searching the database
Your data matches 47 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000454
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => ([],3)
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => ([],3)
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => ([],3)
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001270
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 83% ●values known / values provided: 100%●distinct values known / distinct values provided: 83%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 83% ●values known / values provided: 100%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => ([],3)
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => ([],3)
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => ([],3)
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
Description
The bandwidth of a graph.
The bandwidth of a graph is the smallest number $k$ such that the vertices of the graph can be
ordered as $v_1,\dots,v_n$ with $k \cdot d(v_i,v_j) \geq |i-j|$.
We adopt the convention that the singleton graph has bandwidth $0$, consistent with the bandwith of the complete graph on $n$ vertices having bandwidth $n-1$, but in contrast to any path graph on more than one vertex having bandwidth $1$. The bandwidth of a disconnected graph is the maximum of the bandwidths of the connected components.
Matching statistic: St001962
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 83% ●values known / values provided: 100%●distinct values known / distinct values provided: 83%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 83% ●values known / values provided: 100%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => ([],3)
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => ([],3)
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => ([],3)
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
Description
The proper pathwidth of a graph.
The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the [[St000482|zero forcing number]] $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$.
The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy
$$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Matching statistic: St001644
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => ([],3)
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => ([],3)
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => ([],3)
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => [1,4,5,6,3,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,3,6,7,4] => [1,2,5,6,7,4,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,1,3,6,7,4] => [1,2,5,6,7,4,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,1,2,5,6,3,7] => [1,4,5,6,3,2,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
Description
The dimension of a graph.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St001330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 36%●distinct values known / distinct values provided: 17%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 36%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,3,4,7,6,1,5] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [2,3,7,1,6,4,5] => ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => ([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => ([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => ([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [2,5,4,1,7,3,6] => ([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => ([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,4,5,6,1,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7)
=> ? = 1 + 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001624
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[1,0]
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2 + 1
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 3 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2 + 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1 + 1
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Matching statistic: St001877
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[1,0]
=> ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 1
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001301
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001301: Posets ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 17%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001301: Posets ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,3,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,4,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,3,4],[3,4,5],[4,5],[5]]
=> ([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,2],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,14),(0,15),(1,26),(2,9),(2,25),(3,13),(3,24),(4,16),(5,11),(5,12),(6,69),(7,64),(8,49),(9,6),(9,52),(10,20),(10,59),(11,19),(11,65),(12,17),(12,65),(13,18),(13,22),(13,71),(14,2),(14,29),(15,3),(15,29),(16,39),(16,55),(17,56),(17,68),(18,57),(18,66),(19,58),(19,67),(20,51),(20,53),(21,40),(21,41),(22,57),(22,72),(23,28),(23,54),(23,70),(24,58),(24,71),(25,52),(25,56),(26,27),(26,69),(26,72),(27,45),(27,60),(28,34),(28,48),(28,50),(29,1),(30,76),(31,75),(32,77),(33,74),(33,80),(34,73),(34,78),(35,73),(35,77),(36,82),(37,79),(38,80),(39,74),(40,7),(40,76),(41,8),(41,76),(42,55),(42,79),(43,59),(44,39),(45,53),(45,83),(46,33),(46,81),(47,32),(47,83),(48,42),(48,78),(49,44),(50,46),(50,73),(51,44),(52,10),(52,43),(53,62),(54,34),(54,75),(55,36),(55,74),(56,43),(57,63),(58,61),(59,49),(59,51),(60,35),(60,50),(60,83),(61,31),(61,70),(62,33),(62,38),(63,32),(63,35),(64,37),(64,42),(65,21),(65,67),(65,68),(66,31),(66,54),(67,30),(67,40),(68,30),(68,41),(69,45),(69,47),(70,48),(70,64),(70,75),(71,23),(71,61),(71,66),(72,47),(72,60),(72,63),(73,81),(74,82),(75,37),(75,78),(76,4),(77,38),(77,81),(78,79),(79,36),(80,82),(81,80),(83,46),(83,62),(83,77)],84)
=> ? = 2
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,5],[5]]
=> ([(0,10),(0,11),(1,13),(1,14),(2,21),(3,20),(4,14),(4,20),(5,17),(6,16),(7,18),(8,12),(9,1),(9,22),(10,5),(10,15),(11,8),(11,15),(12,3),(12,4),(13,21),(14,19),(15,9),(15,17),(17,22),(18,16),(19,18),(20,7),(20,19),(21,6),(22,2),(22,13)],23)
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,2,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,4),(0,14),(0,15),(1,29),(2,6),(2,27),(3,13),(3,28),(4,10),(4,11),(5,102),(6,5),(6,87),(7,31),(7,99),(8,25),(8,98),(9,26),(9,72),(10,23),(10,109),(11,24),(11,33),(11,109),(12,22),(12,108),(13,17),(13,18),(13,107),(14,2),(14,38),(15,3),(15,38),(16,84),(16,85),(17,90),(17,111),(18,90),(18,101),(19,82),(19,83),(20,81),(20,100),(21,34),(21,89),(21,104),(22,86),(22,106),(23,91),(23,110),(24,80),(24,105),(25,78),(25,79),(26,52),(26,88),(27,87),(27,103),(28,91),(28,107),(29,30),(29,102),(29,111),(30,63),(30,96),(31,44),(31,71),(31,76),(32,37),(32,51),(32,77),(33,80),(33,94),(33,103),(34,62),(34,74),(34,75),(35,133),(36,9),(37,8),(37,127),(38,1),(39,118),(40,117),(40,122),(41,119),(42,119),(42,126),(43,116),(43,127),(44,112),(44,120),(45,112),(45,113),(46,114),(46,116),(47,121),(48,122),(49,125),(50,113),(51,20),(51,114),(51,127),(52,117),(53,72),(54,88),(54,121),(55,45),(55,132),(56,48),(57,84),(57,124),(58,76),(58,134),(59,66),(60,56),(61,54),(62,55),(62,126),(63,86),(63,129),(64,53),(64,134),(65,47),(66,70),(67,40),(68,40),(68,123),(69,41),(69,129),(70,39),(70,128),(71,54),(71,120),(72,52),(73,44),(73,118),(74,58),(74,115),(75,82),(75,115),(75,126),(76,68),(76,112),(77,16),(77,57),(77,114),(78,65),(79,61),(80,59),(80,130),(81,36),(82,60),(82,131),(83,53),(83,131),(84,78),(84,128),(85,73),(85,128),(86,92),(87,12),(87,95),(88,49),(88,117),(89,19),(89,75),(89,133),(90,97),(91,93),(92,45),(92,50),(93,35),(93,104),(94,46),(94,77),(94,130),(95,66),(95,108),(96,42),(96,62),(96,129),(97,41),(97,42),(98,36),(98,79),(99,61),(99,71),(100,58),(100,64),(101,35),(101,89),(102,63),(102,69),(103,59),(103,95),(104,74),(104,100),(104,133),(105,37),(105,43),(105,130),(106,39),(106,73),(107,21),(107,93),(107,101),(108,70),(108,85),(108,106),(109,32),(109,94),(109,105),(109,110),(110,43),(110,46),(110,51),(111,69),(111,96),(111,97),(112,123),(113,48),(113,123),(114,7),(114,124),(115,131),(115,134),(116,124),(117,125),(118,47),(118,120),(119,50),(119,132),(120,121),(121,49),(122,125),(123,122),(124,99),(126,60),(126,132),(127,81),(127,98),(128,65),(128,118),(129,55),(129,92),(129,119),(130,57),(130,116),(131,67),(132,56),(132,113),(133,64),(133,83),(133,115),(134,67),(134,68)],135)
=> ? = 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [[1,1,2,3,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,2,3,4,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,25),(0,26),(0,87),(0,88),(1,76),(2,75),(3,105),(3,594),(4,106),(4,595),(5,587),(6,588),(7,557),(8,558),(9,23),(9,103),(9,367),(10,24),(10,104),(10,368),(11,97),(11,577),(12,98),(12,578),(13,99),(13,642),(14,100),(14,643),(15,45),(15,449),(16,46),(16,450),(17,71),(17,662),(18,72),(18,663),(19,51),(19,526),(20,52),(20,527),(21,73),(21,93),(21,656),(22,74),(22,94),(22,657),(23,65),(23,69),(23,592),(24,66),(24,70),(24,593),(25,21),(25,67),(25,365),(26,22),(26,68),(26,366),(27,117),(27,620),(27,652),(28,118),(28,621),(28,653),(29,473),(29,616),(30,474),(30,617),(31,471),(31,477),(32,472),(32,478),(33,119),(33,655),(33,660),(34,120),(34,654),(34,661),(35,465),(35,618),(36,466),(36,619),(37,227),(37,487),(38,228),(38,488),(39,231),(39,628),(40,232),(40,629),(41,463),(41,606),(42,464),(42,607),(43,121),(43,608),(43,624),(44,122),(44,609),(44,625),(45,78),(45,604),(45,664),(46,77),(46,605),(46,664),(47,123),(47,467),(47,600),(48,124),(48,468),(48,601),(49,596),(49,626),(50,597),(50,627),(51,459),(51,469),(52,460),(52,470),(53,225),(53,612),(54,226),(54,613),(55,111),(55,481),(55,622),(56,112),(56,482),(56,623),(57,115),(57,475),(57,658),(58,116),(58,476),(58,659),(59,107),(59,479),(59,610),(60,108),(60,480),(60,611),(61,109),(61,229),(61,630),(62,110),(62,230),(62,631),(63,83),(63,485),(63,614),(64,84),(64,486),(64,615),(65,81),(65,489),(65,650),(66,82),(66,490),(66,651),(67,113),(67,598),(67,656),(68,114),(68,599),(68,657),(69,489),(69,647),(70,490),(70,646),(71,457),(71,648),(72,458),(72,649),(73,85),(73,483),(73,644),(74,86),(74,484),(74,645),(75,79),(75,461),(75,602),(76,80),(76,462),(76,603),(77,265),(77,546),(78,266),(78,547),(79,423),(79,567),(80,424),(80,568),(81,521),(81,604),(82,522),(82,605),(83,277),(83,519),(84,278),(84,520),(85,523),(85,544),(86,524),(86,545),(87,9),(87,366),(87,525),(88,10),(88,365),(88,525),(89,437),(89,439),(89,554),(90,438),(90,440),(90,555),(91,363),(91,550),(91,553),(92,364),(92,551),(92,552),(93,483),(93,548),(93,556),(94,484),(94,549),(94,556),(95,357),(95,361),(95,455),(96,358),(96,362),(96,456),(97,195),(97,433),(97,435),(98,196),(98,434),(98,436),(99,189),(99,359),(99,569),(100,190),(100,360),(100,570),(101,223),(101,451),(101,453),(102,224),(102,452),(102,454),(103,283),(103,301),(103,592),(104,284),(104,302),(104,593),(105,91),(105,523),(105,634),(105,646),(106,92),(106,524),(106,635),(106,647),(107,269),(107,271),(107,275),(108,270),(108,272),(108,276),(109,273),(109,391),(109,395),(110,274),(110,392),(110,396),(111,132),(111,267),(111,528),(112,133),(112,268),(112,529),(113,301),(113,303),(113,636),(114,302),(114,304),(114,637),(115,393),(115,445),(115,561),(116,394),(116,446),(116,562),(117,249),(117,251),(117,499),(118,250),(118,252),(118,500),(119,299),(119,502),(119,536),(120,300),(120,501),(120,537),(121,171),(121,373),(121,503),(122,172),(122,374),(122,504),(123,89),(123,505),(123,563),(123,565),(124,90),(124,506),(124,564),(124,566),(125,859),(125,860),(126,857),(126,858),(127,979),(127,980),(128,861),(128,977),(129,862),(129,978),(130,843),(130,851),(131,844),(131,852),(132,679),(132,691),(133,680),(133,692),(134,997),(135,998),(136,891),(136,937),(137,892),(137,938),(138,893),(138,945),(139,894),(139,946),(140,697),(140,929),(141,698),(141,930),(142,919),(142,920),(143,677),(143,951),(144,678),(144,952),(145,677),(145,931),(146,678),(146,932),(147,699),(148,700),(149,689),(149,971),(150,690),(150,972),(151,945),(151,975),(152,946),(152,976),(153,709),(153,765),(154,710),(154,766),(155,761),(155,881),(156,762),(156,882),(157,775),(157,961),(158,776),(158,962),(159,771),(159,963),(160,772),(160,964),(161,769),(161,883),(162,770),(162,884),(163,767),(164,768),(165,763),(165,983),(166,764),(166,984),(167,775),(167,901),(168,776),(168,902),(169,759),(169,877),(170,760),(170,878),(171,685),(171,813),(172,686),(172,814),(173,774),(173,959),(174,773),(174,960),(175,773),(175,879),(176,774),(176,880),(177,755),(178,756),(179,707),(179,815),(180,708),(180,816),(181,683),(181,757),(182,684),(182,758),(183,19),(183,777),(184,20),(184,778),(185,819),(185,885),(186,820),(186,886),(187,817),(187,887),(188,818),(188,888),(189,689),(189,787),(190,690),(190,788),(191,759),(191,760),(192,771),(192,772),(193,745),(193,769),(194,746),(194,770),(195,723),(195,799),(196,724),(196,800),(197,671),(198,672),(199,867),(200,868),(201,869),(202,870),(203,865),(203,979),(204,866),(204,980),(205,999),(206,1000),(207,833),(208,834),(209,928),(210,927),(211,741),(212,742),(213,753),(213,871),(214,754),(214,872),(215,729),(215,863),(216,730),(216,864),(217,777),(218,778),(219,765),(219,791),(220,766),(220,792),(221,749),(222,750),(223,49),(223,695),(223,697),(224,50),(224,696),(224,698),(225,7),(225,915),(226,8),(226,916),(227,5),(227,807),(228,6),(228,808),(229,43),(229,809),(230,44),(230,810),(231,35),(231,747),(232,36),(232,748),(233,296),(233,693),(233,968),(234,295),(234,694),(234,967),(235,293),(235,967),(236,294),(236,968),(237,349),(237,992),(238,350),(238,991),(239,195),(239,897),(240,196),(240,898),(241,219),(241,981),(242,220),(242,982),(243,211),(243,959),(244,212),(244,960),(245,191),(245,889),(246,191),(246,890),(247,388),(248,387),(249,540),(249,969),(250,541),(250,970),(251,542),(251,969),(252,543),(252,970),(253,407),(253,973),(254,408),(254,974),(255,193),(255,895),(255,977),(256,194),(256,896),(256,978),(257,213),(257,989),(258,214),(258,990),(259,443),(260,444),(261,397),(261,917),(262,398),(262,918),(263,126),(263,899),(264,126),(264,900),(265,457),(265,687),(266,458),(266,688),(267,321),(267,679),(268,322),(268,680),(269,287),(269,705),(270,288),(270,706),(271,371),(271,693),(272,372),(272,694),(273,401),(273,913),(274,402),(274,914),(275,485),(275,693),(275,705),(276,486),(276,694),(276,706),(277,307),(277,993),(278,308),(278,994),(279,435),(279,997),(280,436),(280,998),(281,455),(281,937),(281,955),(282,456),(282,938),(282,956),(283,449),(283,933),(284,450),(284,934),(285,327),(285,941),(286,328),(286,942),(287,359),(287,925),(288,360),(288,926),(289,245),(290,246),(291,600),(292,601),(293,145),(293,673),(293,935),(294,146),(294,674),(294,936),(295,143),(295,935),(295,943),(296,144),(296,936),(296,944),(297,132),(297,931),(297,951),(298,133),(298,932),(298,952),(299,492),(299,965),(300,491),(300,966),(301,515),(301,933),(302,516),(302,934),(303,517),(303,933),(304,518),(304,934),(305,511),(305,925),(306,512),(306,926),(307,315),(308,316),(309,189),(309,703),(310,190),(310,704),(311,404),(311,971),(312,403),(312,972),(313,136),(313,707),(313,915),(314,137),(314,708),(314,916),(315,461),(316,462),(317,241),(317,921),(318,242),(318,922),(319,147),(319,949),(320,148),(320,950),(321,602),(321,923),(322,603),(322,924),(323,235),(323,953),(324,236),(324,954),(325,415),(325,703),(326,416),(326,704),(327,163),(327,961),(328,164),(328,962),(329,153),(329,995),(330,154),(330,996),(331,187),(331,671),(331,691),(332,188),(332,672),(332,692),(333,181),(333,711),(333,913),(334,182),(334,712),(334,914),(335,169),(336,170),(337,177),(337,927),(338,178),(338,928),(339,185),(339,855),(339,947),(340,186),(340,856),(340,948),(341,161),(341,837),(342,162),(342,838),(343,155),(343,923),(344,156),(344,924),(345,173),(345,669),(346,174),(346,670),(347,179),(347,695),(347,929),(348,180),(348,696),(348,930),(349,176),(349,668),(350,175),(350,667),(351,153),(351,903),(351,985),(352,154),(352,904),(352,986),(353,155),(353,847),(353,975),(354,156),(354,848),(354,976),(355,167),(355,668),(356,168),(356,667),(357,608),(357,673),(358,609),(358,674),(359,399),(359,689),(360,400),(360,690),(361,297),(361,673),(361,943),(362,298),(362,674),(362,944),(363,299),(363,665),(363,953),(364,300),(364,666),(364,954),(365,3),(365,598),(366,4),(366,599),(367,15),(367,283),(368,16),(368,284),(369,429),(369,675),(369,797),(370,430),(370,676),(370,798),(371,149),(371,735),(372,150),(372,736),(373,411),(373,813),(374,412),(374,814),(375,357),(375,727),(375,955),(376,358),(376,728),(376,956),(377,385),(377,781),(378,386),(378,782),(379,477),(379,779),(380,478),(380,780),(381,447),(381,797),(382,448),(382,798),(383,128),(383,737),(383,849),(384,129),(384,738),(384,850),(385,130),(385,745),(385,841),(386,131),(386,746),(386,842),(387,199),(387,755),(388,200),(388,756),(389,229),(389,815),(390,230),(390,816),(391,261),(391,795),(392,262),(392,796),(393,377),(393,829),(394,378),(394,830),(395,419),(395,795),(395,913),(396,420),(396,796),(396,914),(397,459),(397,729),(397,947),(398,460),(398,730),(398,948),(399,369),(399,801),(400,370),(