29,61),(29,71),(29,85),(30,43),(30,54),(30,62),(30,72),(30,86),(31,44),(31,55),(31,63),(31,72),(31,85),(32,44),(32,56),(32,64),(32,71),(32,86),(33,37),(33,39),(33,49),(33,50),(33,51),(33,52),(34,38),(34,39),(34,53),(34,54),(34,55),(34,56),(35,37),(35,40),(35,57),(35,58),(35,59),(35,60),(36,38),(36,40),(36,61),(36,62),(36,63),(36,64),(37,81),(37,87),(37,88),(38,81),(38,89),(38,90),(39,81),(39,91),(39,92),(40,81),(40,93),(40,94),(41,87),(41,96),(42,88),(42,96),(43,89),(43,96),(44,90),(44,96),(45,91),(45,95),(46,92),(46,95),(47,93),(47,95),(48,94),(48,95),(49,73),(49,87),(49,91),(50,74),(50,87),(50,92),(51,74),(51,88),(51,91),(52,73),(52,88),(52,92),(53,75),(53,89),(53,91),(54,76),(54,89),(54,92),(55,76),(55,90),(55,91),(56,75),(56,90),(56,92),(57,77),(57,87),(57,93),(58,78),(58,87),(58,94),(59,78),(59,88),(59,93),(60,77),(60,88),(60,94),(61,79),(61,89),(61,93),(62,80),(62,89),(62,94),(63,80),(63,90),(63,93),(64,79),(64,90),(64,94),(65,73),(65,75),(65,95),(66,74),(66,76),(66,95),(67,77),(67,79),(67,95),(68,78),(68,80),(68,95),(69,73),(69,77),(69,96),(70,74),(70,78),(70,96),(71,75),(71,79),(71,96),(72,76),(72,80),(72,96),(73,97),(74,97),(75,97),(76,97),(77,97),(78,97),(79,97),(80,97),(81,97),(82,95),(82,96),(83,87),(83,89),(83,95),(84,88),(84,90),(84,95),(85,91),(85,93),(85,96),(86,92),(86,94),(86,96),(87,97),(88,97),(89,97),(90,97),(91,97),(92,97),(93,97),(94,97),(95,97),(96,97)],98)
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 0
Description
The Frankl number of a lattice. For a lattice $L$ on at least two elements, this is $$ \max_x(|L|-2|[x, 1]|), $$ where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
Matching statistic: St000781
Mp00074: Posets to graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 20% values known / values provided: 29%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> ? = 0 + 1
([],2)
=> ([],2)
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = 0 + 1
([],3)
=> ([],3)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0 + 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 1 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1 = 0 + 1
([],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
([(4,5)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(3,4),(3,5)],6)
=> ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3),(2,4),(2,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(2,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(1,5),(5,2),(5,3)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(3,4),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3),(3,4),(3,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(3,5),(5,4)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,5),(3,5),(5,4)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St001901
Mp00074: Posets to graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001901: Integer partitions ⟶ ℤResult quality: 20% values known / values provided: 29%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> ? = 0 + 1
([],2)
=> ([],2)
=> [1,1]
=> [1]
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = 0 + 1
([],3)
=> ([],3)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0 + 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? = 0 + 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 1 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? = 0 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1 = 0 + 1
([],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
([(4,5)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(3,4),(3,5)],6)
=> ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3),(2,4),(2,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(2,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(1,5),(5,2),(5,3)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(3,4),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,3),(3,4),(3,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(2,3),(3,5),(5,4)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,5),(3,5),(5,4)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.
Mp00205: Posets maximal antichainsLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St001301: Posets ⟶ ℤResult quality: 20% values known / values provided: 21%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
Description
The first Betti number of the order complex associated with the poset. The order complex of a poset is the simplicial complex whose faces are the chains of the poset. This statistic is the rank of the first homology group of the order complex.
Matching statistic: St001396
Mp00205: Posets maximal antichainsLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St001396: Posets ⟶ ℤResult quality: 20% values known / values provided: 21%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
Description
Number of triples of incomparable elements in a finite poset. For a finite poset this is the number of 3-element sets $S \in \binom{P}{3}$ that are pairwise incomparable.
Mp00205: Posets maximal antichainsLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St000181: Posets ⟶ ℤResult quality: 20% values known / values provided: 21%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
Description
The number of connected components of the Hasse diagram for the poset.
Mp00205: Posets maximal antichainsLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St000908: Posets ⟶ ℤResult quality: 20% values known / values provided: 21%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
Description
The length of the shortest maximal antichain in a poset.
The following 143 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000914The sum of the values of the Möbius function of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001732The number of peaks visible from the left. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000674The number of hills of a Dyck path. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St000659The number of rises of length at least 2 of a Dyck path. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001722The number of minimal chains with small intervals between a binary word and the top element. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001498The normalised height of a Nakayama algebra with magnitude 1. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001256Number of simple reflexive modules that are 2-stable reflexive. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000951The dimension of $Ext^{1}(D(A),A)$ of the corresponding LNakayama algebra. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St000335The difference of lower and upper interactions. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001481The minimal height of a peak of a Dyck path. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001613The binary logarithm of the size of the center of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001881The number of factors of a lattice as a Cartesian product of lattices. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000741The Colin de Verdière graph invariant. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001274The number of indecomposable injective modules with projective dimension equal to two. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001462The number of factors of a standard tableaux under concatenation. St000098The chromatic number of a graph. St001621The number of atoms of a lattice. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000403The Szeged index minus the Wiener index of a graph. St000637The length of the longest cycle in a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000699The toughness times the least common multiple of 1,. St000948The chromatic discriminant of a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001281The normalized isoperimetric number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001395The number of strictly unfriendly partitions of a graph. St001638The book thickness of a graph. St001689The number of celebrities in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001736The total number of cycles in a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001272The number of graphs with the same degree sequence. St001316The domatic number of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St001546The number of monomials in the Tutte polynomial of a graph. St000636The hull number of a graph. St001029The size of the core of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001654The monophonic hull number of a graph.