Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 336 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => [1,4,5,6,3,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [1,5,4,3,2,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [5,6,2,1,3,4] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => [1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001110
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001110: Graphs ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,5),(5,1),(5,2),(5,3),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
Description
The 3-dynamic chromatic number of a graph. A $k$-dynamic coloring of a graph $G$ is a proper coloring of $G$ in such a way that each vertex $v$ sees at least $\min\{d(v), k\}$ colors in its neighborhood. The $k$-dynamic chromatic number of a graph is the smallest number of colors needed to find an $k$-dynamic coloring. This statistic records the $3$-dynamic chromatic number of a graph.
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001581: Graphs ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,5),(5,1),(5,2),(5,3),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
Description
The achromatic number of a graph. This is the maximal number of colours of a proper colouring, such that for any pair of colours there are two adjacent vertices with these colours.
Matching statistic: St001670
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001670: Graphs ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,5),(5,1),(5,2),(5,3),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
Description
The connected partition number of a graph. This is the maximal number of blocks of a set partition $P$ of the set of vertices of a graph such that contracting each block of $P$ to a single vertex yields a clique. Also called the pseudoachromatic number of a graph. This is the largest $n$ such that there exists a (not necessarily proper) $n$-coloring of the graph so that every two distinct colors are adjacent.
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 86% ā—values known / values provided: 96%ā—distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => [1,6,5,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [1,6,2,3,4,5] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [1,5,4,3,2,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [5,6,2,1,3,4] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => [1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,1,2,3] => [1,2,7,6,5,4,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,1,2,3] => [1,2,7,6,3,4,5] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
Description
The bandwidth of a graph. The bandwidth of a graph is the smallest number $k$ such that the vertices of the graph can be ordered as $v_1,\dots,v_n$ with $k \cdot d(v_i,v_j) \geq |i-j|$. We adopt the convention that the singleton graph has bandwidth $0$, consistent with the bandwith of the complete graph on $n$ vertices having bandwidth $n-1$, but in contrast to any path graph on more than one vertex having bandwidth $1$. The bandwidth of a disconnected graph is the maximum of the bandwidths of the connected components.
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 86% ā—values known / values provided: 96%ā—distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => [1,6,5,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [1,6,2,3,4,5] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [1,5,4,3,2,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [5,6,2,1,3,4] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => [1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,1,2,3] => [1,2,7,6,5,4,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,1,2,3] => [1,2,7,6,3,4,5] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
Description
The proper pathwidth of a graph. The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the [[St000482|zero forcing number]] $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$. The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy $$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$ Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Matching statistic: St000783
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000783: Integer partitions ⟶ ℤResult quality: 94% ā—values known / values provided: 94%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> []
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2]
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 3
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1]
=> 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> ? = 5
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> ? = 4
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2]
=> ? = 3
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> ? = 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2,1]
=> ? = 3
Description
The side length of the largest staircase partition fitting into a partition. For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$. In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram. This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 93% ā—values known / values provided: 93%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => [1,6,5,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [1,6,2,3,4,5] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [1,5,4,3,2,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [5,6,2,1,3,4] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => [1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(4,5)],6)
=> 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,1,2,3] => [1,2,7,6,5,4,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,1,2,3] => [1,2,7,6,3,4,5] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => [1,2,7,3,4,5,6] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,1,2,7] => [1,6,5,2,3,4,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,1,6,7] => [5,4,1,2,3,6,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
Description
The dimension of a graph. The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001489: Permutations ⟶ ℤResult quality: 86% ā—values known / values provided: 86%ā—distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,4,3,6] => 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => 3
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 5
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => ? = 4
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 3
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 4
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => 3
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7] => ? = 3
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 3
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? = 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => ? = 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 1
Description
The maximum of the number of descents and the number of inverse descents. This is, the maximum of [[St000021]] and [[St000354]].
Matching statistic: St001558
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001558: Permutations ⟶ ℤResult quality: 86% ā—values known / values provided: 86%ā—distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,1,2,3,4,5] => 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,3,4,6] => 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,1,2,3,5,6] => 3
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => 3
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6] => 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6] => ? = 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ? = 5
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => ? = 4
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,3,4,6,7] => ? = 3
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => ? = 4
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,4,5,7] => 3
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,1,2,3,5,6,7] => ? = 3
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,2,3,4,6,7] => ? = 3
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,5,6] => ? = 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6,7] => ? = 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 1
Description
The number of transpositions that are smaller or equal to a permutation in Bruhat order. A statistic is known to be '''smooth''' if and only if this number coincides with the number of inversions. This is also equivalent for a permutation to avoid the two pattern $4231$ and $3412$.