400,802),(401,215),(401,751),(402,216),(402,752),(403,201),(403,743),(404,202),(404,744),(405,409),(405,731),(406,410),(406,732),(407,138),(407,685),(407,743),(408,139),(408,686),(408,744),(409,393),(409,817),(409,985),(410,394),(410,818),(410,986),(411,441),(411,785),(412,442),(412,786),(413,383),(413,785),(414,384),(414,786),(415,125),(415,758),(415,845),(416,125),(416,757),(416,846),(417,251),(417,739),(417,921),(418,252),(418,740),(418,922),(419,171),(419,683),(419,827),(420,172),(420,684),(420,828),(421,185),(421,805),(422,186),(422,806),(423,163),(423,825),(424,164),(424,826),(425,169),(425,719),(426,170),(426,720),(427,187),(427,721),(427,919),(428,188),(428,722),(428,920),(429,157),(429,783),(429,941),(430,158),(430,784),(430,942),(431,165),(431,803),(432,166),(432,804),(433,245),(433,723),(434,246),(434,724),(435,425),(435,799),(436,426),(436,800),(437,417),(437,701),(437,823),(438,418),(438,702),(438,824),(439,405),(439,823),(440,406),(440,824),(441,255),(441,737),(441,761),(442,256),(442,738),(442,762),(443,130),(443,741),(443,767),(444,131),(444,742),(444,768),(445,175),(445,717),(445,829),(446,176),(446,718),(446,830),(447,167),(447,715),(447,783),(448,168),(448,716),(448,784),(449,47),(449,291),(450,48),(450,292),(451,41),(451,589),(451,697),(452,42),(452,590),(452,698),(453,61),(453,389),(453,695),(454,62),(454,390),(454,696),(455,29),(455,495),(455,943),(456,30),(456,496),(456,944),(457,579),(458,580),(459,207),(459,675),(460,208),(460,676),(461,423),(461,709),(462,424),(462,710),(463,309),(463,939),(464,310),(464,940),(465,247),(466,248),(467,563),(467,699),(468,564),(468,700),(469,285),(469,675),(470,286),(470,676),(471,239),(471,789),(472,240),(472,790),(473,238),(473,733),(474,237),(474,734),(475,445),(475,831),(476,446),(476,832),(477,177),(477,789),(478,178),(478,790),(479,63),(479,275),(479,949),(480,64),(480,276),(480,950),(481,57),(481,509),(482,58),(482,510),(483,33),(483,507),(483,681),(484,34),(484,508),(484,682),(485,27),(485,573),(485,725),(486,28),(486,574),(486,726),(487,31),(487,379),(487,807),(488,32),(488,380),(488,808),(489,18),(489,639),(490,17),(490,638),(491,149),(491,311),(492,150),(492,312),(493,321),(493,411),(494,322),(494,412),(495,407),(495,616),(495,713),(496,408),(496,617),(496,714),(497,355),(497,447),(497,992),(498,356),(498,448),(498,991),(499,349),(499,355),(500,350),(500,356),(501,309),(501,325),(502,310),(502,326),(503,151),(503,353),(503,685),(504,152),(504,354),(504,686),(505,554),(505,585),(505,963),(506,555),(506,586),(506,964),(507,532),(507,655),(508,532),(508,654),(509,413),(509,658),(510,414),(510,659),(511,307),(511,526),(512,308),(512,527),(513,405),(513,528),(513,999),(514,406),(514,529),(514,1000),(515,319),(515,610),(516,320),(516,611),(517,225),(517,313),(518,226),(518,314),(519,317),(519,417),(519,993),(520,318),(520,418),(520,994),(521,147),(521,467),(522,148),(522,468),(523,323),(523,363),(523,957),(524,324),(524,364),(524,958),(525,367),(525,368),(526,315),(526,469),(527,316),(527,470),(528,351),(528,409),(528,691),(529,352),(529,410),(529,692),(530,325),(530,533),(530,939),(531,326),(531,533),(531,940),(532,530),(532,531),(533,415),(533,416),(533,711),(533,712),(534,181),(534,419),(534,983),(535,182),(535,420),(535,984),(536,165),(536,534),(536,965),(537,166),(537,535),(537,966),(538,159),(538,192),(538,688),(539,160),(539,192),(539,687),(540,157),(540,327),(541,158),(541,328),(542,173),(542,243),(543,174),(543,244),(544,179),(544,389),(544,957),(545,180),(545,390),(545,958),(546,159),(546,505),(546,687),(547,160),(547,506),(547,688),(548,140),(548,451),(548,681),(549,141),(549,452),(549,682),(550,136),(550,281),(550,665),(551,137),(551,282),(551,666),(552,233),(552,271),(552,954),(553,234),(553,272),(553,953),(554,142),(554,427),(554,701),(555,142),(555,428),(555,702),(556,507),(556,508),(557,205),(557,513),(558,206),(558,514),(559,385),(559,443),(559,821),(560,386),(560,444),(560,822),(561,128),(561,255),(561,717),(562,129),(562,256),(562,718),(563,437),(563,519),(563,793),(563,963),(564,438),(564,520),(564,794),(564,964),(565,439),(565,513),(565,793),(566,440),(566,514),(566,794),(567,161),(567,193),(567,825),(568,162),(568,194),(568,826),(569,339),(569,397),(569,787),(570,340),(570,398),(570,788),(571,343),(571,353),(572,344),(572,354),(573,583),(573,652),(574,584),(574,653),(575,339),(575,421),(575,917),(576,340),(576,422),(576,918),(577,289),(577,433),(578,290),(578,434),(579,197),(579,331),(580,198),(580,332),(581,369),(581,632),(582,370),(582,633),(583,381),(583,497),(584,382),(584,498),(585,331),(585,427),(585,987),(586,332),(586,428),(586,988),(587,134),(587,279),(588,135),(588,280),(589,606),(589,640),(589,811),(590,607),(590,641),(590,812),(591,263),(591,264),(592,59),(592,515),(592,650),(593,60),(593,516),(593,651),(594,53),(594,517),(594,634),(595,54),(595,518),(595,635),(596,287),(596,305),(597,288),(597,306),(598,303),(598,594),(599,304),(599,595),(600,557),(600,565),(600,699),(601,558),(601,566),(601,700),(602,341),(602,567),(602,709),(603,342),(603,568),(603,710),(604,266),(604,538),(605,265),(605,539),(606,273),(606,333),(606,939),(607,274),(607,334),(607,940),(608,503),(608,571),(609,504),(609,572),(610,269),(610,596),(610,949),(611,270),(611,597),(611,950),(612,95),(612,281),(612,375),(612,915),(613,96),(613,282),(613,376),(613,916),(614,277),(614,511),(614,725),(615,278),(615,512),(615,726),(616,138),(616,151),(616,733),(617,139),(617,152),(617,734),(618,209),(618,338),(619,210),(619,337),(620,249),(620,632),(621,250),(621,633),(622,267),(622,493),(623,268),(623,494),(624,373),(624,493),(625,374),(625,494),(626,183),(626,217),(627,184),(627,218),(628,127),(628,203),(628,747),(629,127),(629,204),(629,748),(630,183),(630,391),(630,809),(631,184),(631,392),(631,810),(632,285),(632,429),(632,540),(633,286),(633,430),(633,541),(634,313),(634,550),(634,612),(634,957),(635,314),(635,551),(635,613),(635,958),(636,140),(636,223),(636,347),(637,141),(637,224),(637,348),(638,234),(638,235),(638,662),(639,233),(639,236),(639,663),(640,333),(640,395),(640,534),(640,803),(641,334),(641,396),(641,535),(641,804),(642,261),(642,569),(642,575),(643,262),(643,570),(643,576),(644,347),(644,453),(644,544),(644,681),(645,348),(645,454),(645,545),(645,682),(646,323),(646,553),(646,638),(647,324),(647,552),(647,639),(648,143),(648,145),(648,297),(649,144),(649,146),(649,298),(650,319),(650,479),(650,521),(651,320),(651,480),(651,522),(652,237),(652,497),(652,499),(653,238),(653,498),(653,500),(654,463),(654,501),(654,530),(655,464),(655,502),(655,531),(656,101),(656,548),(656,636),(656,644),(657,102),(657,549),(657,637),(657,645),(658,383),(658,441),(658,561),(658,831),(659,384),(659,442),(659,562),(659,832),(660,431),(660,536),(660,640),(661,432),(661,537),(661,641),(662,293),(662,295),(662,361),(662,648),(663,294),(663,296),(663,362),(663,649),(664,538),(664,539),(664,546),(664,547),(665,891),(665,955),(665,965),(666,892),(666,956),(666,966),(667,213),(667,879),(667,902),(668,214),(668,880),(668,901),(669,591),(669,959),(670,591),(670,960),(671,219),(671,887),(671,903),(672,220),(672,888),(672,904),(673,571),(673,931),(674,572),(674,932),(675,833),(675,941),(676,834),(676,942),(677,201),(677,873),(678,202),(678,874),(679,923),(680,924),(681,589),(681,660),(681,929),(682,590),(682,661),(682,930),(683,231),(683,911),(684,232),(684,912),(685,847),(685,945),(686,848),(686,946),(687,579),(687,585),(687,771),(688,580),(688,586),(688,772),(689,801),(690,802),(691,817),(691,903),(692,818),(692,904),(693,573),(693,735),(694,574),(694,736),(695,626),(695,630),(695,815),(696,627),(696,631),(696,816),(697,13),(697,811),(698,14),(698,812),(699,205),(699,793),(700,206),(700,794),(701,721),(701,920),(701,921),(702,722),(702,919),(702,922),(703,215),(703,787),(703,845),(704,216),(704,788),(704,846),(705,725),(705,925),(706,726),(706,926),(707,727),(707,891),(708,728),(708,892),(709,825),(709,837),(710,826),(710,838),(711,751),(711,757),(711,845),(712,752),(712,758),(712,846),(713,733),(713,743),(713,873),(714,734),(714,744),(714,874),(715,901),(715,990),(716,902),(716,989),(717,861),(717,879),(717,895),(718,862),(718,880),(718,896),(719,877),(720,878),(721,887),(721,981),(721,1015),(722,888),(722,982),(722,1015),(723,889),(724,890),(725,581),(725,620),(726,582),(726,621),(727,622),(727,1006),(728,623),(728,1007),(729,207),(729,1022),(730,208),(730,1023),(731,985),(731,995),(732,986),(732,996),(733,893),(733,975),(733,991),(734,894),(734,976),(734,992),(735,583),(735,971),(736,584),(736,972),(737,587),(737,977),(737,1013),(738,588),(738,978),(738,1014),(739,969),(739,995),(740,970),(740,996),(741,851),(741,905),(742,852),(742,906),(743,847),(743,869),(743,893),(744,848),(744,870),(744,894),(745,843),(745,1016),(746,844),(746,1017),(747,618),(747,865),(747,980),(748,619),(748,866),(748,979),(749,853),(750,854),(751,628),(751,863),(751,911),(752,629),(752,864),(752,912),(753,200),(753,1020),(754,199),(754,1021),(755,867),(756,868),(757,859),(757,911),(758,860),(758,912),(759,1012),(760,1012),(761,895),(761,1013),(762,896),(762,1014),(763,973),(764,974),(765,837),(766,838),(767,843),(767,905),(768,844),(768,906),(769,221),(769,1016),(770,222),(770,1017),(771,197),(771,987),(772,198),(772,988),(773,839),(774,840),(775,835),(776,836),(777,2),(778,1),(779,577),(780,578),(781,839),(781,841),(782,840),(782,842),(783,775),(783,875),(784,776),(784,876),(785,737),(786,738),(787,729),(787,855),(788,730),(788,856),(789,755),(789,897),(790,756),(790,898),(791,211),(791,821),(792,212),(792,822),(793,823),(793,993),(793,999),(794,824),(794,994),(794,1000),(795,827),(795,917),(796,828),(796,918),(797,783),(797,833),(798,784),(798,834),(799,719),(800,720),(801,797),(802,798),(803,575),(803,795),(803,983),(804,576),(804,796),(804,984),(805,227),(805,819),(806,228),(806,820),(807,11),(807,779),(808,12),(808,780),(809,624),(809,777),(810,625),(810,778),(811,642),(811,803),(812,643),(812,804),(813,785),(814,786),(815,217),(815,809),(816,218),(816,810),(817,829),(817,1008),(818,830),(818,1009),(819,807),(819,1010),(820,808),(820,1011),(821,741),(821,841),(822,742),(822,842),(823,731),(823,739),(824,732),(824,740),(825,745),(825,767),(825,883),(826,746),(826,768),(826,884),(827,805),(827,813),(828,806),(828,814),(829,773),(829,781),(830,774),(830,782),(831,717),(831,761),(831,849),(832,718),(832,762),(832,850),(833,875),(834,876),(835,897),(836,898),(837,883),(838,884),(839,899),(840,900),(841,851),(841,899),(841,1016),(842,852),(842,900),(842,1017),(843,799),(843,1004),(844,800),(844,1005),(845,855),(845,859),(845,863),(846,856),(846,860),(846,864),(847,881),(847,1018),(848,882),(848,1019),(849,861),(849,1013),(850,862),(850,1014),(851,857),(851,1004),(852,858),(852,1005),(853,877),(854,878),(855,885),(855,1022),(856,886),(856,1023),(857,853),(858,854),(859,885),(859,909),(860,886),(860,910),(861,907),(861,1001),(862,908),(862,1002),(863,203),(863,909),(863,1022),(864,204),(864,910),(864,1023),(865,209),(865,1003),(866,210),(866,1003),(867,889),(868,890),(869,849),(869,881),(870,850),(870,882),(871,221),(871,1020),(872,222),(872,1021),(873,831),(873,869),(874,832),(874,870),(875,789),(875,835),(876,790),(876,836),(877,1012),(878,1012),(879,871),(879,907),(880,872),(880,908),(881,1013),(882,1014),(883,905),(883,1016),(884,906),(884,1017),(885,1010),(886,1011),(887,791),(887,1008),(888,792),(888,1009),(889,760),(890,759),(891,763),(891,1006),(892,764),(892,1007),(893,716),(893,1018),(894,715),(894,1019),(895,769),(895,871),(895,1001),(896,770),(896,872),(896,1002),(897,723),(897,867),(898,724),(898,868),(899,749),(899,857),(900,750),(900,858),(901,754),(901,908),(902,753),(902,907),(903,765),(903,1008),(904,766),(904,1009),(905,1004),(906,1005),(907,1020),(908,1021),(909,865),(909,1010),(910,866),(910,1011),(911,747),(911,909),(912,748),(912,910),(913,39),(913,683),(913,751),(914,40),(914,684),(914,752),(915,55),(915,727),(915,937),(916,56),(916,728),(916,938),(917,37),(917,805),(917,947),(918,38),(918,806),(918,948),(919,346),(919,1015),(920,345),(920,1015),(921,345),(921,542),(921,981),(922,346),(922,543),(922,982),(923,341),(924,342),(925,399),(925,581),(926,400),(926,582),(927,289),(928,290),(929,431),(929,811),(930,432),(930,812),(931,343),(931,679),(932,344),(932,680),(933,291),(934,292),(935,403),(935,677),(935,713),(936,404),(936,678),(936,714),(937,481),(937,1006),(938,482),(938,1007),(939,401),(939,703),(939,711),(940,402),(940,704),(940,712),(941,471),(941,875),(941,961),(942,472),(942,876),(942,962),(943,473),(943,713),(943,951),(944,474),(944,714),(944,952),(945,465),(945,1018),(946,466),(946,1019),(947,487),(947,819),(947,1022),(948,488),(948,820),(948,1023),(949,305),(949,614),(949,705),(950,306),(950,615),(950,706),(951,475),(951,873),(952,476),(952,874),(953,372),(953,492),(953,967),(954,371),(954,491),(954,968),(955,253),(955,495),(955,1006),(956,254),(956,496),(956,1007),(957,375),(957,665),(957,707),(958,376),(958,666),(958,708),(959,264),(959,840),(960,263),(960,839),(961,239),(961,835),(962,240),(962,836),(963,317),(963,701),(963,987),(964,318),(964,702),(964,988),(965,253),(965,763),(966,254),(966,764),(967,312),(967,736),(967,935),(968,311),(968,735),(968,936),(969,259),(970,260),(971,381),(971,801),(972,382),(972,802),(973,413),(974,414),(975,257),(975,1018),(976,258),(976,1019),(977,279),(977,1001),(978,280),(978,1002),(979,337),(979,1003),(980,338),(980,1003),(981,243),(981,669),(981,791),(982,244),(982,670),(982,792),(983,421),(983,827),(984,422),(984,828),(985,377),(985,559),(985,1008),(986,378),(986,560),(986,1009),(987,241),(987,671),(987,721),(988,242),(988,672),(988,722),(989,388),(989,753),(990,387),(990,754),(991,257),(991,667),(991,716),(992,258),(992,668),(992,715),(993,329),(993,739),(994,330),(994,740),(995,259),(995,559),(996,260),(996,560),(997,335),(997,425),(998,336),(998,426),(999,329),(999,351),(999,731),(1000,330),(1000,352),(1000,732),(1001,997),(1001,1020),(1002,998),(1002,1021),(1003,927),(1003,928),(1004,719),(1004,853),(1005,720),(1005,854),(1006,509),(1006,973),(1007,510),(1007,974),(1008,781),(1008,821),(1009,782),(1009,822),(1010,779),(1011,780),(1013,134),(1013,1001),(1014,135),(1014,1002),(1015,669),(1015,670),(1016,749),(1016,1004),(1017,750),(1017,1005),(1018,247),(1018,989),(1019,248),(1019,990),(1020,335),(1021,336),(1022,379),(1022,1010),(1023,380),(1023,1011)],1024)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,5],[6]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,14),(0,15),(1,26),(2,9),(2,25),(3,13),(3,24),(4,16),(5,11),(5,12),(6,69),(7,64),(8,49),(9,6),(9,52),(10,20),(10,59),(11,19),(11,65),(12,17),(12,65),(13,18),(13,22),(13,71),(14,2),(14,29),(15,3),(15,29),(16,39),(16,55),(17,56),(17,68),(18,57),(18,66),(19,58),(19,67),(20,51),(20,53),(21,40),(21,41),(22,57),(22,72),(23,28),(23,54),(23,70),(24,58),(24,71),(25,52),(25,56),(26,27),(26,69),(26,72),(27,45),(27,60),(28,34),(28,48),(28,50),(29,1),(30,76),(31,75),(32,77),(33,74),(33,80),(34,73),(34,78),(35,73),(35,77),(36,82),(37,79),(38,80),(39,74),(40,7),(40,76),(41,8),(41,76),(42,55),(42,79),(43,59),(44,39),(45,53),(45,83),(46,33),(46,81),(47,32),(47,83),(48,42),(48,78),(49,44),(50,46),(50,73),(51,44),(52,10),(52,43),(53,62),(54,34),(54,75),(55,36),(55,74),(56,43),(57,63),(58,61),(59,49),(59,51),(60,35),(60,50),(60,83),(61,31),(61,70),(62,33),(62,38),(63,32),(63,35),(64,37),(64,42),(65,21),(65,67),(65,68),(66,31),(66,54),(67,30),(67,40),(68,30),(68,41),(69,45),(69,47),(70,48),(70,64),(70,75),(71,23),(71,61),(71,66),(72,47),(72,60),(72,63),(73,81),(74,82),(75,37),(75,78),(76,4),(77,38),(77,81),(78,79),(79,36),(80,82),(81,80),(83,46),(83,62),(83,77)],84)
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,4,5],[4,4,5],[5,6],[6]]
=> ([(0,10),(0,11),(1,13),(1,14),(2,21),(3,20),(4,14),(4,20),(5,17),(6,16),(7,18),(8,12),(9,1),(9,22),(10,5),(10,15),(11,8),(11,15),(12,3),(12,4),(13,21),(14,19),(15,9),(15,17),(17,22),(18,16),(19,18),(20,7),(20,19),(21,6),(22,2),(22,13)],23)
=> ? = 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,4),(0,14),(0,15),(1,29),(2,6),(2,27),(3,13),(3,28),(4,10),(4,11),(5,102),(6,5),(6,87),(7,31),(7,99),(8,25),(8,98),(9,26),(9,72),(10,23),(10,109),(11,24),(11,33),(11,109),(12,22),(12,108),(13,17),(13,18),(13,107),(14,2),(14,38),(15,3),(15,38),(16,84),(16,85),(17,90),(17,111),(18,90),(18,101),(19,82),(19,83),(20,81),(20,100),(21,34),(21,89),(21,104),(22,86),(22,106),(23,91),(23,110),(24,80),(24,105),(25,78),(25,79),(26,52),(26,88),(27,87),(27,103),(28,91),(28,107),(29,30),(29,102),(29,111),(30,63),(30,96),(31,44),(31,71),(31,76),(32,37),(32,51),(32,77),(33,80),(33,94),(33,103),(34,62),(34,74),(34,75),(35,133),(36,9),(37,8),(37,127),(38,1),(39,118),(40,117),(40,122),(41,119),(42,119),(42,126),(43,116),(43,127),(44,112),(44,120),(45,112),(45,113),(46,114),(46,116),(47,121),(48,122),(49,125),(50,113),(51,20),(51,114),(51,127),(52,117),(53,72),(54,88),(54,121),(55,45),(55,132),(56,48),(57,84),(57,124),(58,76),(58,134),(59,66),(60,56),(61,54),(62,55),(62,126),(63,86),(63,129),(64,53),(64,134),(65,47),(66,70),(67,40),(68,40),(68,123),(69,41),(69,129),(70,39),(70,128),(71,54),(71,120),(72,52),(73,44),(73,118),(74,58),(74,115),(75,82),(75,115),(75,126),(76,68),(76,112),(77,16),(77,57),(77,114),(78,65),(79,61),(80,59),(80,130),(81,36),(82,60),(82,131),(83,53),(83,131),(84,78),(84,128),(85,73),(85,128),(86,92),(87,12),(87,95),(88,49),(88,117),(89,19),(89,75),(89,133),(90,97),(91,93),(92,45),(92,50),(93,35),(93,104),(94,46),(94,77),(94,130),(95,66),(95,108),(96,42),(96,62),(96,129),(97,41),(97,42),(98,36),(98,79),(99,61),(99,71),(100,58),(100,64),(101,35),(101,89),(102,63),(102,69),(103,59),(103,95),(104,74),(104,100),(104,133),(105,37),(105,43),(105,130),(106,39),(106,73),(107,21),(107,93),(107,101),(108,70),(108,85),(108,106),(109,32),(109,94),(109,105),(109,110),(110,43),(110,46),(110,51),(111,69),(111,96),(111,97),(112,123),(113,48),(113,123),(114,7),(114,124),(115,131),(115,134),(116,124),(117,125),(118,47),(118,120),(119,50),(119,132),(120,121),(121,49),(122,125),(123,122),(124,99),(126,60),(126,132),(127,81),(127,98),(128,65),(128,118),(129,55),(129,92),(129,119),(130,57),(130,116),(131,67),(132,56),(132,113),(133,64),(133,83),(133,115),(134,67),(134,68)],135)
=> ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,3,4,5],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> [[1,1,1,1,1,1],[2,3,4,5,6],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,25),(0,26),(0,87),(0,88),(1,76),(2,75),(3,105),(3,594),(4,106),(4,595),(5,587),(6,588),(7,557),(8,558),(9,23),(9,103),(9,367),(10,24),(10,104),(10,368),(11,97),(11,577),(12,98),(12,578),(13,99),(13,642),(14,100),(14,643),(15,45),(15,449),(16,46),(16,450),(17,71),(17,662),(18,72),(18,663),(19,51),(19,526),(20,52),(20,527),(21,73),(21,93),(21,656),(22,74),(22,94),(22,657),(23,65),(23,69),(23,592),(24,66),(24,70),(24,593),(25,21),(25,67),(25,365),(26,22),(26,68),(26,366),(27,117),(27,620),(27,652),(28,118),(28,621),(28,653),(29,473),(29,616),(30,474),(30,617),(31,471),(31,477),(32,472),(32,478),(33,119),(33,655),(33,660),(34,120),(34,654),(34,661),(35,465),(35,618),(36,466),(36,619),(37,227),(37,487),(38,228),(38,488),(39,231),(39,628),(40,232),(40,629),(41,463),(41,606),(42,464),(42,607),(43,121),(43,608),(43,624),(44,122),(44,609),(44,625),(45,78),(45,604),(45,664),(46,77),(46,605),(46,664),(47,123),(47,467),(47,600),(48,124),(48,468),(48,601),(49,596),(49,626),(50,597),(50,627),(51,459),(51,469),(52,460),(52,470),(53,225),(53,612),(54,226),(54,613),(55,111),(55,481),(55,622),(56,112),(56,482),(56,623),(57,115),(57,475),(57,658),(58,116),(58,476),(58,659),(59,107),(59,479),(59,610),(60,108),(60,480),(60,611),(61,109),(61,229),(61,630),(62,110),(62,230),(62,631),(63,83),(63,485),(63,614),(64,84),(64,486),(64,615),(65,81),(65,489),(65,650),(66,82),(66,490),(66,651),(67,113),(67,598),(67,656),(68,114),(68,599),(68,657),(69,489),(69,647),(70,490),(70,646),(71,457),(71,648),(72,458),(72,649),(73,85),(73,483),(73,644),(74,86),(74,484),(74,645),(75,79),(75,461),(75,602),(76,80),(76,462),(76,603),(77,265),(77,546),(78,266),(78,547),(79,423),(79,567),(80,424),(80,568),(81,521),(81,604),(82,522),(82,605),(83,277),(83,519),(84,278),(84,520),(85,523),(85,544),(86,524),(86,545),(87,9),(87,366),(87,525),(88,10),(88,365),(88,525),(89,437),(89,439),(89,554),(90,438),(90,440),(90,555),(91,363),(91,550),(91,553),(92,364),(92,551),(92,552),(93,483),(93,548),(93,556),(94,484),(94,549),(94,556),(95,357),(95,361),(95,455),(96,358),(96,362),(96,456),(97,195),(97,433),(97,435),(98,196),(98,434),(98,436),(99,189),(99,359),(99,569),(100,190),(100,360),(100,570),(101,223),(101,451),(101,453),(102,224),(102,452),(102,454),(103,283),(103,301),(103,592),(104,284),(104,302),(104,593),(105,91),(105,523),(105,634),(105,646),(106,92),(106,524),(106,635),(106,647),(107,269),(107,271),(107,275),(108,270),(108,272),(108,276),(109,273),(109,391),(109,395),(110,274),(110,392),(110,396),(111,132),(111,267),(111,528),(112,133),(112,268),(112,529),(113,301),(113,303),(113,636),(114,302),(114,304),(114,637),(115,393),(115,445),(115,561),(116,394),(116,446),(116,562),(117,249),(117,251),(117,499),(118,250),(118,252),(118,500),(119,299),(119,502),(119,536),(120,300),(120,501),(120,537),(121,171),(121,373),(121,503),(122,172),(122,374),(122,504),(123,89),(123,505),(123,563),(123,565),(124,90),(124,506),(124,564),(124,566),(125,859),(125,860),(126,857),(126,858),(127,979),(127,980),(128,861),(128,977),(129,862),(129,978),(130,843),(130,851),(131,844),(131,852),(132,679),(132,691),(133,680),(133,692),(134,997),(135,998),(136,891),(136,937),(137,892),(137,938),(138,893),(138,945),(139,894),(139,946),(140,697),(140,929),(141,698),(141,930),(142,919),(142,920),(143,677),(143,951),(144,678),(144,952),(145,677),(145,931),(146,678),(146,932),(147,699),(148,700),(149,689),(149,971),(150,690),(150,972),(151,945),(151,975),(152,946),(152,976),(153,709),(153,765),(154,710),(154,766),(155,761),(155,881),(156,762),(156,882),(157,775),(157,961),(158,776),(158,962),(159,771),(159,963),(160,772),(160,964),(161,769),(161,883),(162,770),(162,884),(163,767),(164,768),(165,763),(165,983),(166,764),(166,984),(167,775),(167,901),(168,776),(168,902),(169,759),(169,877),(170,760),(170,878),(171,685),(171,813),(172,686),(172,814),(173,774),(173,959),(174,773),(174,960),(175,773),(175,879),(176,774),(176,880),(177,755),(178,756),(179,707),(179,815),(180,708),(180,816),(181,683),(181,757),(182,684),(182,758),(183,19),(183,777),(184,20),(184,778),(185,819),(185,885),(186,820),(186,886),(187,817),(187,887),(188,818),(188,888),(189,689),(189,787),(190,690),(190,788),(191,759),(191,760),(192,771),(192,772),(193,745),(193,769),(194,746),(194,770),(195,723),(195,799),(196,724),(196,800),(197,671),(198,672),(199,867),(200,868),(201,869),(202,870),(203,865),(203,979),(204,866),(204,980),(205,999),(206,1000),(207,833),(208,834),(209,928),(210,927),(211,741),(212,742),(213,753),(213,871),(214,754),(214,872),(215,729),(215,863),(216,730),(216,864),(217,777),(218,778),(219,765),(219,791),(220,766),(220,792),(221,749),(222,750),(223,49),(223,695),(223,697),(224,50),(224,696),(224,698),(225,7),(225,915),(226,8),(226,916),(227,5),(227,807),(228,6),(228,808),(229,43),(229,809),(230,44),(230,810),(231,35),(231,747),(232,36),(232,748),(233,296),(233,693),(233,968),(234,295),(234,694),(234,967),(235,293),(235,967),(236,294),(236,968),(237,349),(237,992),(238,350),(238,991),(239,195),(239,897),(240,196),(240,898),(241,219),(241,981),(242,220),(242,982),(243,211),(243,959),(244,212),(244,960),(245,191),(245,889),(246,191),(246,890),(247,388),(248,387),(249,540),(249,969),(250,541),(250,970),(251,542),(251,969),(252,543),(252,970),(253,407),(253,973),(254,408),(254,974),(255,193),(255,895),(255,977),(256,194),(256,896),(256,978),(257,213),(257,989),(258,214),(258,990),(259,443),(260,444),(261,397),(261,917),(262,398),(262,918),(263,126),(263,899),(264,126),(264,900),(265,457),(265,687),(266,458),(266,688),(267,321),(267,679),(268,322),(268,680),(269,287),(269,705),(270,288),(270,706),(271,371),(271,693),(272,372),(272,694),(273,401),(273,913),(274,402),(274,914),(275,485),(275,693),(275,705),(276,486),(276,694),(276,706),(277,307),(277,993),(278,308),(278,994),(279,435),(279,997),(280,436),(280,998),(281,455),(281,937),(281,955),(282,456),(282,938),(282,956),(283,449),(283,933),(284,450),(284,934),(285,327),(285,941),(286,328),(286,942),(287,359),(287,925),(288,360),(288,926),(289,245),(290,246),(291,600),(292,601),(293,145),(293,673),(293,935),(294,146),(294,674),(294,936),(295,143),(295,935),(295,943),(296,144),(296,936),(296,944),(297,132),(297,931),(297,951),(298,133),(298,932),(298,952),(299,492),(299,965),(300,491),(300,966),(301,515),(301,933),(302,516),(302,934),(303,517),(303,933),(304,518),(304,934),(305,511),(305,925),(306,512),(306,926),(307,315),(308,316),(309,189),(309,703),(310,190),(310,704),(311,404),(311,971),(312,403),(312,972),(313,136),(313,707),(313,915),(314,137),(314,708),(314,916),(315,461),(316,462),(317,241),(317,921),(318,242),(318,922),(319,147),(319,949),(320,148),(320,950),(321,602),(321,923),(322,603),(322,924),(323,235),(323,953),(324,236),(324,954),(325,415),(325,703),(326,416),(326,704),(327,163),(327,961),(328,164),(328,962),(329,153),(329,995),(330,154),(330,996),(331,187),(331,671),(331,691),(332,188),(332,672),(332,692),(333,181),(333,711),(333,913),(334,182),(334,712),(334,914),(335,169),(336,170),(337,177),(337,927),(338,178),(338,928),(339,185),(339,855),(339,947),(340,186),(340,856),(340,948),(341,161),(341,837),(342,162),(342,838),(343,155),(343,923),(344,156),(344,924),(345,173),(345,669),(346,174),(346,670),(347,179),(347,695),(347,929),(348,180),(348,696),(348,930),(349,176),(349,668),(350,175),(350,667),(351,153),(351,903),(351,985),(352,154),(352,904),(352,986),(353,155),(353,847),(353,975),(354,156),(354,848),(354,976),(355,167),(355,668),(356,168),(356,667),(357,608),(357,673),(358,609),(358,674),(359,399),(359,689),(360,400),(360,690),(361,297),(361,673),(361,943),(362,298),(362,674),(362,944),(363,299),(363,665),(363,953),(364,300),(364,666),(364,954),(365,3),(365,598),(366,4),(366,599),(367,15),(367,283),(368,16),(368,284),(369,429),(369,675),(369,797),(370,430),(370,676),(370,798),(371,149),(371,735),(372,150),(372,736),(373,411),(373,813),(374,412),(374,814),(375,357),(375,727),(375,955),(376,358),(376,728),(376,956),(377,385),(377,781),(378,386),(378,782),(379,477),(379,779),(380,478),(380,780),(381,447),(381,797),(382,448),(382,798),(383,128),(383,737),(383,849),(384,129),(384,738),(384,850),(385,130),(385,745),(385,841),(386,131),(386,746),(386,842),(387,199),(387,755),(388,200),(388,756),(389,229),(389,815),(390,230),(390,816),(391,261),(391,795),(392,262),(392,796),(393,377),(393,829),(394,378),(394,830),(395,419),(395,795),(395,913),(396,420),(396,796),(396,914),(397,459),(397,729),(397,947),(398,460),(398,730),(398,948),(399,369),(399,801),(400,370),(400,802),(401,215),(401,751),(402,216),(402,752),(403,201),(403,743),(404,202),(404,744),(405,409),(405,731),(406,410),(406,732),(407,138),(407,685),(407,743),(408,139),(408,686),(408,744),(409,393),(409,817),(409,985),(410,394),(410,818),(410,986),(411,441),(411,785),(412,442),(412,786),(413,383),(413,785),(414,384),(414,786),(415,125),(415,758),(415,845),(416,125),(416,757),(416,846),(417,251),(417,739),(417,921),(418,252),(418,740),(418,922),(419,171),(419,683),(419,827),(420,172),(420,684),(420,828),(421,185),(421,805),(422,186),(422,806),(423,163),(423,825),(424,164),(424,826),(425,169),(425,719),(426,170),(426,720),(427,187),(427,721),(427,919),(428,188),(428,722),(428,920),(429,157),(429,783),(429,941),(430,158),(430,784),(430,942),(431,165),(431,803),(432,166),(432,804),(433,245),(433,723),(434,246),(434,724),(435,425),(435,799),(436,426),(436,800),(437,417),(437,701),(437,823),(438,418),(438,702),(438,824),(439,405),(439,823),(440,406),(440,824),(441,255),(441,737),(441,761),(442,256),(442,738),(442,762),(443,130),(443,741),(443,767),(444,131),(444,742),(444,768),(445,175),(445,717),(445,829),(446,176),(446,718),(446,830),(447,167),(447,715),(447,783),(448,168),(448,716),(448,784),(449,47),(449,291),(450,48),(450,292),(451,41),(451,589),(451,697),(452,42),(452,590),(452,698),(453,61),(453,389),(453,695),(454,62),(454,390),(454,696),(455,29),(455,495),(455,943),(456,30),(456,496),(456,944),(457,579),(458,580),(459,207),(459,675),(460,208),(460,676),(461,423),(461,709),(462,424),(462,710),(463,309),(463,939),(464,310),(464,940),(465,247),(466,248),(467,563),(467,699),(468,564),(468,700),(469,285),(469,675),(470,286),(470,676),(471,239),(471,789),(472,240),(472,790),(473,238),(473,733),(474,237),(474,734),(475,445),(475,831),(476,446),(476,832),(477,177),(477,789),(478,178),(478,790),(479,63),(479,275),(479,949),(480,64),(480,276),(480,950),(481,57),(481,509),(482,58),(482,510),(483,33),(483,507),(483,681),(484,34),(484,508),(484,682),(485,27),(485,573),(485,725),(486,28),(486,574),(486,726),(487,31),(487,379),(487,807),(488,32),(488,380),(488,808),(489,18),(489,639),(490,17),(490,638),(491,149),(491,311),(492,150),(492,312),(493,321),(493,411),(494,322),(494,412),(495,407),(495,616),(495,713),(496,408),(496,617),(496,714),(497,355),(497,447),(497,992),(498,356),(498,448),(498,991),(499,349),(499,355),(500,350),(500,356),(501,309),(501,325),(502,310),(502,326),(503,151),(503,353),(503,685),(504,152),(504,354),(504,686),(505,554),(505,585),(505,963),(506,555),(506,586),(506,964),(507,532),(507,655),(508,532),(508,654),(509,413),(509,658),(510,414),(510,659),(511,307),(511,526),(512,308),(512,527),(513,405),(513,528),(513,999),(514,406),(514,529),(514,1000),(515,319),(515,610),(516,320),(516,611),(517,225),(517,313),(518,226),(518,314),(519,317),(519,417),(519,993),(520,318),(520,418),(520,994),(521,147),(521,467),(522,148),(522,468),(523,323),(523,363),(523,957),(524,324),(524,364),(524,958),(525,367),(525,368),(526,315),(526,469),(527,316),(527,470),(528,351),(528,409),(528,691),(529,352),(529,410),(529,692),(530,325),(530,533),(530,939),(531,326),(531,533),(531,940),(532,530),(532,531),(533,415),(533,416),(533,711),(533,712),(534,181),(534,419),(534,983),(535,182),(535,420),(535,984),(536,165),(536,534),(536,965),(537,166),(537,535),(537,966),(538,159),(538,192),(538,688),(539,160),(539,192),(539,687),(540,157),(540,327),(541,158),(541,328),(542,173),(542,243),(543,174),(543,244),(544,179),(544,389),(544,957),(545,180),(545,390),(545,958),(546,159),(546,505),(546,687),(547,160),(547,506),(547,688),(548,140),(548,451),(548,681),(549,141),(549,452),(549,682),(550,136),(550,281),(550,665),(551,137),(551,282),(551,666),(552,233),(552,271),(552,954),(553,234),(553,272),(553,953),(554,142),(554,427),(554,701),(555,142),(555,428),(555,702),(556,507),(556,508),(557,205),(557,513),(558,206),(558,514),(559,385),(559,443),(559,821),(560,386),(560,444),(560,822),(561,128),(561,255),(561,717),(562,129),(562,256),(562,718),(563,437),(563,519),(563,793),(563,963),(564,438),(564,520),(564,794),(564,964),(565,439),(565,513),(565,793),(566,440),(566,514),(566,794),(567,161),(567,193),(567,825),(568,162),(568,194),(568,826),(569,339),(569,397),(569,787),(570,340),(570,398),(570,788),(571,343),(571,353),(572,344),(572,354),(573,583),(573,652),(574,584),(574,653),(575,339),(575,421),(575,917),(576,340),(576,422),(576,918),(577,289),(577,433),(578,290),(578,434),(579,197),(579,331),(580,198),(580,332),(581,369),(581,632),(582,370),(582,633),(583,381),(583,497),(584,382),(584,498),(585,331),(585,427),(585,987),(586,332),(586,428),(586,988),(587,134),(587,279),(588,135),(588,280),(589,606),(589,640),(589,811),(590,607),(590,641),(590,812),(591,263),(591,264),(592,59),(592,515),(592,650),(593,60),(593,516),(593,651),(594,53),(594,517),(594,634),(595,54),(595,518),(595,635),(596,287),(596,305),(597,288),(597,306),(598,303),(598,594),(599,304),(599,595),(600,557),(600,565),(600,699),(601,558),(601,566),(601,700),(602,341),(602,567),(602,709),(603,342),(603,568),(603,710),(604,266),(604,538),(605,265),(605,539),(606,273),(606,333),(606,939),(607,274),(607,334),(607,940),(608,503),(608,571),(609,504),(609,572),(610,269),(610,596),(610,949),(611,270),(611,597),(611,950),(612,95),(612,281),(612,375),(612,915),(613,96),(613,282),(613,376),(613,916),(614,277),(614,511),(614,725),(615,278),(615,512),(615,726),(616,138),(616,151),(616,733),(617,139),(617,152),(617,734),(618,209),(618,338),(619,210),(619,337),(620,249),(620,632),(621,250),(621,633),(622,267),(622,493),(623,268),(623,494),(624,373),(624,493),(625,374),(625,494),(626,183),(626,217),(627,184),(627,218),(628,127),(628,203),(628,747),(629,127),(629,204),(629,748),(630,183),(630,391),(630,809),(631,184),(631,392),(631,810),(632,285),(632,429),(632,540),(633,286),(633,430),(633,541),(634,313),(634,550),(634,612),(634,957),(635,314),(635,551),(635,613),(635,958),(636,140),(636,223),(636,347),(637,141),(637,224),(637,348),(638,234),(638,235),(638,662),(639,233),(639,236),(639,663),(640,333),(640,395),(640,534),(640,803),(641,334),(641,396),(641,535),(641,804),(642,261),(642,569),(642,575),(643,262),(643,570),(643,576),(644,347),(644,453),(644,544),(644,681),(645,348),(645,454),(645,545),(645,682),(646,323),(646,553),(646,638),(647,324),(647,552),(647,639),(648,143),(648,145),(648,297),(649,144),(649,146),(649,298),(650,319),(650,479),(650,521),(651,320),(651,480),(651,522),(652,237),(652,497),(652,499),(653,238),(653,498),(653,500),(654,463),(654,501),(654,530),(655,464),(655,502),(655,531),(656,101),(656,548),(656,636),(656,644),(657,102),(657,549),(657,637),(657,645),(658,383),(658,441),(658,561),(658,831),(659,384),(659,442),(659,562),(659,832),(660,431),(660,536),(660,640),(661,432),(661,537),(661,641),(662,293),(662,295),(662,361),(662,648),(663,294),(663,296),(663,362),(663,649),(664,538),(664,539),(664,546),(664,547),(665,891),(665,955),(665,965),(666,892),(666,956),(666,966),(667,213),(667,879),(667,902),(668,214),(668,880),(668,901),(669,591),(669,959),(670,591),(670,960),(671,219),(671,887),(671,903),(672,220),(672,888),(672,904),(673,571),(673,931),(674,572),(674,932),(675,833),(675,941),(676,834),(676,942),(677,201),(677,873),(678,202),(678,874),(679,923),(680,924),(681,589),(681,660),(681,929),(682,590),(682,661),(682,930),(683,231),(683,911),(684,232),(684,912),(685,847),(685,945),(686,848),(686,946),(687,579),(687,585),(687,771),(688,580),(688,586),(688,772),(689,801),(690,802),(691,817),(691,903),(