The following 326 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St000470The number of runs in a permutation. St000354The number of recoils of a permutation. St000795The mad of a permutation. St000809The reduced reflection length of the permutation. St000829The Ulam distance of a permutation to the identity permutation. St000831The number of indices that are either descents or recoils. St000957The number of Bruhat lower covers of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St000662The staircase size of the code of a permutation. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St000019The cardinality of the support of a permutation. St000214The number of adjacencies of a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000153The number of adjacent cycles of a permutation. St000245The number of ascents of a permutation. St000441The number of successions of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St001530The depth of a Dyck path. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St001298The number of repeated entries in the Lehmer code of a permutation. St000331The number of upper interactions of a Dyck path. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000021The number of descents of a permutation. St000024The number of double up and double down steps of a Dyck path. St000029The depth of a permutation. St000030The sum of the descent differences of a permutations. St000120The number of left tunnels of a Dyck path. St000168The number of internal nodes of an ordered tree. St000238The number of indices that are not small weak excedances. St000316The number of non-left-to-right-maxima of a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000742The number of big ascents of a permutation after prepending zero. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001274The number of indecomposable injective modules with projective dimension equal to two. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000015The number of peaks of a Dyck path. St000056The decomposition (or block) number of a permutation. St000240The number of indices that are not small excedances. St000325The width of the tree associated to a permutation. St000991The number of right-to-left minima of a permutation. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001180Number of indecomposable injective modules with projective dimension at most 1. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001480The number of simple summands of the module J^2/J^3. St000083The number of left oriented leafs of a binary tree except the first one. St000216The absolute length of a permutation. St001812The biclique partition number of a graph. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000291The number of descents of a binary word. St000703The number of deficiencies of a permutation. St000731The number of double exceedences of a permutation. St000844The size of the largest block in the direct sum decomposition of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St000292The number of ascents of a binary word. St001737The number of descents of type 2 in a permutation. St000840The number of closers smaller than the largest opener in a perfect matching. St001569The maximal modular displacement of a permutation. St000028The number of stack-sorts needed to sort a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001712The number of natural descents of a standard Young tableau. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001462The number of factors of a standard tableaux under concatenation. St000374The number of exclusive right-to-left minima of a permutation. St000039The number of crossings of a permutation. St000358The number of occurrences of the pattern 31-2. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001684The reduced word complexity of a permutation. St000155The number of exceedances (also excedences) of a permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000213The number of weak exceedances (also weak excedences) of a permutation. St000314The number of left-to-right-maxima of a permutation. St000390The number of runs of ones in a binary word. St000702The number of weak deficiencies of a permutation. St000740The last entry of a permutation. St000798The makl of a permutation. St001726The number of visible inversions of a permutation. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001668The number of points of the poset minus the width of the poset. St000356The number of occurrences of the pattern 13-2. St000834The number of right outer peaks of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000035The number of left outer peaks of a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St001907The number of Bastidas - Hohlweg - Saliola excedances of a signed permutation. St000451The length of the longest pattern of the form k 1 2. St000392The length of the longest run of ones in a binary word. St001571The Cartan determinant of the integer partition. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000066The column of the unique '1' in the first row of the alternating sign matrix. St001820The size of the image of the pop stack sorting operator. St001720The minimal length of a chain of small intervals in a lattice. St000141The maximum drop size of a permutation. St001864The number of excedances of a signed permutation. St001769The reflection length of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St001896The number of right descents of a signed permutations. St001855The number of signed permutations less than or equal to a signed permutation in left weak order. St000896The number of zeros on the main diagonal of an alternating sign matrix. St000308The height of the tree associated to a permutation. St000383The last part of an integer composition. St000898The number of maximal entries in the last diagonal of the monotone triangle. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000041The number of nestings of a perfect matching. St000647The number of big descents of a permutation. St000884The number of isolated descents of a permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000007The number of saliances of the permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000446The disorder of a permutation. St000711The number of big exceedences of a permutation. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001863The number of weak excedances of a signed permutation. St001866The nesting alignments of a signed permutation. St001889The size of the connectivity set of a signed permutation. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000789The number of crossing-similar perfect matchings of a perfect matching. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001933The largest multiplicity of a part in an integer partition. St000381The largest part of an integer composition. St001875The number of simple modules with projective dimension at most 1. St000201The number of leaf nodes in a binary tree. St000654The first descent of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001624The breadth of a lattice. St000226The convexity of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000653The last descent of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St000093The cardinality of a maximal independent set of vertices of a graph. St000507The number of ascents of a standard tableau. St000542The number of left-to-right-minima of a permutation. St000619The number of cyclic descents of a permutation. St000652The maximal difference between successive positions of a permutation. St000990The first ascent of a permutation. St000133The "bounce" of a permutation. St000989The number of final rises of a permutation. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001935The number of ascents in a parking function. St001946The number of descents in a parking function. St000710The number of big deficiencies of a permutation. St000942The number of critical left to right maxima of the parking functions. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St000005The bounce statistic of a Dyck path. St000053The number of valleys of the Dyck path. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000236The number of cyclical small weak excedances. St000239The number of small weak excedances. St000241The number of cyclical small excedances. St000317The cycle descent number of a permutation. St000339The maf index of a permutation. St000352The Elizalde-Pak rank of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000386The number of factors DDU in a Dyck path. St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St000516The number of stretching pairs of a permutation. St000732The number of double deficiencies of a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001152The number of pairs with even minimum in a perfect matching. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001209The pmaj statistic of a parking function. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001578The minimal number of edges to add or remove to make a graph a line graph. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001727The number of invisible inversions of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001821The sorting index of a signed permutation. St001874Lusztig's a-function for the symmetric group. St001905The number of preferred parking spots in a parking function less than the index of the car. St001948The number of augmented double ascents of a permutation. St001964The interval resolution global dimension of a poset. St000062The length of the longest increasing subsequence of the permutation. St000115The single entry in the last row. St000157The number of descents of a standard tableau. St000164The number of short pairs. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000328The maximum number of child nodes in a tree. St000335The difference of lower and upper interactions. St000528The height of a poset. St000670The reversal length of a permutation. St000678The number of up steps after the last double rise of a Dyck path. St000746The number of pairs with odd minimum in a perfect matching. St000808The number of up steps of the associated bargraph. St000820The number of compositions obtained by rotating the composition. St000912The number of maximal antichains in a poset. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000983The length of the longest alternating subword. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001343The dimension of the reduced incidence algebra of a poset. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001570The minimal number of edges to add to make a graph Hamiltonian. St001589The nesting number of a perfect matching. St001742The difference of the maximal and the minimal degree in a graph. St001904The length of the initial strictly increasing segment of a parking function. St001959The product of the heights of the peaks of a Dyck path. St000011The number of touch points (or returns) of a Dyck path. St000097The order of the largest clique of the graph. St000144The pyramid weight of the Dyck path. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St000493The los statistic of a set partition. St000497The lcb statistic of a set partition. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001118The acyclic chromatic index of a graph. St000907The number of maximal antichains of minimal length in a poset. St001330The hat guessing number of a graph. St001626The number of maximal proper sublattices of a lattice. St001083The number of boxed occurrences of 132 in a permutation. St000237The number of small exceedances. St001621The number of atoms of a lattice. St000366The number of double descents of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001394The genus of a permutation. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000618The number of self-evacuating tableaux of given shape. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001432The order dimension of the partition. St001780The order of promotion on the set of standard tableaux of given shape. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000944The 3-degree of an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001488The number of corners of a skew partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St001115The number of even descents of a permutation. St001862The number of crossings of a signed permutation. St001867The number of alignments of type EN of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000306The bounce count of a Dyck path. St000993The multiplicity of the largest part of an integer partition. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000054The first entry of the permutation. St000098The chromatic number of a graph. St000455The second largest eigenvalue of a graph if it is integral. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000233The number of nestings of a set partition. St000850The number of 1/2-balanced pairs in a poset. St000490The intertwining number of a set partition. St000919The number of maximal left branches of a binary tree. St000071The number of maximal chains in a poset. St000218The number of occurrences of the pattern 213 in a permutation. St000665The number of rafts of a permutation. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000307The number of rowmotion orbits of a poset. St000568The hook number of a binary tree. St000659The number of rises of length at least 2 of a Dyck path. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000932The number of occurrences of the pattern UDU in a Dyck path. St000264The girth of a graph, which is not a tree.