692,818),(692,904),(693,573),(693,735),(694,574),(694,736),(695,626),(695,630),(695,815),(696,627),(696,631),(696,816),(697,13),(697,811),(698,14),(698,812),(699,205),(699,793),(700,206),(700,794),(701,721),(701,920),(701,921),(702,722),(702,919),(702,922),(703,215),(703,787),(703,845),(704,216),(704,788),(704,846),(705,725),(705,925),(706,726),(706,926),(707,727),(707,891),(708,728),(708,892),(709,825),(709,837),(710,826),(710,838),(711,751),(711,757),(711,845),(712,752),(712,758),(712,846),(713,733),(713,743),(713,873),(714,734),(714,744),(714,874),(715,901),(715,990),(716,902),(716,989),(717,861),(717,879),(717,895),(718,862),(718,880),(718,896),(719,877),(720,878),(721,887),(721,981),(721,1015),(722,888),(722,982),(722,1015),(723,889),(724,890),(725,581),(725,620),(726,582),(726,621),(727,622),(727,1006),(728,623),(728,1007),(729,207),(729,1022),(730,208),(730,1023),(731,985),(731,995),(732,986),(732,996),(733,893),(733,975),(733,991),(734,894),(734,976),(734,992),(735,583),(735,971),(736,584),(736,972),(737,587),(737,977),(737,1013),(738,588),(738,978),(738,1014),(739,969),(739,995),(740,970),(740,996),(741,851),(741,905),(742,852),(742,906),(743,847),(743,869),(743,893),(744,848),(744,870),(744,894),(745,843),(745,1016),(746,844),(746,1017),(747,618),(747,865),(747,980),(748,619),(748,866),(748,979),(749,853),(750,854),(751,628),(751,863),(751,911),(752,629),(752,864),(752,912),(753,200),(753,1020),(754,199),(754,1021),(755,867),(756,868),(757,859),(757,911),(758,860),(758,912),(759,1012),(760,1012),(761,895),(761,1013),(762,896),(762,1014),(763,973),(764,974),(765,837),(766,838),(767,843),(767,905),(768,844),(768,906),(769,221),(769,1016),(770,222),(770,1017),(771,197),(771,987),(772,198),(772,988),(773,839),(774,840),(775,835),(776,836),(777,2),(778,1),(779,577),(780,578),(781,839),(781,841),(782,840),(782,842),(783,775),(783,875),(784,776),(784,876),(785,737),(786,738),(787,729),(787,855),(788,730),(788,856),(789,755),(789,897),(790,756),(790,898),(791,211),(791,821),(792,212),(792,822),(793,823),(793,993),(793,999),(794,824),(794,994),(794,1000),(795,827),(795,917),(796,828),(796,918),(797,783),(797,833),(798,784),(798,834),(799,719),(800,720),(801,797),(802,798),(803,575),(803,795),(803,983),(804,576),(804,796),(804,984),(805,227),(805,819),(806,228),(806,820),(807,11),(807,779),(808,12),(808,780),(809,624),(809,777),(810,625),(810,778),(811,642),(811,803),(812,643),(812,804),(813,785),(814,786),(815,217),(815,809),(816,218),(816,810),(817,829),(817,1008),(818,830),(818,1009),(819,807),(819,1010),(820,808),(820,1011),(821,741),(821,841),(822,742),(822,842),(823,731),(823,739),(824,732),(824,740),(825,745),(825,767),(825,883),(826,746),(826,768),(826,884),(827,805),(827,813),(828,806),(828,814),(829,773),(829,781),(830,774),(830,782),(831,717),(831,761),(831,849),(832,718),(832,762),(832,850),(833,875),(834,876),(835,897),(836,898),(837,883),(838,884),(839,899),(840,900),(841,851),(841,899),(841,1016),(842,852),(842,900),(842,1017),(843,799),(843,1004),(844,800),(844,1005),(845,855),(845,859),(845,863),(846,856),(846,860),(846,864),(847,881),(847,1018),(848,882),(848,1019),(849,861),(849,1013),(850,862),(850,1014),(851,857),(851,1004),(852,858),(852,1005),(853,877),(854,878),(855,885),(855,1022),(856,886),(856,1023),(857,853),(858,854),(859,885),(859,909),(860,886),(860,910),(861,907),(861,1001),(862,908),(862,1002),(863,203),(863,909),(863,1022),(864,204),(864,910),(864,1023),(865,209),(865,1003),(866,210),(866,1003),(867,889),(868,890),(869,849),(869,881),(870,850),(870,882),(871,221),(871,1020),(872,222),(872,1021),(873,831),(873,869),(874,832),(874,870),(875,789),(875,835),(876,790),(876,836),(877,1012),(878,1012),(879,871),(879,907),(880,872),(880,908),(881,1013),(882,1014),(883,905),(883,1016),(884,906),(884,1017),(885,1010),(886,1011),(887,791),(887,1008),(888,792),(888,1009),(889,760),(890,759),(891,763),(891,1006),(892,764),(892,1007),(893,716),(893,1018),(894,715),(894,1019),(895,769),(895,871),(895,1001),(896,770),(896,872),(896,1002),(897,723),(897,867),(898,724),(898,868),(899,749),(899,857),(900,750),(900,858),(901,754),(901,908),(902,753),(902,907),(903,765),(903,1008),(904,766),(904,1009),(905,1004),(906,1005),(907,1020),(908,1021),(909,865),(909,1010),(910,866),(910,1011),(911,747),(911,909),(912,748),(912,910),(913,39),(913,683),(913,751),(914,40),(914,684),(914,752),(915,55),(915,727),(915,937),(916,56),(916,728),(916,938),(917,37),(917,805),(917,947),(918,38),(918,806),(918,948),(919,346),(919,1015),(920,345),(920,1015),(921,345),(921,542),(921,981),(922,346),(922,543),(922,982),(923,341),(924,342),(925,399),(925,581),(926,400),(926,582),(927,289),(928,290),(929,431),(929,811),(930,432),(930,812),(931,343),(931,679),(932,344),(932,680),(933,291),(934,292),(935,403),(935,677),(935,713),(936,404),(936,678),(936,714),(937,481),(937,1006),(938,482),(938,1007),(939,401),(939,703),(939,711),(940,402),(940,704),(940,712),(941,471),(941,875),(941,961),(942,472),(942,876),(942,962),(943,473),(943,713),(943,951),(944,474),(944,714),(944,952),(945,465),(945,1018),(946,466),(946,1019),(947,487),(947,819),(947,1022),(948,488),(948,820),(948,1023),(949,305),(949,614),(949,705),(950,306),(950,615),(950,706),(951,475),(951,873),(952,476),(952,874),(953,372),(953,492),(953,967),(954,371),(954,491),(954,968),(955,253),(955,495),(955,1006),(956,254),(956,496),(956,1007),(957,375),(957,665),(957,707),(958,376),(958,666),(958,708),(959,264),(959,840),(960,263),(960,839),(961,239),(961,835),(962,240),(962,836),(963,317),(963,701),(963,987),(964,318),(964,702),(964,988),(965,253),(965,763),(966,254),(966,764),(967,312),(967,736),(967,935),(968,311),(968,735),(968,936),(969,259),(970,260),(971,381),(971,801),(972,382),(972,802),(973,413),(974,414),(975,257),(975,1018),(976,258),(976,1019),(977,279),(977,1001),(978,280),(978,1002),(979,337),(979,1003),(980,338),(980,1003),(981,243),(981,669),(981,791),(982,244),(982,670),(982,792),(983,421),(983,827),(984,422),(984,828),(985,377),(985,559),(985,1008),(986,378),(986,560),(986,1009),(987,241),(987,671),(987,721),(988,242),(988,672),(988,722),(989,388),(989,753),(990,387),(990,754),(991,257),(991,667),(991,716),(992,258),(992,668),(992,715),(993,329),(993,739),(994,330),(994,740),(995,259),(995,559),(996,260),(996,560),(997,335),(997,425),(998,336),(998,426),(999,329),(999,351),(999,731),(1000,330),(1000,352),(1000,732),(1001,997),(1001,1020),(1002,998),(1002,1021),(1003,927),(1003,928),(1004,719),(1004,853),(1005,720),(1005,854),(1006,509),(1006,973),(1007,510),(1007,974),(1008,781),(1008,821),(1009,782),(1009,822),(1010,779),(1011,780),(1013,134),(1013,1001),(1014,135),(1014,1002),(1015,669),(1015,670),(1016,749),(1016,1004),(1017,750),(1017,1005),(1018,247),(1018,989),(1019,248),(1019,990),(1020,335),(1021,336),(1022,379),(1022,1010),(1023,380),(1023,1011)],1024)
=> ? = 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,4),(0,7),(1,5),(1,17),(2,6),(2,8),(2,18),(3,1),(3,13),(4,2),(4,14),(5,10),(5,15),(6,11),(6,16),(7,13),(7,14),(8,12),(8,15),(8,16),(9,21),(10,19),(11,20),(12,19),(12,20),(13,17),(14,18),(15,9),(15,19),(16,9),(16,20),(17,10),(18,11),(18,12),(19,21),(20,21)],22)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,2),(0,3),(0,10),(1,9),(1,11),(1,31),(2,1),(2,24),(3,6),(3,8),(3,30),(4,18),(4,27),(5,19),(5,20),(6,17),(6,29),(7,15),(7,21),(8,12),(8,26),(8,29),(9,16),(9,28),(10,24),(10,30),(11,14),(11,23),(11,28),(12,13),(12,22),(12,23),(13,32),(13,33),(14,33),(14,39),(15,37),(16,39),(17,38),(18,36),(19,34),(20,34),(21,5),(21,37),(22,21),(22,32),(23,25),(23,33),(24,31),(25,27),(25,35),(26,13),(26,38),(27,19),(27,36),(28,4),(28,25),(28,39),(29,7),(29,22),(29,38),(30,17),(30,26),(31,14),(31,16),(32,37),(33,35),(35,36),(36,34),(37,20),(38,15),(38,32),(39,18),(39,35)],40)
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,16),(0,17),(0,28),(1,23),(1,58),(2,19),(2,53),(3,11),(3,21),(3,80),(4,10),(4,20),(4,79),(5,12),(5,13),(5,81),(6,48),(6,73),(7,49),(7,74),(8,24),(8,75),(8,86),(9,25),(9,76),(9,87),(10,14),(10,71),(10,77),(11,15),(11,72),(11,78),(12,26),(12,69),(12,88),(13,27),(13,70),(13,88),(14,31),(14,82),(15,32),(15,83),(16,4),(16,36),(16,54),(17,3),(17,36),(17,55),(18,44),(18,67),(18,68),(19,39),(19,40),(19,43),(20,34),(20,56),(20,77),(21,35),(21,57),(21,78),(22,45),(22,46),(22,47),(23,18),(23,50),(23,82),(23,83),(24,41),(24,61),(24,63),(25,42),(25,62),(25,64),(26,37),(26,56),(26,84),(27,38),(27,57),(27,85),(28,54),(28,55),(28,81),(29,90),(29,118),(30,89),(30,117),(31,93),(32,94),(33,116),(33,124),(34,91),(34,122),(35,92),(35,123),(36,1),(36,121),(37,91),(37,110),(38,92),(38,111),(39,90),(39,104),(40,90),(40,105),(41,98),(41,108),(42,99),(42,109),(43,104),(43,105),(44,106),(44,107),(45,102),(45,103),(46,6),(46,89),(46,102),(47,7),(47,89),(47,103),(48,100),(49,101),(50,44),(50,93),(50,94),(51,39),(51,119),(52,40),(52,120),(53,43),(54,79),(54,121),(55,80),(55,121),(56,59),(56,91),(57,60),(57,92),(58,50),(59,86),(59,112),(60,87),(60,113),(61,65),(61,108),(62,66),(62,109),(63,51),(63,98),(64,52),(64,99),(65,29),(65,96),(66,29),(66,97),(67,61),(67,106),(67,124),(68,62),(68,107),(68,124),(69,37),(69,95),(70,38),(70,95),(71,31),(71,122),(72,32),(72,123),(73,51),(73,100),(74,52),(74,101),(75,41),(75,114),(76,42),(76,115),(77,8),(77,59),(77,122),(78,9),(78,60),(78,123),(79,34),(79,71),(80,35),(80,72),(81,69),(81,70),(82,33),(82,67),(82,93),(83,33),(83,68),(83,94),(84,30),(84,46),(84,110),(85,30),(85,47),(85,111),(86,63),(86,73),(86,114),(87,64),(87,74),(87,115),(88,22),(88,84),(88,85),(88,95),(89,2),(89,127),(90,125),(91,112),(92,113),(93,106),(93,116),(94,107),(94,116),(95,45),(95,110),(95,111),(96,118),(97,118),(98,119),(99,120),(100,119),(101,120),(102,48),(102,127),(103,49),(103,127),(104,125),(105,125),(106,108),(106,126),(107,109),(107,126),(108,96),(109,97),(110,102),(110,117),(111,103),(111,117),(112,114),(113,115),(114,98),(114,100),(115,99),(115,101),(116,126),(117,127),(118,125),(119,104),(120,105),(121,58),(122,75),(122,112),(123,76),(123,113),(124,65),(124,66),(124,126),(126,96),(126,97),(127,53)],128)
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,4),(0,8),(1,7),(1,21),(2,6),(2,20),(3,2),(3,18),(4,1),(4,19),(5,12),(5,13),(6,11),(6,16),(7,11),(7,17),(8,5),(8,18),(8,19),(9,23),(10,23),(11,22),(12,14),(13,15),(14,9),(15,10),(16,9),(16,22),(17,10),(17,22),(18,12),(18,20),(19,13),(19,21),(20,14),(20,16),(21,15),(21,17),(22,23)],24)
=> ? = 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
Description
The first Betti number of the order complex associated with the poset.
The order complex of a poset is the simplicial complex whose faces are the chains of the poset. This statistic is the rank of the first homology group of the order complex.
Matching statistic: St001396
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001396: Posets ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 17%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001396: Posets ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,3,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,4,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,3,4],[3,4,5],[4,5],[5]]
=> ([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,2],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,14),(0,15),(1,26),(2,9),(2,25),(3,13),(3,24),(4,16),(5,11),(5,12),(6,69),(7,64),(8,49),(9,6),(9,52),(10,20),(10,59),(11,19),(11,65),(12,17),(12,65),(13,18),(13,22),(13,71),(14,2),(14,29),(15,3),(15,29),(16,39),(16,55),(17,56),(17,68),(18,57),(18,66),(19,58),(19,67),(20,51),(20,53),(21,40),(21,41),(22,57),(22,72),(23,28),(23,54),(23,70),(24,58),(24,71),(25,52),(25,56),(26,27),(26,69),(26,72),(27,45),(27,60),(28,34),(28,48),(28,50),(29,1),(30,76),(31,75),(32,77),(33,74),(33,80),(34,73),(34,78),(35,73),(35,77),(36,82),(37,79),(38,80),(39,74),(40,7),(40,76),(41,8),(41,76),(42,55),(42,79),(43,59),(44,39),(45,53),(45,83),(46,33),(46,81),(47,32),(47,83),(48,42),(48,78),(49,44),(50,46),(50,73),(51,44),(52,10),(52,43),(53,62),(54,34),(54,75),(55,36),(55,74),(56,43),(57,63),(58,61),(59,49),(59,51),(60,35),(60,50),(60,83),(61,31),(61,70),(62,33),(62,38),(63,32),(63,35),(64,37),(64,42),(65,21),(65,67),(65,68),(66,31),(66,54),(67,30),(67,40),(68,30),(68,41),(69,45),(69,47),(70,48),(70,64),(70,75),(71,23),(71,61),(71,66),(72,47),(72,60),(72,63),(73,81),(74,82),(75,37),(75,78),(76,4),(77,38),(77,81),(78,79),(79,36),(80,82),(81,80),(83,46),(83,62),(83,77)],84)
=> ? = 2
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,5],[5]]
=> ([(0,10),(0,11),(1,13),(1,14),(2,21),(3,20),(4,14),(4,20),(5,17),(6,16),(7,18),(8,12),(9,1),(9,22),(10,5),(10,15),(11,8),(11,15),(12,3),(12,4),(13,21),(14,19),(15,9),(15,17),(17,22),(18,16),(19,18),(20,7),(20,19),(21,6),(22,2),(22,13)],23)
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,2,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,4),(0,14),(0,15),(1,29),(2,6),(2,27),(3,13),(3,28),(4,10),(4,11),(5,102),(6,5),(6,87),(7,31),(7,99),(8,25),(8,98),(9,26),(9,72),(10,23),(10,109),(11,24),(11,33),(11,109),(12,22),(12,108),(13,17),(13,18),(13,107),(14,2),(14,38),(15,3),(15,38),(16,84),(16,85),(17,90),(17,111),(18,90),(18,101),(19,82),(19,83),(20,81),(20,100),(21,34),(21,89),(21,104),(22,86),(22,106),(23,91),(23,110),(24,80),(24,105),(25,78),(25,79),(26,52),(26,88),(27,87),(27,103),(28,91),(28,107),(29,30),(29,102),(29,111),(30,63),(30,96),(31,44),(31,71),(31,76),(32,37),(32,51),(32,77),(33,80),(33,94),(33,103),(34,62),(34,74),(34,75),(35,133),(36,9),(37,8),(37,127),(38,1),(39,118),(40,117),(40,122),(41,119),(42,119),(42,126),(43,116),(43,127),(44,112),(44,120),(45,112),(45,113),(46,114),(46,116),(47,121),(48,122),(49,125),(50,113),(51,20),(51,114),(51,127),(52,117),(53,72),(54,88),(54,121),(55,45),(55,132),(56,48),(57,84),(57,124),(58,76),(58,134),(59,66),(60,56),(61,54),(62,55),(62,126),(63,86),(63,129),(64,53),(64,134),(65,47),(66,70),(67,40),(68,40),(68,123),(69,41),(69,129),(70,39),(70,128),(71,54),(71,120),(72,52),(73,44),(73,118),(74,58),(74,115),(75,82),(75,115),(75,126),(76,68),(76,112),(77,16),(77,57),(77,114),(78,65),(79,61),(80,59),(80,130),(81,36),(82,60),(82,131),(83,53),(83,131),(84,78),(84,128),(85,73),(85,128),(86,92),(87,12),(87,95),(88,49),(88,117),(89,19),(89,75),(89,133),(90,97),(91,93),(92,45),(92,50),(93,35),(93,104),(94,46),(94,77),(94,130),(95,66),(95,108),(96,42),(96,62),(96,129),(97,41),(97,42),(98,36),(98,79),(99,61),(99,71),(100,58),(100,64),(101,35),(101,89),(102,63),(102,69),(103,59),(103,95),(104,74),(104,100),(104,133),(105,37),(105,43),(105,130),(106,39),(106,73),(107,21),(107,93),(107,101),(108,70),(108,85),(108,106),(109,32),(109,94),(109,105),(109,110),(110,43),(110,46),(110,51),(111,69),(111,96),(111,97),(112,123),(113,48),(113,123),(114,7),(114,124),(115,131),(115,134),(116,124),(117,125),(118,47),(118,120),(119,50),(119,132),(120,121),(121,49),(122,125),(123,122),(124,99),(126,60),(126,132),(127,81),(127,98),(128,65),(128,118),(129,55),(129,92),(129,119),(130,57),(130,116),(131,67),(132,56),(132,113),(133,64),(133,83),(133,115),(134,67),(134,68)],135)
=> ? = 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [[1,1,2,3,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,2,3,4,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,25),(0,26),(0,87),(0,88),(1,76),(2,75),(3,105),(3,594),(4,106),(4,595),(5,587),(6,588),(7,557),(8,558),(9,23),(9,103),(9,367),(10,24),(10,104),(10,368),(11,97),(11,577),(12,98),(12,578),(13,99),(13,642),(14,100),(14,643),(15,45),(15,449),(16,46),(16,450),(17,71),(17,662),(18,72),(18,663),(19,51),(19,526),(20,52),(20,527),(21,73),(21,93),(21,656),(22,74),(22,94),(22,657),(23,65),(23,69),(23,592),(24,66),(24,70),(24,593),(25,21),(25,67),(25,365),(26,22),(26,68),(26,366),(27,117),(27,620),(27,652),(28,118),(28,621),(28,653),(29,473),(29,616),(30,474),(30,617),(31,471),(31,477),(32,472),(32,478),(33,119),(33,655),(33,660),(34,120),(34,654),(34,661),(35,465),(35,618),(36,466),(36,619),(37,227),(37,487),(38,228),(38,488),(39,231),(39,628),(40,232),(40,629),(41,463),(41,606),(42,464),(42,607),(43,121),(43,608),(43,624),(44,122),(44,609),(44,625),(45,78),(45,604),(45,664),(46,77),(46,605),(46,664),(47,123),(47,467),(47,600),(48,124),(48,468),(48,601),(49,596),(49,626),(50,597),(50,627),(51,459),(51,469),(52,460),(52,470),(53,225),(53,612),(54,226),(54,613),(55,111),(55,481),(55,622),(56,112),(56,482),(56,623),(57,115),(57,475),(57,658),(58,116),(58,476),(58,659),(59,107),(59,479),(59,610),(60,108),(60,480),(60,611),(61,109),(61,229),(61,630),(62,110),(62,230),(62,631),(63,83),(63,485),(63,614),(64,84),(64,486),(64,615),(65,81),(65,489),(65,650),(66,82),(66,490),(66,651),(67,113),(67,598),(67,656),(68,114),(68,599),(68,657),(69,489),(69,647),(70,490),(70,646),(71,457),(71,648),(72,458),(72,649),(73,85),(73,483),(73,644),(74,86),(74,484),(74,645),(75,79),(75,461),(75,602),(76,80),(76,462),(76,603),(77,265),(77,546),(78,266),(78,547),(79,423),(79,567),(80,424),(80,568),(81,521),(81,604),(82,522),(82,605),(83,277),(83,519),(84,278),(84,520),(85,523),(85,544),(86,524),(86,545),(87,9),(87,366),(87,525),(88,10),(88,365),(88,525),(89,437),(89,439),(89,554),(90,438),(90,440),(90,555),(91,363),(91,550),(91,553),(92,364),(92,551),(92,552),(93,483),(93,548),(93,556),(94,484),(94,549),(94,556),(95,357),(95,361),(95,455),(96,358),(96,362),(96,456),(97,195),(97,433),(97,435),(98,196),(98,434),(98,436),(99,189),(99,359),(99,569),(100,190),(100,360),(100,570),(101,223),(101,451),(101,453),(102,224),(102,452),(102,454),(103,283),(103,301),(103,592),(104,284),(104,302),(104,593),(105,91),(105,523),(105,634),(105,646),(106,92),(106,524),(106,635),(106,647),(107,269),(107,271),(107,275),(108,270),(108,272),(108,276),(109,273),(109,391),(109,395),(110,274),(110,392),(110,396),(111,132),(111,267),(111,528),(112,133),(112,268),(112,529),(113,301),(113,303),(113,636),(114,302),(114,304),(114,637),(115,393),(115,445),(115,561),(116,394),(116,446),(116,562),(117,249),(117,251),(117,499),(118,250),(118,252),(118,500),(119,299),(119,502),(119,536),(120,300),(120,501),(120,537),(121,171),(121,373),(121,503),(122,172),(122,374),(122,504),(123,89),(123,505),(123,563),(123,565),(124,90),(124,506),(124,564),(124,566),(125,859),(125,860),(126,857),(126,858),(127,979),(127,980),(128,861),(128,977),(129,862),(129,978),(130,843),(130,851),(131,844),(131,852),(132,679),(132,691),(133,680),(133,692),(134,997),(135,998),(136,891),(136,937),(137,892),(137,938),(138,893),(138,945),(139,894),(139,946),(140,697),(140,929),(141,698),(141,930),(142,919),(142,920),(143,677),(143,951),(144,678),(144,952),(145,677),(145,931),(146,678),(146,932),(147,699),(148,700),(149,689),(149,971),(150,690),(150,972),(151,945),(151,975),(152,946),(152,976),(153,709),(153,765),(154,710),(154,766),(155,761),(155,881),(156,762),(156,882),(157,775),(157,961),(158,776),(158,962),(159,771),(159,963),(160,772),(160,964),(161,769),(161,883),(162,770),(162,884),(163,767),(164,768),(165,763),(165,983),(166,764),(166,984),(167,775),(167,901),(168,776),(168,902),(169,759),(169,877),(170,760),(170,878),(171,685),(171,813),(172,686),(172,814),(173,774),(173,959),(174,773),(174,960),(175,773),(175,879),(176,774),(176,880),(177,755),(178,756),(179,707),(179,815),(180,708),(180,816),(181,683),(181,757),(182,684),(182,758),(183,19),(183,777),(184,20),(184,778),(185,819),(185,885),(186,820),(186,886),(187,817),(187,887),(188,818),(188,888),(189,689),(189,787),(190,690),(190,788),(191,759),(191,760),(192,771),(192,772),(193,745),(193,769),(194,746),(194,770),(195,723),(195,799),(196,724),(196,800),(197,671),(198,672),(199,867),(200,868),(201,869),(202,870),(203,865),(203,979),(204,866),(204,980),(205,999),(206,1000),(207,833),(208,834),(209,928),(210,927),(211,741),(212,742),(213,753),(213,871),(214,754),(214,872),(215,729),(215,863),(216,730),(216,864),(217,777),(218,778),(219,765),(219,791),(220,766),(220,792),(221,749),(222,750),(223,49),(223,695),(223,697),(224,50),(224,696),(224,698),(225,7),(225,915),(226,8),(226,916),(227,5),(227,807),(228,6),(228,808),(229,43),(229,809),(230,44),(230,810),(231,35),(231,747),(232,36),(232,748),(233,296),(233,693),(233,968),(234,295),(234,694),(234,967),(235,293),(235,967),(236,294),(236,968),(237,349),(237,992),(238,350),(238,991),(239,195),(239,897),(240,196),(240,898),(241,219),(241,981),(242,220),(242,982),(243,211),(243,959),(244,212),(244,960),(245,191),(245,889),(246,191),(246,890),(247,388),(248,387),(249,540),(249,969),(250,541),(250,970),(251,542),(251,969),(252,543),(252,970),(253,407),(253,973),(254,408),(254,974),(255,193),(255,895),(255,977),(256,194),(256,896),(256,978),(257,213),(257,989),(258,214),(258,990),(259,443),(260,444),(261,397),(261,917),(262,398),(262,918),(263,126),(263,899),(264,126),(264,900),(265,457),(265,687),(266,458),(266,688),(267,321),(267,679),(268,322),(268,680),(269,287),(269,705),(270,288),(270,706),(271,371),(271,693),(272,372),(272,694),(273,401),(273,913),(274,402),(274,914),(275,485),(275,693),(275,705),(276,486),(276,694),(276,706),(277,307),(277,993),(278,308),(278,994),(279,435),(279,997),(280,436),(280,998),(281,455),(281,937),(281,955),(282,456),(282,938),(282,956),(283,449),(283,933),(284,450),(284,934),(285,327),(285,941),(286,328),(286,942),(287,359),(287,925),(288,360),(288,926),(289,245),(290,246),(291,600),(292,601),(293,145),(293,673),(293,935),(294,146),(294,674),(294,936),(295,143),(295,935),(295,943),(296,144),(296,936),(296,944),(297,132),(297,931),(297,951),(298,133),(298,932),(298,952),(299,492),(299,965),(300,491),(300,966),(301,515),(301,933),(302,516),(302,934),(303,517),(303,933),(304,518),(304,934),(305,511),(305,925),(306,512),(306,926),(307,315),(308,316),(309,189),(309,703),(310,190),(310,704),(311,404),(311,971),(312,403),(312,972),(313,136),(313,707),(313,915),(314,137),(314,708),(314,916),(315,461),(316,462),(317,241),(317,921),(318,242),(318,922),(319,147),(319,949),(320,148),(320,950),(321,602),(321,923),(322,603),(322,924),(323,235),(323,953),(324,236),(324,954),(325,415),(325,703),(326,416),(326,704),(327,163),(327,961),(328,164),(328,962),(329,153),(329,995),(330,154),(330,996),(331,187),(331,671),(331,691),(332,188),(332,672),(332,692),(333,181),(333,711),(333,913),(334,182),(334,712),(334,914),(335,169),(336,170),(337,177),(337,927),(338,178),(338,928),(339,185),(339,855),(339,947),(340,186),(340,856),(340,948),(341,161),(341,837),(342,162),(342,838),(343,155),(343,923),(344,156),(344,924),(345,173),(345,669),(346,174),(346,670),(347,179),(347,695),(347,929),(348,180),(348,696),(348,930),(349,176),(349,668),(350,175),(350,667),(351,153),(351,903),(351,985),(352,154),(352,904),(352,986),(353,155),(353,847),(353,975),(354,156),(354,848),(354,976),(355,167),(355,668),(356,168),(356,667),(357,608),(357,673),(358,609),(358,674),(359,399),(359,689),(360,400),(360,690),(361,297),(361,673),(361,943),(362,298),(362,674),(362,944),(363,299),(363,665),(363,953),(364,300),(364,666),(364,954),(365,3),(365,598),(366,4),(366,599),(367,15),(367,283),(368,16),(368,284),(369,429),(369,675),(369,797),(370,430),(370,676),(370,798),(371,149),(371,735),(372,150),(372,736),(373,411),(373,813),(374,412),(374,814),(375,357),(375,727),(375,955),(376,358),(376,728),(376,956),(377,385),(377,781),(378,386),(378,782),(379,477),(379,779),(380,478),(380,780),(381,447),(381,797),(382,448),(382,798),(383,128),(383,737),(383,849),(384,129),(384,738),(384,850),(385,130),(385,745),(385,841),(386,131),(386,746),(386,842),(387,199),(387,755),(388,200),(388,756),(389,229),(389,815),(390,230),(390,816),(391,261),(391,795),(392,262),(392,796),(393,377),(393,829),(394,378),(394,830),(395,419),(395,795),(395,913),(396,420),(396,796),(396,914),(397,459),(397,729),(397,947),(398,460),(398,730),(398,948),(399,369),(399,801),(400,370),(400,802),(401,215),(401,751),(402,216),(402,752),(403,201),(403,743),(404,202),(404,744),(405,409),(405,731),(406,410),(406,732),(407,138),(407,685),(407,743),(408,139),(408,686),(408,744),(409,393),(409,817),(409,985),(410,394),(410,818),(410,986),(411,441),(411,785),(412,442),(412,786),(413,383),(413,785),(414,384),(414,786),(415,125),(415,758),(415,845),(416,125),(416,757),(416,846),(417,251),(417,739),(417,921),(418,252),(418,740),(418,922),(419,171),(419,683),(419,827),(420,172),(420,684),(420,828),(421,185),(421,805),(422,186),(422,806),(423,163),(423,825),(424,164),(424,826),(425,169),(425,719),(426,170),(426,720),(427,187),(427,721),(427,919),(428,188),(428,722),(428,920),(429,157),(429,783),(429,941),(430,158),(430,784),(430,942),(431,165),(431,803),(432,166),(432,804),(433,245),(433,723),(434,246),(434,724),(435,425),(435,799),(436,426),(436,800),(437,417),(437,701),(437,823),(438,418),(438,702),(438,824),(439,405),(439,823),(440,406),(440,824),(441,255),(441,737),(441,761),(442,256),(442,738),(442,762),(443,130),(443,741),(443,767),(444,131),(444,742),(444,768),(445,175),(445,717),(445,829),(446,176),(446,718),(446,830),(447,167),(447,715),(447,783),(448,168),(448,716),(448,784),(449,47),(449,291),(450,48),(450,292),(451,41),(451,589),(451,697),(452,42),(452,590),(452,698),(453,61),(453,389),(453,695),(454,62),(454,390),(454,696),(455,29),(455,495),(455,943),(456,30),(456,496),(456,944),(457,579),(458,580),(459,207),(459,675),(460,208),(460,676),(461,423),(461,709),(462,424),(462,710),(463,309),(463,939),(464,310),(464,940),(465,247),(466,248),(467,563),(467,699),(468,564),(468,700),(469,285),(469,675),(470,286),(470,676),(471,239),(471,789),(472,240),(472,790),(473,238),(473,733),(474,237),(474,734),(475,445),(475,831),(476,446),(476,832),(477,177),(477,789),(478,178),(478,790),(479,63),(479,275),(479,949),(480,64),(480,276),(480,950),(481,57),(481,509),(482,58),(482,510),(483,33),(483,507),(483,681),(484,34),(484,508),(484,682),(485,27),(485,573),(485,725),(486,28),(486,574),(486,726),(487,31),(487,379),(487,807),(488,32),(488,380),(488,808),(489,18),(489,639),(490,17),(490,638),(491,149),(491,311),(492,150),(492,312),(493,321),(493,411),(494,322),(494,412),(495,407),(495,616),(495,713),(496,408),(496,617),(496,714),(497,355),(497,447),(497,992),(498,356),(498,448),(498,991),(499,349),(499,355),(500,350),(500,356),(501,309),(501,325),(502,310),(502,326),(503,151),(503,353),(503,685),(504,152),(504,354),(504,686),(505,554),(505,585),(505,963),(506,555),(506,586),(506,964),(507,532),(507,655),(508,532),(508,654),(509,413),(509,658),(510,414),(510,659),(511,307),(511,526),(512,308),(512,527),(513,405),(513,528),(513,999),(514,406),(514,529),(514,1000),(515,319),(515,610),(516,320),(516,611),(517,225),(517,313),(518,226),(518,314),(519,317),(519,417),(519,993),(520,318),(520,418),(520,994),(521,147),(521,467),(522,148),(522,468),(523,323),(523,363),(523,957),(524,324),(524,364),(524,958),(525,367),(525,368),(526,315),(526,469),(527,316),(527,470),(528,351),(528,409),(528,691),(529,352),(529,410),(529,692),(530,325),(530,533),(530,939),(531,326),(531,533),(531,940),(532,530),(532,531),(533,415),(533,416),(533,711),(533,712),(534,181),(534,419),(534,983),(535,182),(535,420),(535,984),(536,165),(536,534),(536,965),(537,166),(537,535),(537,966),(538,159),(538,192),(538,688),(539,160),(539,192),(539,687),(540,157),(540,327),(541,158),(541,328),(542,173),(542,243),(543,174),(543,244),(544,179),(544,389),(544,957),(545,180),(545,390),(545,958),(546,159),(546,505),(546,687),(547,160),(547,506),(547,688),(548,140),(548,451),(548,681),(549,141),(549,452),(549,682),(550,136),(550,281),(550,665),(551,137),(551,282),(551,666),(552,233),(552,271),(552,954),(553,234),(553,272),(553,953),(554,142),(554,427),(554,701),(555,142),(555,428),(555,702),(556,507),(556,508),(557,205),(557,513),(558,206),(558,514),(559,385),(559,443),(559,821),(560,386),(560,444),(560,822),(561,128),(561,255),(561,717),(562,129),(562,256),(562,718),(563,437),(563,519),(563,793),(563,963),(564,438),(564,520),(564,794),(564,964),(565,439),(565,513),(565,793),(566,440),(566,514),(566,794),(567,161),(567,193),(567,825),(568,162),(568,194),(568,826),(569,339),(569,397),(569,787),(570,340),(570,398),(570,788),(571,343),(571,353),(572,344),(572,354),(573,583),(573,652),(574,584),(574,653),(575,339),(575,421),(575,917),(576,340),(576,422),(576,918),(577,289),(577,433),(578,290),(578,434),(579,197),(579,331),(580,198),(580,332),(581,369),(581,632),(582,370),(582,633),(583,381),(583,497),(584,382),(584,498),(585,331),(585,427),(585,987),(586,332),(586,428),(586,988),(587,134),(587,279),(588,135),(588,280),(589,606),(589,640),(589,811),(590,607),(590,641),(590,812),(591,263),(591,264),(592,59),(592,515),(592,650),(593,60),(593,516),(593,651),(594,53),(594,517),(594,634),(595,54),(595,518),(595,635),(596,287),(596,305),(597,288),(597,306),(598,303),(598,594),(599,304),(599,595),(600,557),(600,565),(600,699),(601,558),(601,566),(601,700),(602,341),(602,567),(602,709),(603,342),(603,568),(603,710),(604,266),(604,538),(605,265),(605,539),(606,273),(606,333),(606,939),(607,274),(607,334),(607,940),(608,503),(608,571),(609,504),(609,572),(610,269),(610,596),(610,949),(611,270),(611,597),(611,950),(612,95),(612,281),(612,375),(612,915),(613,96),(613,282),(613,376),(613,916),(614,277),(614,511),(614,725),(615,278),(615,512),(615,726),(616,138),(616,151),(616,733),(617,139),(617,152),(617,734),(618,209),(618,338),(619,210),(619,337),(620,249),(620,632),(621,250),(621,633),(622,267),(622,493),(623,268),(623,494),(624,373),(624,493),(625,374),(625,494),(626,183),(626,217),(627,184),(627,218),(628,127),(628,203),(628,747),(629,127),(629,204),(629,748),(630,183),(630,391),(630,809),(631,184),(631,392),(631,810),(632,285),(632,429),(632,540),(633,286),(633,430),(633,541),(634,313),(634,550),(634,612),(634,957),(635,314),(635,551),(635,613),(635,958),(636,140),(636,223),(636,347),(637,141),(637,224),(637,348),(638,234),(638,235),(638,662),(639,233),(639,236),(639,663),(640,333),(640,395),(640,534),(640,803),(641,334),(641,396),(641,535),(641,804),(642,261),(642,569),(642,575),(643,262),(643,570),(643,576),(644,347),(644,453),(644,544),(644,681),(645,348),(645,454),(645,545),(645,682),(646,323),(646,553),(646,638),(647,324),(647,552),(647,639),(648,143),(648,145),(648,297),(649,144),(649,146),(649,298),(650,319),(650,479),(650,521),(651,320),(651,480),(651,522),(652,237),(652,497),(652,499),(653,238),(653,498),(653,500),(654,463),(654,501),(654,530),(655,464),(655,502),(655,531),(656,101),(656,548),(656,636),(656,644),(657,102),(657,549),(657,637),(657,645),(658,383),(658,441),(658,561),(658,831),(659,384),(659,442),(659,562),(659,832),(660,431),(660,536),(660,640),(661,432),(661,537),(661,641),(662,293),(662,295),(662,361),(662,648),(663,294),(663,296),(663,362),(663,649),(664,538),(664,539),(664,546),(664,547),(665,891),(665,955),(665,965),(666,892),(666,956),(666,966),(667,213),(667,879),(667,902),(668,214),(668,880),(668,901),(669,591),(669,959),(670,591),(670,960),(671,219),(671,887),(671,903),(672,220),(672,888),(672,904),(673,571),(673,931),(674,572),(674,932),(675,833),(675,941),(676,834),(676,942),(677,201),(677,873),(678,202),(678,874),(679,923),(680,924),(681,589),(681,660),(681,929),(682,590),(682,661),(682,930),(683,231),(683,911),(684,232),(684,912),(685,847),(685,945),(686,848),(686,946),(687,579),(687,585),(687,771),(688,580),(688,586),(688,772),(689,801),(690,802),(691,817),(691,903),(692,818),(692,904),(693,573),(693,735),(694,574),(694,736),(695,626),(695,630),(695,815),(696,627),(696,631),(696,816),(697,13),(697,811),(698,14),(698,812),(699,205),(699,793),(700,206),(700,794),(701,721),(701,920),(701,921),(702,722),(702,919),(702,922),(703,215),(703,787),(703,845),(704,216),(704,788),(704,846),(705,725),(705,925),(706,726),(706,926),(707,727),(707,891),(708,728),(708,892),(709,825),(709,837),(710,826),(710,838),(711,751),(711,757),(711,845),(712,752),(712,758),(712,846),(713,733),(713,743),(713,873),(714,734),(714,744),(714,874),(715,901),(715,990),(716,902),(716,989),(717,861),(717,879),(717,895),(718,862),(718,880),(718,896),(719,877),(720,878),(721,887),(721,981),(721,1015),(722,888),(722,982),(722,1015),(723,889),(724,890),(725,581),(725,620),(726,582),(726,621),(727,622),(727,1006),(728,623),(728,1007),(729,207),(729,1022),(730,208),(730,1023),(731,985),(731,995),(732,986),(732,996),(733,893),(733,975),(733,991),(734,894),(734,976),(734,992),(735,583),(735,971),(736,584),(736,972),(737,587),(737,977),(737,1013),(738,588),(738,978),(738,1014),(739,969),(739,995),(740,970),(740,996),(741,851),(741,905),(742,852),(742,906),(743,847),(743,869),(743,893),(744,848),(744,870),(744,894),(745,843),(745,1016),(746,844),(746,1017),(747,618),(747,865),(747,980),(748,619),(748,866),(748,979),(749,853),(750,854),(751,628),(751,863),(751,911),(752,629),(752,864),(752,912),(753,200),(753,1020),(754,199),(754,1021),(755,867),(756,868),(757,859),(757,911),(758,860),(758,912),(759,1012),(760,1012),(761,895),(761,1013),(762,896),(762,1014),(763,973),(764,974),(765,837),(766,838),(767,843),(767,905),(768,844),(768,906),(769,221),(769,1016),(770,222),(770,1017),(771,197),(771,987),(772,198),(772,988),(773,839),(774,840),(775,835),(776,836),(777,2),(778,1),(779,577),(780,578),(781,839),(781,841),(782,840),(782,842),(783,775),(783,875),(784,776),(784,876),(785,737),(786,738),(787,729),(787,855),(788,730),(788,856),(789,755),(789,897),(790,756),(790,898),(791,211),(791,821),(792,212),(792,822),(793,823),(793,993),(793,999),(794,824),(794,994),(794,1000),(795,827),(795,917),(796,828),(796,918),(797,783),(797,833),(798,784),(798,834),(799,719),(800,720),(801,797),(802,798),(803,575),(803,795),(803,983),(804,576),(804,796),(804,984),(805,227),(805,819),(806,228),(806,820),(807,11),(807,779),(808,12),(808,780),(809,624),(809,777),(810,625),(810,778),(811,642),(811,803),(812,643),(812,804),(813,785),(814,786),(815,217),(815,809),(816,218),(816,810),(817,829),(817,1008),(818,830),(818,1009),(819,807),(819,1010),(820,808),(820,1011),(821,741),(821,841),(822,742),(822,842),(823,731),(823,739),(824,732),(824,740),(825,745),(825,767),(825,883),(826,746),(826,768),(826,884),(827,805),(827,813),(828,806),(828,814),(829,773),(829,781),(830,774),(830,782),(831,717),(831,761),(831,849),(832,718),(832,762),(832,850),(833,875),(834,876),(835,897),(836,898),(837,883),(838,884),(839,899),(840,900),(841,851),(841,899),(841,1016),(842,852),(842,900),(842,1017),(843,799),(843,1004),(844,800),(844,1005),(845,855),(845,859),(845,863),(846,856),(846,860),(846,864),(847,881),(847,1018),(848,882),(848,1019),(849,861),(849,1013),(850,862),(850,1014),(851,857),(851,1004),(852,858),(852,1005),(853,877),(854,878),(855,885),(855,1022),(856,886),(856,1023),(857,853),(858,854),(859,885),(859,909),(860,886),(860,910),(861,907),(861,1001),(862,908),(862,1002),(863,203),(863,909),(863,1022),(864,204),(864,910),(864,1023),(865,209),(865,1003),(866,210),(866,1003),(867,889),(868,890),(869,849),(869,881),(870,850),(870,882),(871,221),(871,1020),(872,222),(872,1021),(873,831),(873,869),(874,832),(874,870),(875,789),(875,835),(876,790),(876,836),(877,1012),(878,1012),(879,871),(879,907),(880,872),(880,908),(881,1013),(882,1014),(883,905),(883,1016),(884,906),(884,1017),(885,1010),(886,1011),(887,791),(887,1008),(888,792),(888,1009),(889,760),(890,759),(891,763),(891,1006),(892,764),(892,1007),(893,716),(893,1018),(894,715),(894,1019),(895,769),(895,871),(895,1001),(896,770),(896,872),(896,1002),(897,723),(897,867),(898,724),(898,868),(899,749),(899,857),(900,750),(900,858),(901,754),(901,908),(902,753),(902,907),(903,765),(903,1008),(904,766),(904,1009),(905,1004),(906,1005),(907,1020),(908,1021),(909,865),(909,1010),(910,866),(910,1011),(911,747),(911,909),(912,748),(912,910),(913,39),(913,683),(913,751),(914,40),(914,684),(914,752),(915,55),(915,727),(915,937),(916,56),(916,728),(916,938),(917,37),(917,805),(917,947),(918,38),(918,806),(918,948),(919,346),(919,1015),(920,345),(920,1015),(921,345),(921,542),(921,981),(922,346),(922,543),(922,982),(923,341),(924,342),(925,399),(925,581),(926,400),(926,582),(927,289),(928,290),(929,431),(929,811),(930,432),(930,812),(931,343),(931,679),(932,344),(932,680),(933,291),(934,292),(935,403),(935,677),(935,713),(936,404),(936,678),(936,714),(937,481),(937,1006),(938,482),(938,1007),(939,401),(939,703),(939,711),(940,402),(940,704),(940,712),(941,471),(941,875),(941,961),(942,472),(942,876),(942,962),(943,473),(943,713),(943,951),(944,474),(944,714),(944,952),(945,465),(945,1018),(946,466),(946,1019),(947,487),(947,819),(947,1022),(948,488),(948,820),(948,1023),(949,305),(949,614),(949,705),(950,306),(950,615),(950,706),(951,475),(951,873),(952,476),(952,874),(953,372),(953,492),(953,967),(954,371),(954,491),(954,968),(955,253),(955,495),(955,1006),(956,254),(956,496),(956,1007),(957,375),(957,665),(957,707),(958,376),(958,666),(958,708),(959,264),(959,840),(960,263),(960,839),(961,239),(961,835),(962,240),(962,836),(963,317),(963,701),(963,987),(964,318),(964,702),(964,988),(965,253),(965,763),(966,254),(966,764),(967,312),(967,736),(967,935),(968,311),(968,735),(968,936),(969,259),(970,260),(971,381),(971,801),(972,382),(972,802),(973,413),(974,414),(975,257),(975,1018),(976,258),(976,1019),(977,279),(977,1001),(978,280),(978,1002),(979,337),(979,1003),(980,338),(980,1003),(981,243),(981,669),(981,791),(982,244),(982,670),(982,792),(983,421),(983,827),(984,422),(984,828),(985,377),(985,559),(985,1008),(986,378),(986,560),(986,1009),(987,241),(987,671),(987,721),(988,242),(988,672),(988,722),(989,388),(989,753),(990,387),(990,754),(991,257),(991,667),(991,716),(992,258),(992,668),(992,715),(993,329),(993,739),(994,330),(994,740),(995,259),(995,559),(996,260),(996,560),(997,335),(997,425),(998,336),(998,426),(999,329),(999,351),(999,731),(1000,330),(1000,352),(1000,732),(1001,997),(1001,1020),(1002,998),(1002,1021),(1003,927),(1003,928),(1004,719),(1004,853),(1005,720),(1005,854),(1006,509),(1006,973),(1007,510),(1007,974),(1008,781),(1008,821),(1009,782),(1009,822),(1010,779),(1011,780),(1013,134),(1013,1001),(1014,135),(1014,1002),(1015,669),(1015,670),(1016,749),(1016,1004),(1017,750),(1017,1005),(1018,247),(1018,989),(1019,248),(1019,990),(1020,335),(1021,336),(1022,379),(1022,1010),(1023,380),(1023,1011)],1024)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,5],[6]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,14),(0,15),(1,26),(2,9),(2,25),(3,13),(3,24),(4,16),(5,11),(5,12),(6,69),(7,64),(8,49),(9,6),(9,52),(10,20),(10,59),(11,19),(11,65),(12,17),(12,65),(13,18),(13,22),(13,71),(14,2),(14,29),(15,3),(15,29),(16,39),(16,55),(17,56),(17,68),(18,57),(18,66),(19,58),(19,67),(20,51),(20,53),(21,40),(21,41),(22,57),(22,72),(23,28),(23,54),(23,70),(24,58),(24,71),(25,52),(25,56),(26,27),(26,69),(26,72),(27,45),(27,60),(28,34),(28,48),(28,50),(29,1),(30,76),(31,75),(32,77),(33,74),(33,80),(34,73),(34,78),(35,73),(35,77),(36,82),(37,79),(38,80),(39,74),(40,7),(40,76),(41,8),(41,76),(42,55),(42,79),(43,59),(44,39),(45,53),(45,83),(46,33),(46,81),(47,32),(47,83),(48,42),(48,78),(49,44),(50,46),(50,73),(51,44),(52,10),(52,43),(53,62),(54,34),(54,75),(55,36),(55,74),(56,43),(57,63),(58,61),(59,49),(59,51),(60,35),(60,50),(60,83),(61,31),(61,70),(62,33),(62,38),(63,32),(63,35),(64,37),(64,42),(65,21),(65,67),(65,68),(66,31),(66,54),(67,30),(67,40),(68,30),(68,41),(69,45),(69,47),(70,48),(70,64),(70,75),(71,23),(71,61),(71,66),(72,47),(72,60),(72,63),(73,81),(74,82),(75,37),(75,78),(76,4),(77,38),(77,81),(78,79),(79,36),(80,82),(81,80),(83,46),(83,62),(83,77)],84)
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,4,5],[4,4,5],[5,6],[6]]
=> ([(0,10),(0,11),(1,13),(1,14),(2,21),(3,20),(4,14),(4,20),(5,17),(6,16),(7,18),(8,12),(9,1),(9,22),(10,5),(10,15),(11,8),(11,15),(12,3),(12,4),(13,21),(14,19),(15,9),(15,17),(17,22),(18,16),(19,18),(20,7),(20,19),(21,6),(22,2),(22,13)],23)
=> ? = 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,4),(0,14),(0,15),(1,29),(2,6),(2,27),(3,13),(3,28),(4,10),(4,11),(5,102),(6,5),(6,87),(7,31),(7,99),(8,25),(8,98),(9,26),(9,72),(10,23),(10,109),(11,24),(11,33),(11,109),(12,22),(12,108),(13,17),(13,18),(13,107),(14,2),(14,38),(15,3),(15,38),(16,84),(16,85),(17,90),(17,111),(18,90),(18,101),(19,82),(19,83),(20,81),(20,100),(21,34),(21,89),(21,104),(22,86),(22,106),(23,91),(23,110),(24,80),(24,105),(25,78),(25,79),(26,52),(26,88),(27,87),(27,103),(28,91),(28,107),(29,30),(29,102),(29,111),(30,63),(30,96),(31,44),(31,71),(31,76),(32,37),(32,51),(32,77),(33,80),(33,94),(33,103),(34,62),(34,74),(34,75),(35,133),(36,9),(37,8),(37,127),(38,1),(39,118),(40,117),(40,122),(41,119),(42,119),(42,126),(43,116),(43,127),(44,112),(44,120),(45,112),(45,113),(46,114),(46,116),(47,121),(48,122),(49,125),(50,113),(51,20),(51,114),(51,127),(52,117),(53,72),(54,88),(54,121),(55,45),(55,132),(56,48),(57,84),(57,124),(58,76),(58,134),(59,66),(60,56),(61,54),(62,55),(62,126),(63,86),(63,129),(64,53),(64,134),(65,47),(66,70),(67,40),(68,40),(68,123),(69,41),(69,129),(70,39),(70,128),(71,54),(71,120),(72,52),(73,44),(73,118),(74,58),(74,115),(75,82),(75,115),(75,126),(76,68),(76,112),(77,16),(77,57),(77,114),(78,65),(79,61),(80,59),(80,130),(81,36),(82,60),(82,131),(83,53),(83,131),(84,78),(84,128),(85,73),(85,128),(86,92),(87,12),(87,95),(88,49),(88,117),(89,19),(89,75),(89,133),(90,97),(91,93),(92,45),(92,50),(93,35),(93,104),(94,46),(94,77),(94,130),(95,66),(95,108),(96,42),(96,62),(96,129),(97,41),(97,42),(98,36),(98,79),(99,61),(99,71),(100,58),(100,64),(101,35),(101,89),(102,63),(102,69),(103,59),(103,95),(104,74),(104,100),(104,133),(105,37),(105,43),(105,130),(106,39),(106,73),(107,21),(107,93),(107,101),(108,70),(108,85),(108,106),(109,32),(109,94),(109,105),(109,110),(110,43),(110,46),(110,51),(111,69),(111,96),(111,97),(112,123),(113,48),(113,123),(114,7),(114,124),(115,131),(115,134),(116,124),(117,125),(118,47),(118,120),(119,50),(119,132),(120,121),(121,49),(122,125),(123,122),(124,99),(126,60),(126,132),(127,81),(127,98),(128,65),(128,118),(129,55),(129,92),(129,119),(130,57),(130,116),(131,67),(132,56),(132,113),(133,64),(133,83),(133,115),(134,67),(134,68)],135)
=> ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,3,4,5],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> [[1,1,1,1,1,1],[2,3,4,5,6],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,25),(0,26),(0,87),(0,88),(1,76),(2,75),(3,105),(3,594),(4,106),(4,595),(5,587),(6,588),(7,557),(8,558),(9,23),(9,103),(9,367),(10,24),(10,104),(10,368),(11,97),(11,577),(12,98),(12,578),(13,99),(13,642),(14,100),(14,643),(15,45),(15,449),(16,46),(16,450),(17,71),(17,662),(18,72),(18,663),(19,51),(19,526),(20,52),(20,527),(21,73),(21,93),(21,656),(22,74),(22,94),(22,657),(23,65),(23,69),(23,592),(24,66),(24,70),(24,593),(25,21),(25,67),(25,365),(26,22),(26,68),(26,366),(27,117),(27,620),(27,652),(28,118),(28,621),(28,653),(29,473),(29,616),(30,474),(30,617),(31,471),(31,477),(32,472),(32,478),(33,119),(33,655),(33,660),(34,120),(34,654),(34,661),(35,465),(35,618),(36,466),(36,619),(37,227),(37,487),(38,228),(38,488),(39,231),(39,628),(40,232),(40,629),(41,463),(41,606),(42,464),(42,607),(43,121),(43,608),(43,624),(44,122),(44,609),(44,625),(45,78),(45,604),(45,664),(46,77),(46,605),(46,664),(47,123),(47,467),(47,600),(48,124),(48,468),(48,601),(49,596),(49,626),(50,597),(50,627),(51,459),(51,469),(52,460),(52,470),(53,225),(53,612),(54,226),(54,613),(55,111),(55,481),(55,622),(56,112),(56,482),(56,623),(57,115),(57,475),(57,658),(58,116),(58,476),(58,659),(59,107),(59,479),(59,610),(60,108),(60,480),(60,611),(61,109),(61,229),(61,630),(62,110),(62,230),(62,631),(63,83),(63,485),(63,614),(64,84),(64,486),(64,615),(65,81),(65,489),(65,650),(66,82),(66,490),(66,651),(67,113),(67,598),(67,656),(68,114),(68,599),(68,657),(69,489),(69,647),(70,490),(70,646),(71,457),(71,648),(72,458),(72,649),(73,85),(73,483),(73,644),(74,86),(74,484),(74,645),(75,79),(75,461),(75,602),(76,80),(76,462),(76,603),(77,265),(77,546),(78,266),(78,547),(79,423),(79,567),(80,424),(80,568),(81,521),(81,604),(82,522),(82,605),(83,277),(83,519),(84,278),(84,520),(85,523),(85,544),(86,524),(86,545),(87,9),(87,366),(87,525),(88,10),(88,365),(88,525),(89,437),(89,439),(89,554),(90,438),(90,440),(90,555),(91,363),(91,550),(91,553),(92,364),(92,551),(92,552),(93,483),(93,548),(93,556),(94,484),(94,549),(94,556),(95,357),(95,361),(95,455),(96,358),(96,362),(96,456),(97,195),(97,433),(97,435),(98,196),(98,434),(98,436),(99,189),(99,359),(99,569),(100,190),(100,360),(100,570),(101,223),(101,451),(101,453),(102,224),(102,452),(102,454),(103,283),(103,301),(103,592),(104,284),(104,302),(104,593),(105,91),(105,523),(105,634),(105,646),(106,92),(106,524),(106,635),(106,647),(107,269),(107,271),(107,275),(108,270),(108,272),(108,276),(109,273),(109,391),(109,395),(110,274),(110,392),(110,396),(111,132),(111,267),(111,528),(112,133),(112,268),(112,529),(113,301),(113,303),(113,636),(114,302),(114,304),(114,637),(115,393),(115,445),(115,561),(116,394),(116,446),(116,562),(117,249),(117,251),(117,499),(118,250),(118,252),(118,500),(119,299),(119,502),(119,536),(120,300),(120,501),(120,537),(121,171),(121,373),(121,503),(122,172),(122,374),(122,504),(123,89),(123,505),(123,563),(123,565),(124,90),(124,506),(124,564),(124,566),(125,859),(125,860),(126,857),(126,858),(127,979),(127,980),(128,861),(128,977),(129,862),(129,978),(130,843),(130,851),(131,844),(131,852),(132,679),(132,691),(133,680),(133,692),(134,997),(135,998),(136,891),(136,937),(137,892),(137,938),(138,893),(138,945),(139,894),(139,946),(140,697),(140,929),(141,698),(141,930),(142,919),(142,920),(143,677),(143,951),(144,678),(144,952),(145,677),(145,931),(146,678),(146,932),(147,699),(148,700),(149,689),(149,971),(150,690),(150,972),(151,945),(151,975),(152,946),(152,976),(153,709),(153,765),(154,710),(154,766),(155,761),(155,881),(156,762),(156,882),(157,775),(157,961),(158,776),(158,962),(159,771),(159,963),(160,772),(160,964),(161,769),(161,883),(162,770),(162,884),(163,767),(164,768),(165,763),(165,983),(166,764),(166,984),(167,775),(167,901),(168,776),(168,902),(169,759),(169,877),(170,760),(170,878),(171,685),(171,813),(172,686),(172,814),(173,774),(173,959),(174,773),(174,960),(175,773),(175,879),(176,774),(176,880),(177,755),(178,756),(179,707),(179,815),(180,708),(180,816),(181,683),(181,757),(182,684),(182,758),(183,19),(183,777),(184,20),(184,778),(185,819),(185,885),(186,820),(186,886),(187,817),(187,887),(188,818),(188,888),(189,689),(189,787),(190,690),(190,788),(191,759),(191,760),(192,771),(192,772),(193,745),(193,769),(194,746),(194,770),(195,723),(195,799),(196,724),(196,800),(197,671),(198,672),(199,867),(200,868),(201,869),(202,870),(203,865),(203,979),(204,866),(204,980),(205,999),(206,1000),(207,833),(208,834),(209,928),(210,927),(211,741),(212,742),(213,753),(213,871),(214,754),(214,872),(215,729),(215,863),(216,730),(216,864),(217,777),(218,778),(219,765),(219,791),(220,766),(220,792),(221,749),(222,750),(223,49),(223,695),(223,697),(224,50),(224,696),(224,698),(225,7),(225,915),(226,8),(226,916),(227,5),(227,807),(228,6),(228,808),(229,43),(229,809),(230,44),(230,810),(231,35),(231,747),(232,36),(232,748),(233,296),(233,693),(233,968),(234,295),(234,694),(234,967),(235,293),(235,967),(236,294),(236,968),(237,349),(237,992),(238,350),(238,991),(239,195),(239,897),(240,196),(240,898),(241,219),(241,981),(242,220),(242,982),(243,211),(243,959),(244,212),(244,960),(245,191),(245,889),(246,191),(246,890),(247,388),(248,387),(249,540),(249,969),(250,541),(250,970),(251,542),(251,969),(252,543),(252,970),(253,407),(253,973),(254,408),(254,974),(255,193),(255,895),(255,977),(256,194),(256,896),(256,978),(257,213),(257,989),(258,214),(258,990),(259,443),(260,444),(261,397),(261,917),(262,398),(262,918),(263,126),(263,899),(264,126),(264,900),(265,457),(265,687),(266,458),(266,688),(267,321),(267,679),(268,322),(268,680),(269,287),(269,705),(270,288),(270,706),(271,371),(271,693),(272,372),(272,694),(273,401),(273,913),(274,402),(274,914),(275,485),(275,693),(275,705),(276,486),(276,694),(276,706),(277,307),(277,993),(278,308),(278,994),(279,435),(279,997),(280,436),(280,998),(281,455),(281,937),(281,955),(282,456),(282,938),(282,956),(283,449),(283,933),(284,450),(284,934),(285,327),(285,941),(286,328),(286,942),(287,359),(287,925),(288,360),(288,926),(289,245),(290,246),(291,600),(292,601),(293,145),(293,673),(293,935),(294,146),(294,674),(294,936),(295,143),(295,935),(295,943),(296,144),(296,936),(296,944),(297,132),(297,931),(297,951),(298,133),(298,932),(298,952),(299,492),(299,965),(300,491),(300,966),(301,515),(301,933),(302,516),(302,934),(303,517),(303,933),(304,518),(304,934),(305,511),(305,925),(306,512),(306,926),(307,315),(308,316),(309,189),(309,703),(310,190),(310,704),(311,404),(311,971),(312,403),(312,972),(313,136),(313,707),(313,915),(314,137),(314,708),(314,916),(315,461),(316,462),(317,241),(317,921),(318,242),(318,922),(319,147),(319,949),(320,148),(320,950),(321,602),(321,923),(322,603),(322,924),(323,235),(323,953),(324,236),(324,954),(325,415),(325,703),(326,416),(326,704),(327,163),(327,961),(328,164),(328,962),(329,153),(329,995),(330,154),(330,996),(331,187),(331,671),(331,691),(332,188),(332,672),(332,692),(333,181),(333,711),(333,913),(334,182),(334,712),(334,914),(335,169),(336,170),(337,177),(337,927),(338,178),(338,928),(339,185),(339,855),(339,947),(340,186),(340,856),(340,948),(341,161),(341,837),(342,162),(342,838),(343,155),(343,923),(344,156),(344,924),(345,173),(345,669),(346,174),(346,670),(347,179),(347,695),(347,929),(348,180),(348,696),(348,930),(349,176),(349,668),(350,175),(350,667),(351,153),(351,903),(351,985),(352,154),(352,904),(352,986),(353,155),(353,847),(353,975),(354,156),(354,848),(354,976),(355,167),(355,668),(356,168),(356,667),(357,608),(357,673),(358,609),(358,674),(359,399),(359,689),(360,400),(360,690),(361,297),(361,673),(361,943),(362,298),(362,674),(362,944),(363,299),(363,665),(363,953),(364,300),(364,666),(364,954),(365,3),(365,598),(366,4),(366,599),(367,15),(367,283),(368,16),(368,284),(369,429),(369,675),(369,797),(370,430),(370,676),(370,798),(371,149),(371,735),(372,150),(372,736),(373,411),(373,813),(374,412),(374,814),(375,357),(375,727),(375,955),(376,358),(376,728),(376,956),(377,385),(377,781),(378,386),(378,782),(379,477),(379,779),(380,478),(380,780),(381,447),(381,797),(382,448),(382,798),(383,128),(383,737),(383,849),(384,129),(384,738),(384,850),(385,130),(385,745),(385,841),(386,131),(386,746),(386,842),(387,199),(387,755),(388,200),(388,756),(389,229),(389,815),(390,230),(390,816),(391,261),(391,795),(392,262),(392,796),(393,377),(393,829),(394,378),(394,830),(395,419),(395,795),(395,913),(396,420),(396,796),(396,914),(397,459),(397,729),(397,947),(398,460),(398,730),(398,948),(399,369),(399,801),(400,370),(400,802),(401,215),(401,751),(402,216),(402,752),(403,201),(403,743),(404,202),(404,744),(405,409),(405,731),(406,410),(406,732),(407,138),(407,685),(407,743),(408,139),(408,686),(408,744),(409,393),(409,817),(409,985),(410,394),(410,818),(410,986),(411,441),(411,785),(412,442),(412,786),(413,383),(413,785),(414,384),(414,786),(415,125),(415,758),(415,845),(416,125),(416,757),(416,846),(417,251),(417,739),(417,921),(418,252),(418,740),(418,922),(419,171),(419,683),(419,827),(420,172),(420,684),(420,828),(421,185),(421,805),(422,186),(422,806),(423,163),(423,825),(424,164),(424,826),(425,169),(425,719),(426,170),(426,720),(427,187),(427,721),(427,919),(428,188),(428,722),(428,920),(429,157),(429,783),(429,941),(430,158),(430,784),(430,942),(431,165),(431,803),(432,166),(432,804),(433,245),(433,723),(434,246),(434,724),(435,425),(435,799),(436,426),(436,800),(437,417),(437,701),(437,823),(438,418),(438,702),(438,824),(439,405),(439,823),(440,406),(440,824),(441,255),(441,737),(441,761),(442,256),(442,738),(442,762),(443,130),(443,741),(443,767),(444,131),(444,742),(444,768),(445,175),(445,717),(445,829),(446,176),(446,718),(446,830),(447,167),(447,715),(447,783),(448,168),(448,716),(448,784),(449,47),(449,291),(450,48),(450,292),(451,41),(451,589),(451,697),(452,42),(452,590),(452,698),(453,61),(453,389),(453,695),(454,62),(454,390),(454,696),(455,29),(455,495),(455,943),(456,30),(456,496),(456,944),(457,579),(458,580),(459,207),(459,675),(460,208),(460,676),(461,423),(461,709),(462,424),(462,710),(463,309),(463,939),(464,310),(464,940),(465,247),(466,248),(467,563),(467,699),(468,564),(468,700),(469,285),(469,675),(470,286),(470,676),(471,239),(471,789),(472,240),(472,790),(473,238),(473,733),(474,237),(474,734),(475,445),(475,831),(476,446),(476,832),(477,177),(477,789),(478,178),(478,790),(479,63),(479,275),(479,949),(480,64),(480,276),(480,950),(481,57),(481,509),(482,58),(482,510),(483,33),(483,507),(483,681),(484,34),(484,508),(484,682),(485,27),(485,573),(485,725),(486,28),(486,574),(486,726),(487,31),(487,379),(487,807),(488,32),(488,380),(488,808),(489,18),(489,639),(490,17),(490,638),(491,149),(491,311),(492,150),(492,312),(493,321),(493,411),(494,322),(494,412),(495,407),(495,616),(495,713),(496,408),(496,617),(496,714),(497,355),(497,447),(497,992),(498,356),(498,448),(498,991),(499,349),(499,355),(500,350),(500,356),(501,309),(501,325),(502,310),(502,326),(503,151),(503,353),(503,685),(504,152),(504,354),(504,686),(505,554),(505,585),(505,963),(506,555),(506,586),(506,964),(507,532),(507,655),(508,532),(508,654),(509,413),(509,658),(510,414),(510,659),(511,307),(511,526),(512,308),(512,527),(513,405),(513,528),(513,999),(514,406),(514,529),(514,1000),(515,319),(515,610),(516,320),(516,611),(517,225),(517,313),(518,226),(518,314),(519,317),(519,417),(519,993),(520,318),(520,418),(520,994),(521,147),(521,467),(522,148),(522,468),(523,323),(523,363),(523,957),(524,324),(524,364),(524,958),(525,367),(525,368),(526,315),(526,469),(527,316),(527,470),(528,351),(528,409),(528,691),(529,352),(529,410),(529,692),(530,325),(530,533),(530,939),(531,326),(531,533),(531,940),(532,530),(532,531),(533,415),(533,416),(533,711),(533,712),(534,181),(534,419),(534,983),(535,182),(535,420),(535,984),(536,165),(536,534),(536,965),(537,166),(537,535),(537,966),(538,159),(538,192),(538,688),(539,160),(539,192),(539,687),(540,157),(540,327),(541,158),(541,328),(542,173),(542,243),(543,174),(543,244),(544,179),(544,389),(544,957),(545,180),(545,390),(545,958),(546,159),(546,505),(546,687),(547,160),(547,506),(547,688),(548,140),(548,451),(548,681),(549,141),(549,452),(549,682),(550,136),(550,281),(550,665),(551,137),(551,282),(551,666),(552,233),(552,271),(552,954),(553,234),(553,272),(553,953),(554,142),(554,427),(554,701),(555,142),(555,428),(555,702),(556,507),(556,508),(557,205),(557,513),(558,206),(558,514),(559,385),(559,443),(559,821),(560,386),(560,444),(560,822),(561,128),(561,255),(561,717),(562,129),(562,256),(562,718),(563,437),(563,519),(563,793),(563,963),(564,438),(564,520),(564,794),(564,964),(565,439),(565,513),(565,793),(566,440),(566,514),(566,794),(567,161),(567,193),(567,825),(568,162),(568,194),(568,826),(569,339),(569,397),(569,787),(570,340),(570,398),(570,788),(571,343),(571,353),(572,344),(572,354),(573,583),(573,652),(574,584),(574,653),(575,339),(575,421),(575,917),(576,340),(576,422),(576,918),(577,289),(577,433),(578,290),(578,434),(579,197),(579,331),(580,198),(580,332),(581,369),(581,632),(582,370),(582,633),(583,381),(583,497),(584,382),(584,498),(585,331),(585,427),(585,987),(586,332),(586,428),(586,988),(587,134),(587,279),(588,135),(588,280),(589,606),(589,640),(589,811),(590,607),(590,641),(590,812),(591,263),(591,264),(592,59),(592,515),(592,650),(593,60),(593,516),(593,651),(594,53),(594,517),(594,634),(595,54),(595,518),(595,635),(596,287),(596,305),(597,288),(597,306),(598,303),(598,594),(599,304),(599,595),(600,557),(600,565),(600,699),(601,558),(601,566),(601,700),(602,341),(602,567),(602,709),(603,342),(603,568),(603,710),(604,266),(604,538),(605,265),(605,539),(606,273),(606,333),(606,939),(607,274),(607,334),(607,940),(608,503),(608,571),(609,504),(609,572),(610,269),(610,596),(610,949),(611,270),(611,597),(611,950),(612,95),(612,281),(612,375),(612,915),(613,96),(613,282),(613,376),(613,916),(614,277),(614,511),(614,725),(615,278),(615,512),(615,726),(616,138),(616,151),(616,733),(617,139),(617,152),(617,734),(618,209),(618,338),(619,210),(619,337),(620,249),(620,632),(621,250),(621,633),(622,267),(622,493),(623,268),(623,494),(624,373),(624,493),(625,374),(625,494),(626,183),(626,217),(627,184),(627,218),(628,127),(628,203),(628,747),(629,127),(629,204),(629,748),(630,183),(630,391),(630,809),(631,184),(631,392),(631,810),(632,285),(632,429),(632,540),(633,286),(633,430),(633,541),(634,313),(634,550),(634,612),(634,957),(635,314),(635,551),(635,613),(635,958),(636,140),(636,223),(636,347),(637,141),(637,224),(637,348),(638,234),(638,235),(638,662),(639,233),(639,236),(639,663),(640,333),(640,395),(640,534),(640,803),(641,334),(641,396),(641,535),(641,804),(642,261),(642,569),(642,575),(643,262),(643,570),(643,576),(644,347),(644,453),(644,544),(644,681),(645,348),(645,454),(645,545),(645,682),(646,323),(646,553),(646,638),(647,324),(647,552),(647,639),(648,143),(648,145),(648,297),(649,144),(649,146),(649,298),(650,319),(650,479),(650,521),(651,320),(651,480),(651,522),(652,237),(652,497),(652,499),(653,238),(653,498),(653,500),(654,463),(654,501),(654,530),(655,464),(655,502),(655,531),(656,101),(656,548),(656,636),(656,644),(657,102),(657,549),(657,637),(657,645),(658,383),(658,441),(658,561),(658,831),(659,384),(659,442),(659,562),(659,832),(660,431),(660,536),(660,640),(661,432),(661,537),(661,641),(662,293),(662,295),(662,361),(662,648),(663,294),(663,296),(663,362),(663,649),(664,538),(664,539),(664,546),(664,547),(665,891),(665,955),(665,965),(666,892),(666,956),(666,966),(667,213),(667,879),(667,902),(668,214),(668,880),(668,901),(669,591),(669,959),(670,591),(670,960),(671,219),(671,887),(671,903),(672,220),(672,888),(672,904),(673,571),(673,931),(674,572),(674,932),(675,833),(675,941),(676,834),(676,942),(677,201),(677,873),(678,202),(678,874),(679,923),(680,924),(681,589),(681,660),(681,929),(682,590),(682,661),(682,930),(683,231),(683,911),(684,232),(684,912),(685,847),(685,945),(686,848),(686,946),(687,579),(687,585),(687,771),(688,580),(688,586),(688,772),(689,801),(690,802),(691,817),(691,903),(692,818),(692,904),(693,573),(693,735),(694,574),(694,736),(695,626),(695,630),(695,815),(696,627),(696,631),(696,816),(697,13),(697,811),(698,14),(698,812),(699,205),(699,793),(700,206),(700,794),(701,721),(701,920),(701,921),(702,722),(702,919),(702,922),(703,215),(703,787),(703,845),(704,216),(704,788),(704,846),(705,725),(705,925),(706,726),(706,926),(707,727),(707,891),(708,728),(708,892),(709,825),(709,837),(710,826),(710,838),(711,751),(711,757),(711,845),(712,752),(712,758),(712,846),(713,733),(713,743),(713,873),(714,734),(714,744),(714,874),(715,901),(715,990),(716,902),(716,989),(717,861),(717,879),(717,895),(718,862),(718,880),(718,896),(719,877),(720,878),(721,887),(721,981),(721,1015),(722,888),(722,982),(722,1015),(723,889),(724,890),(725,581),(725,620),(726,582),(726,621),(727,622),(727,1006),(728,623),(728,1007),(729,207),(729,1022),(730,208),(730,1023),(731,985),(731,995),(732,986),(732,996),(733,893),(733,975),(733,991),(734,894),(734,976),(734,992),(735,583),(735,971),(736,584),(736,972),(737,587),(737,977),(737,1013),(738,588),(738,978),(738,1014),(739,969),(739,995),(740,970),(740,996),(741,851),(741,905),(742,852),(742,906),(743,847),(743,869),(743,893),(744,848),(744,870),(744,894),(745,843),(745,1016),(746,844),(746,1017),(747,618),(747,865),(747,980),(748,619),(748,866),(748,979),(749,853),(750,854),(751,628),(751,863),(751,911),(752,629),(752,864),(752,912),(753,200),(753,1020),(754,199),(754,1021),(755,867),(756,868),(757,859),(757,911),(758,860),(758,912),(759,1012),(760,1012),(761,895),(761,1013),(762,896),(762,1014),(763,973),(764,974),(765,837),(766,838),(767,843),(767,905),(768,844),(768,906),(769,221),(769,1016),(770,222),(770,1017),(771,197),(771,987),(772,198),(772,988),(773,839),(774,840),(775,835),(776,836),(777,2),(778,1),(779,577),(780,578),(781,839),(781,841),(782,840),(782,842),(783,775),(783,875),(784,776),(784,876),(785,737),(786,738),(787,729),(787,855),(788,730),(788,856),(789,755),(789,897),(790,756),(790,898),(791,211),(791,821),(792,212),(792,822),(793,823),(793,993),(793,999),(794,824),(794,994),(794,1000),(795,827),(795,917),(796,828),(796,918),(797,783),(797,833),(798,784),(798,834),(799,719),(800,720),(801,797),(802,798),(803,575),(803,795),(803,983),(804,576),(804,796),(804,984),(805,227),(805,819),(806,228),(806,820),(807,11),(807,779),(808,12),(808,780),(809,624),(809,777),(810,625),(810,778),(811,642),(811,803),(812,643),(812,804),(813,785),(814,786),(815,217),(815,809),(816,218),(816,810),(817,829),(817,1008),(818,830),(818,1009),(819,807),(819,1010),(820,808),(820,1011),(821,741),(821,841),(822,742),(822,842),(823,731),(823,739),(824,732),(824,740),(825,745),(825,767),(825,883),(826,746),(826,768),(826,884),(827,805),(827,813),(828,806),(828,814),(829,773),(829,781),(830,774),(830,782),(831,717),(831,761),(831,849),(832,718),(832,762),(832,850),(833,875),(834,876),(835,897),(836,898),(837,883),(838,884),(839,899),(840,900),(841,851),(841,899),(841,1016),(842,852),(842,900),(842,1017),(843,799),(843,1004),(844,800),(844,1005),(845,855),(845,859),(845,863),(846,856),(846,860),(846,864),(847,881),(847,1018),(848,882),(848,1019),(849,861),(849,1013),(850,862),(850,1014),(851,857),(851,1004),(852,858),(852,1005),(853,877),(854,878),(855,885),(855,1022),(856,886),(856,1023),(857,853),(858,854),(859,885),(859,909),(860,886),(860,910),(861,907),(861,1001),(862,908),(862,1002),(863,203),(863,909),(863,1022),(864,204),(864,910),(864,1023),(865,209),(865,1003),(866,210),(866,1003),(867,889),(868,890),(869,849),(869,881),(870,850),(870,882),(871,221),(871,1020),(872,222),(872,1021),(873,831),(873,869),(874,832),(874,870),(875,789),(875,835),(876,790),(876,836),(877,1012),(878,1012),(879,871),(879,907),(880,872),(880,908),(881,1013),(882,1014),(883,905),(883,1016),(884,906),(884,1017),(885,1010),(886,1011),(887,791),(887,1008),(888,792),(888,1009),(889,760),(890,759),(891,763),(891,1006),(892,764),(892,1007),(893,716),(893,1018),(894,715),(894,1019),(895,769),(895,871),(895,1001),(896,770),(896,872),(896,1002),(897,723),(897,867),(898,724),(898,868),(899,749),(899,857),(900,750),(900,858),(901,754),(901,908),(902,753),(902,907),(903,765),(903,1008),(904,766),(904,1009),(905,1004),(906,1005),(907,1020),(908,1021),(909,865),(909,1010),(910,866),(910,1011),(911,747),(911,909),(912,748),(912,910),(913,39),(913,683),(913,751),(914,40),(914,684),(914,752),(915,55),(915,727),(915,937),(916,56),(916,728),(916,938),(917,37),(917,805),(917,947),(918,38),(918,806),(918,948),(919,346),(919,1015),(920,345),(920,1015),(921,345),(921,542),(921,981),(922,346),(922,543),(922,982),(923,341),(924,342),(925,399),(925,581),(926,400),(926,582),(927,289),(928,290),(929,431),(929,811),(930,432),(930,812),(931,343),(931,679),(932,344),(932,680),(933,291),(934,292),(935,403),(935,677),(935,713),(936,404),(936,678),(936,714),(937,481),(937,1006),(938,482),(938,1007),(939,401),(939,703),(939,711),(940,402),(940,704),(940,712),(941,471),(941,875),(941,961),(942,472),(942,876),(942,962),(943,473),(943,713),(943,951),(944,474),(944,714),(944,952),(945,465),(945,1018),(946,466),(946,1019),(947,487),(947,819),(947,1022),(948,488),(948,820),(948,1023),(949,305),(949,614),(949,705),(950,306),(950,615),(950,706),(951,475),(951,873),(952,476),(952,874),(953,372),(953,492),(953,967),(954,371),(954,491),(954,968),(955,253),(955,495),(955,1006),(956,254),(956,496),(956,1007),(957,375),(957,665),(957,707),(958,376),(958,666),(958,708),(959,264),(959,840),(960,263),(960,839),(961,239),(961,835),(962,240),(962,836),(963,317),(963,701),(963,987),(964,318),(964,702),(964,988),(965,253),(965,763),(966,254),(966,764),(967,312),(967,736),(967,935),(968,311),(968,735),(968,936),(969,259),(970,260),(971,381),(971,801),(972,382),(972,802),(973,413),(974,414),(975,257),(975,1018),(976,258),(976,1019),(977,279),(977,1001),(978,280),(978,1002),(979,337),(979,1003),(980,338),(980,1003),(981,243),(981,669),(981,791),(982,244),(982,670),(982,792),(983,421),(983,827),(984,422),(984,828),(985,377),(985,559),(985,1008),(986,378),(986,560),(986,1009),(987,241),(987,671),(987,721),(988,242),(988,672),(988,722),(989,388),(989,753),(990,387),(990,754),(991,257),(991,667),(991,716),(992,258),(992,668),(992,715),(993,329),(993,739),(994,330),(994,740),(995,259),(995,559),(996,260),(996,560),(997,335),(997,425),(998,336),(998,426),(999,329),(999,351),(999,731),(1000,330),(1000,352),(1000,732),(1001,997),(1001,1020),(1002,998),(1002,1021),(1003,927),(1003,928),(1004,719),(1004,853),(1005,720),(1005,854),(1006,509),(1006,973),(1007,510),(1007,974),(1008,781),(1008,821),(1009,782),(1009,822),(1010,779),(1011,780),(1013,134),(1013,1001),(1014,135),(1014,1002),(1015,669),(1015,670),(1016,749),(1016,1004),(1017,750),(1017,1005),(1018,247),(1018,989),(1019,248),(1019,990),(1020,335),(1021,336),(1022,379),(1022,1010),(1023,380),(1023,1011)],1024)
=> ? = 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,4),(0,7),(1,5),(1,17),(2,6),(2,8),(2,18),(3,1),(3,13),(4,2),(4,14),(5,10),(5,15),(6,11),(6,16),(7,13),(7,14),(8,12),(8,15),(8,16),(9,21),(10,19),(11,20),(12,19),(12,20),(13,17),(14,18),(15,9),(15,19),(16,9),(16,20),(17,10),(18,11),(18,12),(19,21),(20,21)],22)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,2),(0,3),(0,10),(1,9),(1,11),(1,31),(2,1),(2,24),(3,6),(3,8),(3,30),(4,18),(4,27),(5,19),(5,20),(6,17),(6,29),(7,15),(7,21),(8,12),(8,26),(8,29),(9,16),(9,28),(10,24),(10,30),(11,14),(11,23),(11,28),(12,13),(12,22),(12,23),(13,32),(13,33),(14,33),(14,39),(15,37),(16,39),(17,38),(18,36),(19,34),(20,34),(21,5),(21,37),(22,21),(22,32),(23,25),(23,33),(24,31),(25,27),(25,35),(26,13),(26,38),(27,19),(27,36),(28,4),(28,25),(28,39),(29,7),(29,22),(29,38),(30,17),(30,26),(31,14),(31,16),(32,37),(33,35),(35,36),(36,34),(37,20),(38,15),(38,32),(39,18),(39,35)],40)
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,16),(0,17),(0,28),(1,23),(1,58),(2,19),(2,53),(3,11),(3,21),(3,80),(4,10),(4,20),(4,79),(5,12),(5,13),(5,81),(6,48),(6,73),(7,49),(7,74),(8,24),(8,75),(8,86),(9,25),(9,76),(9,87),(10,14),(10,71),(10,77),(11,15),(11,72),(11,78),(12,26),(12,69),(12,88),(13,27),(13,70),(13,88),(14,31),(14,82),(15,32),(15,83),(16,4),(16,36),(16,54),(17,3),(17,36),(17,55),(18,44),(18,67),(18,68),(19,39),(19,40),(19,43),(20,34),(20,56),(20,77),(21,35),(21,57),(21,78),(22,45),(22,46),(22,47),(23,18),(23,50),(23,82),(23,83),(24,41),(24,61),(24,63),(25,42),(25,62),(25,64),(26,37),(26,56),(26,84),(27,38),(27,57),(27,85),(28,54),(28,55),(28,81),(29,90),(29,118),(30,89),(30,117),(31,93),(32,94),(33,116),(33,124),(34,91),(34,122),(35,92),(35,123),(36,1),(36,121),(37,91),(37,110),(38,92),(38,111),(39,90),(39,104),(40,90),(40,105),(41,98),(41,108),(42,99),(42,109),(43,104),(43,105),(44,106),(44,107),(45,102),(45,103),(46,6),(46,89),(46,102),(47,7),(47,89),(47,103),(48,100),(49,101),(50,44),(50,93),(50,94),(51,39),(51,119),(52,40),(52,120),(53,43),(54,79),(54,121),(55,80),(55,121),(56,59),(56,91),(57,60),(57,92),(58,50),(59,86),(59,112),(60,87),(60,113),(61,65),(61,108),(62,66),(62,109),(63,51),(63,98),(64,52),(64,99),(65,29),(65,96),(66,29),(66,97),(67,61),(67,106),(67,124),(68,62),(68,107),(68,124),(69,37),(69,95),(70,38),(70,95),(71,31),(71,122),(72,32),(72,123),(73,51),(73,100),(74,52),(74,101),(75,41),(75,114),(76,42),(76,115),(77,8),(77,59),(77,122),(78,9),(78,60),(78,123),(79,34),(79,71),(80,35),(80,72),(81,69),(81,70),(82,33),(82,67),(82,93),(83,33),(83,68),(83,94),(84,30),(84,46),(84,110),(85,30),(85,47),(85,111),(86,63),(86,73),(86,114),(87,64),(87,74),(87,115),(88,22),(88,84),(88,85),(88,95),(89,2),(89,127),(90,125),(91,112),(92,113),(93,106),(93,116),(94,107),(94,116),(95,45),(95,110),(95,111),(96,118),(97,118),(98,119),(99,120),(100,119),(101,120),(102,48),(102,127),(103,49),(103,127),(104,125),(105,125),(106,108),(106,126),(107,109),(107,126),(108,96),(109,97),(110,102),(110,117),(111,103),(111,117),(112,114),(113,115),(114,98),(114,100),(115,99),(115,101),(116,126),(117,127),(118,125),(119,104),(120,105),(121,58),(122,75),(122,112),(123,76),(123,113),(124,65),(124,66),(124,126),(126,96),(126,97),(127,53)],128)
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,4),(0,8),(1,7),(1,21),(2,6),(2,20),(3,2),(3,18),(4,1),(4,19),(5,12),(5,13),(6,11),(6,16),(7,11),(7,17),(8,5),(8,18),(8,19),(9,23),(10,23),(11,22),(12,14),(13,15),(14,9),(15,10),(16,9),(16,22),(17,10),(17,22),(18,12),(18,20),(19,13),(19,21),(20,14),(20,16),(21,15),(21,17),(22,23)],24)
=> ? = 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
Description
Number of triples of incomparable elements in a finite poset.
For a finite poset this is the number of 3-element sets $S \in \binom{P}{3}$ that are pairwise incomparable.
Matching statistic: St000908
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000908: Posets ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 17%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000908: Posets ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1 + 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,3,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,4,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,3,4],[3,4,5],[4,5],[5]]
=> ([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,2],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,14),(0,15),(1,26),(2,9),(2,25),(3,13),(3,24),(4,16),(5,11),(5,12),(6,69),(7,64),(8,49),(9,6),(9,52),(10,20),(10,59),(11,19),(11,65),(12,17),(12,65),(13,18),(13,22),(13,71),(14,2),(14,29),(15,3),(15,29),(16,39),(16,55),(17,56),(17,68),(18,57),(18,66),(19,58),(19,67),(20,51),(20,53),(21,40),(21,41),(22,57),(22,72),(23,28),(23,54),(23,70),(24,58),(24,71),(25,52),(25,56),(26,27),(26,69),(26,72),(27,45),(27,60),(28,34),(28,48),(28,50),(29,1),(30,76),(31,75),(32,77),(33,74),(33,80),(34,73),(34,78),(35,73),(35,77),(36,82),(37,79),(38,80),(39,74),(40,7),(40,76),(41,8),(41,76),(42,55),(42,79),(43,59),(44,39),(45,53),(45,83),(46,33),(46,81),(47,32),(47,83),(48,42),(48,78),(49,44),(50,46),(50,73),(51,44),(52,10),(52,43),(53,62),(54,34),(54,75),(55,36),(55,74),(56,43),(57,63),(58,61),(59,49),(59,51),(60,35),(60,50),(60,83),(61,31),(61,70),(62,33),(62,38),(63,32),(63,35),(64,37),(64,42),(65,21),(65,67),(65,68),(66,31),(66,54),(67,30),(67,40),(68,30),(68,41),(69,45),(69,47),(70,48),(70,64),(70,75),(71,23),(71,61),(71,66),(72,47),(72,60),(72,63),(73,81),(74,82),(75,37),(75,78),(76,4),(77,38),(77,81),(78,79),(79,36),(80,82),(81,80),(83,46),(83,62),(83,77)],84)
=> ? = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,5],[5]]
=> ([(0,10),(0,11),(1,13),(1,14),(2,21),(3,20),(4,14),(4,20),(5,17),(6,16),(7,18),(8,12),(9,1),(9,22),(10,5),(10,15),(11,8),(11,15),(12,3),(12,4),(13,21),(14,19),(15,9),(15,17),(17,22),(18,16),(19,18),(20,7),(20,19),(21,6),(22,2),(22,13)],23)
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,2,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,4),(0,14),(0,15),(1,29),(2,6),(2,27),(3,13),(3,28),(4,10),(4,11),(5,102),(6,5),(6,87),(7,31),(7,99),(8,25),(8,98),(9,26),(9,72),(10,23),(10,109),(11,24),(11,33),(11,109),(12,22),(12,108),(13,17),(13,18),(13,107),(14,2),(14,38),(15,3),(15,38),(16,84),(16,85),(17,90),(17,111),(18,90),(18,101),(19,82),(19,83),(20,81),(20,100),(21,34),(21,89),(21,104),(22,86),(22,106),(23,91),(23,110),(24,80),(24,105),(25,78),(25,79),(26,52),(26,88),(27,87),(27,103),(28,91),(28,107),(29,30),(29,102),(29,111),(30,63),(30,96),(31,44),(31,71),(31,76),(32,37),(32,51),(32,77),(33,80),(33,94),(33,103),(34,62),(34,74),(34,75),(35,133),(36,9),(37,8),(37,127),(38,1),(39,118),(40,117),(40,122),(41,119),(42,119),(42,126),(43,116),(43,127),(44,112),(44,120),(45,112),(45,113),(46,114),(46,116),(47,121),(48,122),(49,125),(50,113),(51,20),(51,114),(51,127),(52,117),(53,72),(54,88),(54,121),(55,45),(55,132),(56,48),(57,84),(57,124),(58,76),(58,134),(59,66),(60,56),(61,54),(62,55),(62,126),(63,86),(63,129),(64,53),(64,134),(65,47),(66,70),(67,40),(68,40),(68,123),(69,41),(69,129),(70,39),(70,128),(71,54),(71,120),(72,52),(73,44),(73,118),(74,58),(74,115),(75,82),(75,115),(75,126),(76,68),(76,112),(77,16),(77,57),(77,114),(78,65),(79,61),(80,59),(80,130),(81,36),(82,60),(82,131),(83,53),(83,131),(84,78),(84,128),(85,73),(85,128),(86,92),(87,12),(87,95),(88,49),(88,117),(89,19),(89,75),(89,133),(90,97),(91,93),(92,45),(92,50),(93,35),(93,104),(94,46),(94,77),(94,130),(95,66),(95,108),(96,42),(96,62),(96,129),(97,41),(97,42),(98,36),(98,79),(99,61),(99,71),(100,58),(100,64),(101,35),(101,89),(102,63),(102,69),(103,59),(103,95),(104,74),(104,100),(104,133),(105,37),(105,43),(105,130),(106,39),(106,73),(107,21),(107,93),(107,101),(108,70),(108,85),(108,106),(109,32),(109,94),(109,105),(109,110),(110,43),(110,46),(110,51),(111,69),(111,96),(111,97),(112,123),(113,48),(113,123),(114,7),(114,124),(115,131),(115,134),(116,124),(117,125),(118,47),(118,120),(119,50),(119,132),(120,121),(121,49),(122,125),(123,122),(124,99),(126,60),(126,132),(127,81),(127,98),(128,65),(128,118),(129,55),(129,92),(129,119),(130,57),(130,116),(131,67),(132,56),(132,113),(133,64),(133,83),(133,115),(134,67),(134,68)],135)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [[1,1,2,3,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,2,3,4,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,25),(0,26),(0,87),(0,88),(1,76),(2,75),(3,105),(3,594),(4,106),(4,595),(5,587),(6,588),(7,557),(8,558),(9,23),(9,103),(9,367),(10,24),(10,104),(10,368),(11,97),(11,577),(12,98),(12,578),(13,99),(13,642),(14,100),(14,643),(15,45),(15,449),(16,46),(16,450),(17,71),(17,662),(18,72),(18,663),(19,51),(19,526),(20,52),(20,527),(21,73),(21,93),(21,656),(22,74),(22,94),(22,657),(23,65),(23,69),(23,592),(24,66),(24,70),(24,593),(25,21),(25,67),(25,365),(26,22),(26,68),(26,366),(27,117),(27,620),(27,652),(28,118),(28,621),(28,653),(29,473),(29,616),(30,474),(30,617),(31,471),(31,477),(32,472),(32,478),(33,119),(33,655),(33,660),(34,120),(34,654),(34,661),(35,465),(35,618),(36,466),(36,619),(37,227),(37,487),(38,228),(38,488),(39,231),(39,628),(40,232),(40,629),(41,463),(41,606),(42,464),(42,607),(43,121),(43,608),(43,624),(44,122),(44,609),(44,625),(45,78),(45,604),(45,664),(46,77),(46,605),(46,664),(47,123),(47,467),(47,600),(48,124),(48,468),(48,601),(49,596),(49,626),(50,597),(50,627),(51,459),(51,469),(52,460),(52,470),(53,225),(53,612),(54,226),(54,613),(55,111),(55,481),(55,622),(56,112),(56,482),(56,623),(57,115),(57,475),(57,658),(58,116),(58,476),(58,659),(59,107),(59,479),(59,610),(60,108),(60,480),(60,611),(61,109),(61,229),(61,630),(62,110),(62,230),(62,631),(63,83),(63,485),(63,614),(64,84),(64,486),(64,615),(65,81),(65,489),(65,650),(66,82),(66,490),(66,651),(67,113),(67,598),(67,656),(68,114),(68,599),(68,657),(69,489),(69,647),(70,490),(70,646),(71,457),(71,648),(72,458),(72,649),(73,85),(73,483),(73,644),(74,86),(74,484),(74,645),(75,79),(75,461),(75,602),(76,80),(76,462),(76,603),(77,265),(77,546),(78,266),(78,547),(79,423),(79,567),(80,424),(80,568),(81,521),(81,604),(82,522),(82,605),(83,277),(83,519),(84,278),(84,520),(85,523),(85,544),(86,524),(86,545),(87,9),(87,366),(87,525),(88,10),(88,365),(88,525),(89,437),(89,439),(89,554),(90,438),(90,440),(90,555),(91,363),(91,550),(91,553),(92,364),(92,551),(92,552),(93,483),(93,548),(93,556),(94,484),(94,549),(94,556),(95,357),(95,361),(95,455),(96,358),(96,362),(96,456),(97,195),(97,433),(97,435),(98,196),(98,434),(98,436),(99,189),(99,359),(99,569),(100,190),(100,360),(100,570),(101,223),(101,451),(101,453),(102,224),(102,452),(102,454),(103,283),(103,301),(103,592),(104,284),(104,302),(104,593),(105,91),(105,523),(105,634),(105,646),(106,92),(106,524),(106,635),(106,647),(107,269),(107,271),(107,275),(108,270),(108,272),(108,276),(109,273),(109,391),(109,395),(110,274),(110,392),(110,396),(111,132),(111,267),(111,528),(112,133),(112,268),(112,529),(113,301),(113,303),(113,636),(114,302),(114,304),(114,637),(115,393),(115,445),(115,561),(116,394),(116,446),(116,562),(117,249),(117,251),(117,499),(118,250),(118,252),(118,500),(119,299),(119,502),(119,536),(120,300),(120,501),(120,537),(121,171),(121,373),(121,503),(122,172),(122,374),(122,504),(123,89),(123,505),(123,563),(123,565),(124,90),(124,506),(124,564),(124,566),(125,859),(125,860),(126,857),(126,858),(127,979),(127,980),(128,861),(128,977),(129,862),(129,978),(130,843),(130,851),(131,844),(131,852),(132,679),(132,691),(133,680),(133,692),(134,997),(135,998),(136,891),(136,937),(137,892),(137,938),(138,893),(138,945),(139,894),(139,946),(140,697),(140,929),(141,698),(141,930),(142,919),(142,920),(143,677),(143,951),(144,678),(144,952),(145,677),(145,931),(146,678),(146,932),(147,699),(148,700),(149,689),(149,971),(150,690),(150,972),(151,945),(151,975),(152,946),(152,976),(153,709),(153,765),(154,710),(154,766),(155,761),(155,881),(156,762),(156,882),(157,775),(157,961),(158,776),(158,962),(159,771),(159,963),(160,772),(160,964),(161,769),(161,883),(162,770),(162,884),(163,767),(164,768),(165,763),(165,983),(166,764),(166,984),(167,775),(167,901),(168,776),(168,902),(169,759),(169,877),(170,760),(170,878),(171,685),(171,813),(172,686),(172,814),(173,774),(173,959),(174,773),(174,960),(175,773),(175,879),(176,774),(176,880),(177,755),(178,756),(179,707),(179,815),(180,708),(180,816),(181,683),(181,757),(182,684),(182,758),(183,19),(183,777),(184,20),(184,778),(185,819),(185,885),(186,820),(186,886),(187,817),(187,887),(188,818),(188,888),(189,689),(189,787),(190,690),(190,788),(191,759),(191,760),(192,771),(192,772),(193,745),(193,769),(194,746),(194,770),(195,723),(195,799),(196,724),(196,800),(197,671),(198,672),(199,867),(200,868),(201,869),(202,870),(203,865),(203,979),(204,866),(204,980),(205,999),(206,1000),(207,833),(208,834),(209,928),(210,927),(211,741),(212,742),(213,753),(213,871),(214,754),(214,872),(215,729),(215,863),(216,730),(216,864),(217,777),(218,778),(219,765),(219,791),(220,766),(220,792),(221,749),(222,750),(223,49),(223,695),(223,697),(224,50),(224,696),(224,698),(225,7),(225,915),(226,8),(226,916),(227,5),(227,807),(228,6),(228,808),(229,43),(229,809),(230,44),(230,810),(231,35),(231,747),(232,36),(232,748),(233,296),(233,693),(233,968),(234,295),(234,694),(234,967),(235,293),(235,967),(236,294),(236,968),(237,349),(237,992),(238,350),(238,991),(239,195),(239,897),(240,196),(240,898),(241,219),(241,981),(242,220),(242,982),(243,211),(243,959),(244,212),(244,960),(245,191),(245,889),(246,191),(246,890),(247,388),(248,387),(249,540),(249,969),(250,541),(250,970),(251,542),(251,969),(252,543),(252,970),(253,407),(253,973),(254,408),(254,974),(255,193),(255,895),(255,977),(256,194),(256,896),(256,978),(257,213),(257,989),(258,214),(258,990),(259,443),(260,444),(261,397),(261,917),(262,398),(262,918),(263,126),(263,899),(264,126),(264,900),(265,457),(265,687),(266,458),(266,688),(267,321),(267,679),(268,322),(268,680),(269,287),(269,705),(270,288),(270,706),(271,371),(271,693),(272,372),(272,694),(273,401),(273,913),(274,402),(274,914),(275,485),(275,693),(275,705),(276,486),(276,694),(276,706),(277,307),(277,993),(278,308),(278,994),(279,435),(279,997),(280,436),(280,998),(281,455),(281,937),(281,955),(282,456),(282,938),(282,956),(283,449),(283,933),(284,450),(284,934),(285,327),(285,941),(286,328),(286,942),(287,359),(287,925),(288,360),(288,926),(289,245),(290,246),(291,600),(292,601),(293,145),(293,673),(293,935),(294,146),(294,674),(294,936),(295,143),(295,935),(295,943),(296,144),(296,936),(296,944),(297,132),(297,931),(297,951),(298,133),(298,932),(298,952),(299,492),(299,965),(300,491),(300,966),(301,515),(301,933),(302,516),(302,934),(303,517),(303,933),(304,518),(304,934),(305,511),(305,925),(306,512),(306,926),(307,315),(308,316),(309,189),(309,703),(310,190),(310,704),(311,404),(311,971),(312,403),(312,972),(313,136),(313,707),(313,915),(314,137),(314,708),(314,916),(315,461),(316,462),(317,241),(317,921),(318,242),(318,922),(319,147),(319,949),(320,148),(320,950),(321,602),(321,923),(322,603),(322,924),(323,235),(323,953),(324,236),(324,954),(325,415),(325,703),(326,416),(326,704),(327,163),(327,961),(328,164),(328,962),(329,153),(329,995),(330,154),(330,996),(331,187),(331,671),(331,691),(332,188),(332,672),(332,692),(333,181),(333,711),(333,913),(334,182),(334,712),(334,914),(335,169),(336,170),(337,177),(337,927),(338,178),(338,928),(339,185),(339,855),(339,947),(340,186),(340,856),(340,948),(341,161),(341,837),(342,162),(342,838),(343,155),(343,923),(344,156),(344,924),(345,173),(345,669),(346,174),(346,670),(347,179),(347,695),(347,929),(348,180),(348,696),(348,930),(349,176),(349,668),(350,175),(350,667),(351,153),(351,903),(351,985),(352,154),(352,904),(352,986),(353,155),(353,847),(353,975),(354,156),(354,848),(354,976),(355,167),(355,668),(356,168),(356,667),(357,608),(357,673),(358,609),(358,674),(359,399),(359,689),(360,400),(360,690),(361,297),(361,673),(361,943),(362,298),(362,674),(362,944),(363,299),(363,665),(363,953),(364,300),(364,666),(364,954),(365,3),(365,598),(366,4),(366,599),(367,15),(367,283),(368,16),(368,284),(369,429),(369,675),(369,797),(370,430),(370,676),(370,798),(371,149),(371,735),(372,150),(372,736),(373,411),(373,813),(374,412),(374,814),(375,357),(375,727),(375,955),(376,358),(376,728),(376,956),(377,385),(377,781),(378,386),(378,782),(379,477),(379,779),(380,478),(380,780),(381,447),(381,797),(382,448),(382,798),(383,128),(383,737),(383,849),(384,129),(384,738),(384,850),(385,130),(385,745),(385,841),(386,131),(386,746),(386,842),(387,199),(387,755),(388,200),(388,756),(389,229),(389,815),(390,230),(390,816),(391,261),(391,795),(392,262),(392,796),(393,377),(393,829),(394,378),(394,830),(395,419),(395,795),(395,913),(396,420),(396,796),(396,914),(397,459),(397,729),(397,947),(398,460),(398,730),(398,948),(399,369),(399,801),(400,370),(400,802),(401,215),(401,751),(402,216),(402,752),(403,201),(403,743),(404,202),(404,744),(405,409),(405,731),(406,410),(406,732),(407,138),(407,685),(407,743),(408,139),(408,686),(408,744),(409,393),(409,817),(409,985),(410,394),(410,818),(410,986),(411,441),(411,785),(412,442),(412,786),(413,383),(413,785),(414,384),(414,786),(415,125),(415,758),(415,845),(416,125),(416,757),(416,846),(417,251),(417,739),(417,921),(418,252),(418,740),(418,922),(419,171),(419,683),(419,827),(420,172),(420,684),(420,828),(421,185),(421,805),(422,186),(422,806),(423,163),(423,825),(424,164),(424,826),(425,169),(425,719),(426,170),(426,720),(427,187),(427,721),(427,919),(428,188),(428,722),(428,920),(429,157),(429,783),(429,941),(430,158),(430,784),(430,942),(431,165),(431,803),(432,166),(432,804),(433,245),(433,723),(434,246),(434,724),(435,425),(435,799),(436,426),(436,800),(437,417),(437,701),(437,823),(438,418),(438,702),(438,824),(439,405),(439,823),(440,406),(440,824),(441,255),(441,737),(441,761),(442,256),(442,738),(442,762),(443,130),(443,741),(443,767),(444,131),(444,742),(444,768),(445,175),(445,717),(445,829),(446,176),(446,718),(446,830),(447,167),(447,715),(447,783),(448,168),(448,716),(448,784),(449,47),(449,291),(450,48),(450,292),(451,41),(451,589),(451,697),(452,42),(452,590),(452,698),(453,61),(453,389),(453,695),(454,62),(454,390),(454,696),(455,29),(455,495),(455,943),(456,30),(456,496),(456,944),(457,579),(458,580),(459,207),(459,675),(460,208),(460,676),(461,423),(461,709),(462,424),(462,710),(463,309),(463,939),(464,310),(464,940),(465,247),(466,248),(467,563),(467,699),(468,564),(468,700),(469,285),(469,675),(470,286),(470,676),(471,239),(471,789),(472,240),(472,790),(473,238),(473,733),(474,237),(474,734),(475,445),(475,831),(476,446),(476,832),(477,177),(477,789),(478,178),(478,790),(479,63),(479,275),(479,949),(480,64),(480,276),(480,950),(481,57),(481,509),(482,58),(482,510),(483,33),(483,507),(483,681),(484,34),(484,508),(484,682),(485,27),(485,573),(485,725),(486,28),(486,574),(486,726),(487,31),(487,379),(487,807),(488,32),(488,380),(488,808),(489,18),(489,639),(490,17),(490,638),(491,149),(491,311),(492,150),(492,312),(493,321),(493,411),(494,322),(494,412),(495,407),(495,616),(495,713),(496,408),(496,617),(496,714),(497,355),(497,447),(497,992),(498,356),(498,448),(498,991),(499,349),(499,355),(500,350),(500,356),(501,309),(501,325),(502,310),(502,326),(503,151),(503,353),(503,685),(504,152),(504,354),(504,686),(505,554),(505,585),(505,963),(506,555),(506,586),(506,964),(507,532),(507,655),(508,532),(508,654),(509,413),(509,658),(510,414),(510,659),(511,307),(511,526),(512,308),(512,527),(513,405),(513,528),(513,999),(514,406),(514,529),(514,1000),(515,319),(515,610),(516,320),(516,611),(517,225),(517,313),(518,226),(518,314),(519,317),(519,417),(519,993),(520,318),(520,418),(520,994),(521,147),(521,467),(522,148),(522,468),(523,323),(523,363),(523,957),(524,324),(524,364),(524,958),(525,367),(525,368),(526,315),(526,469),(527,316),(527,470),(528,351),(528,409),(528,691),(529,352),(529,410),(529,692),(530,325),(530,533),(530,939),(531,326),(531,533),(531,940),(532,530),(532,531),(533,415),(533,416),(533,711),(533,712),(534,181),(534,419),(534,983),(535,182),(535,420),(535,984),(536,165),(536,534),(536,965),(537,166),(537,535),(537,966),(538,159),(538,192),(538,688),(539,160),(539,192),(539,687),(540,157),(540,327),(541,158),(541,328),(542,173),(542,243),(543,174),(543,244),(544,179),(544,389),(544,957),(545,180),(545,390),(545,958),(546,159),(546,505),(546,687),(547,160),(547,506),(547,688),(548,140),(548,451),(548,681),(549,141),(549,452),(549,682),(550,136),(550,281),(550,665),(551,137),(551,282),(551,666),(552,233),(552,271),(552,954),(553,234),(553,272),(553,953),(554,142),(554,427),(554,701),(555,142),(555,428),(555,702),(556,507),(556,508),(557,205),(557,513),(558,206),(558,514),(559,385),(559,443),(559,821),(560,386),(560,444),(560,822),(561,128),(561,255),(561,717),(562,129),(562,256),(562,718),(563,437),(563,519),(563,793),(563,963),(564,438),(564,520),(564,794),(564,964),(565,439),(565,513),(565,793),(566,440),(566,514),(566,794),(567,161),(567,193),(567,825),(568,162),(568,194),(568,826),(569,339),(569,397),(569,787),(570,340),(570,398),(570,788),(571,343),(571,353),(572,344),(572,354),(573,583),(573,652),(574,584),(574,653),(575,339),(575,421),(575,917),(576,340),(576,422),(576,918),(577,289),(577,433),(578,290),(578,434),(579,197),(579,331),(580,198),(580,332),(581,369),(581,632),(582,370),(582,633),(583,381),(583,497),(584,382),(584,498),(585,331),(585,427),(585,987),(586,332),(586,428),(586,988),(587,134),(587,279),(588,135),(588,280),(589,606),(589,640),(589,811),(590,607),(590,641),(590,812),(591,263),(591,264),(592,59),(592,515),(592,650),(593,60),(593,516),(593,651),(594,53),(594,517),(594,634),(595,54),(595,518),(595,635),(596,287),(596,305),(597,288),(597,306),(598,303),(598,594),(599,304),(599,595),(600,557),(600,565),(600,699),(601,558),(601,566),(601,700),(602,341),(602,567),(602,709),(603,342),(603,568),(603,710),(604,266),(604,538),(605,265),(605,539),(606,273),(606,333),(606,939),(607,274),(607,334),(607,940),(608,503),(608,571),(609,504),(609,572),(610,269),(610,596),(610,949),(611,270),(611,597),(611,950),(612,95),(612,281),(612,375),(612,915),(613,96),(613,282),(613,376),(613,916),(614,277),(614,511),(614,725),(615,278),(615,512),(615,726),(616,138),(616,151),(616,733),(617,139),(617,152),(617,734),(618,209),(618,338),(619,210),(619,337),(620,249),(620,632),(621,250),(621,633),(622,267),(622,493),(623,268),(623,494),(624,373),(624,493),(625,374),(625,494),(626,183),(626,217),(627,184),(627,218),(628,127),(628,203),(628,747),(629,127),(629,204),(629,748),(630,183),(630,391),(630,809),(631,184),(631,392),(631,810),(632,285),(632,429),(632,540),(633,286),(633,430),(633,541),(634,313),(634,550),(634,612),(634,957),(635,314),(635,551),(635,613),(635,958),(636,140),(636,223),(636,347),(637,141),(637,224),(637,348),(638,234),(638,235),(638,662),(639,233),(639,236),(639,663),(640,333),(640,395),(640,534),(640,803),(641,334),(641,396),(641,535),(641,804),(642,261),(642,569),(642,575),(643,262),(643,570),(643,576),(644,347),(644,453),(644,544),(644,681),(645,348),(645,454),(645,545),(645,682),(646,323),(646,553),(646,638),(647,324),(647,552),(647,639),(648,143),(648,145),(648,297),(649,144),(649,146),(649,298),(650,319),(650,479),(650,521),(651,320),(651,480),(651,522),(652,237),(652,497),(652,499),(653,238),(653,498),(653,500),(654,463),(654,501),(654,530),(655,464),(655,502),(655,531),(656,101),(656,548),(656,636),(656,644),(657,102),(657,549),(657,637),(657,645),(658,383),(658,441),(658,561),(658,831),(659,384),(659,442),(659,562),(659,832),(660,431),(660,536),(660,640),(661,432),(661,537),(661,641),(662,293),(662,295),(662,361),(662,648),(663,294),(663,296),(663,362),(663,649),(664,538),(664,539),(664,546),(664,547),(665,891),(665,955),(665,965),(666,892),(666,956),(666,966),(667,213),(667,879),(667,902),(668,214),(668,880),(668,901),(669,591),(669,959),(670,591),(670,960),(671,219),(671,887),(671,903),(672,220),(672,888),(672,904),(673,571),(673,931),(674,572),(674,932),(675,833),(675,941),(676,834),(676,942),(677,201),(677,873),(678,202),(678,874),(679,923),(680,924),(681,589),(681,660),(681,929),(682,590),(682,661),(682,930),(683,231),(683,911),(684,232),(684,912),(685,847),(685,945),(686,848),(686,946),(687,579),(687,585),(687,771),(688,580),(688,586),(688,772),(689,801),(690,802),(691,817),(691,903),(692,818),(692,904),(693,573),(693,735),(694,574),(694,736),(695,626),(695,630),(695,815),(696,627),(696,631),(696,816),(697,13),(697,811),(698,14),(698,812),(699,205),(699,793),(700,206),(700,794),(701,721),(701,920),(701,921),(702,722),(702,919),(702,922),(703,215),(703,787),(703,845),(704,216),(704,788),(704,846),(705,725),(705,925),(706,726),(706,926),(707,727),(707,891),(708,728),(708,892),(709,825),(709,837),(710,826),(710,838),(711,751),(711,757),(711,845),(712,752),(712,758),(712,846),(713,733),(713,743),(713,873),(714,734),(714,744),(714,874),(715,901),(715,990),(716,902),(716,989),(717,861),(717,879),(717,895),(718,862),(718,880),(718,896),(719,877),(720,878),(721,887),(721,981),(721,1015),(722,888),(722,982),(722,1015),(723,889),(724,890),(725,581),(725,620),(726,582),(726,621),(727,622),(727,1006),(728,623),(728,1007),(729,207),(729,1022),(730,208),(730,1023),(731,985),(731,995),(732,986),(732,996),(733,893),(733,975),(733,991),(734,894),(734,976),(734,992),(735,583),(735,971),(736,584),(736,972),(737,587),(737,977),(737,1013),(738,588),(738,978),(738,1014),(739,969),(739,995),(740,970),(740,996),(741,851),(741,905),(742,852),(742,906),(743,847),(743,869),(743,893),(744,848),(744,870),(744,894),(745,843),(745,1016),(746,844),(746,1017),(747,618),(747,865),(747,980),(748,619),(748,866),(748,979),(749,853),(750,854),(751,628),(751,863),(751,911),(752,629),(752,864),(752,912),(753,200),(753,1020),(754,199),(754,1021),(755,867),(756,868),(757,859),(757,911),(758,860),(758,912),(759,1012),(760,1012),(761,895),(761,1013),(762,896),(762,1014),(763,973),(764,974),(765,837),(766,838),(767,843),(767,905),(768,844),(768,906),(769,221),(769,1016),(770,222),(770,1017),(771,197),(771,987),(772,198),(772,988),(773,839),(774,840),(775,835),(776,836),(777,2),(778,1),(779,577),(780,578),(781,839),(781,841),(782,840),(782,842),(783,775),(783,875),(784,776),(784,876),(785,737),(786,738),(787,729),(787,855),(788,730),(788,856),(789,755),(789,897),(790,756),(790,898),(791,211),(791,821),(792,212),(792,822),(793,823),(793,993),(793,999),(794,824),(794,994),(794,1000),(795,827),(795,917),(796,828),(796,918),(797,783),(797,833),(798,784),(798,834),(799,719),(800,720),(801,797),(802,798),(803,575),(803,795),(803,983),(804,576),(804,796),(804,984),(805,227),(805,819),(806,228),(806,820),(807,11),(807,779),(808,12),(808,780),(809,624),(809,777),(810,625),(810,778),(811,642),(811,803),(812,643),(812,804),(813,785),(814,786),(815,217),(815,809),(816,218),(816,810),(817,829),(817,1008),(818,830),(818,1009),(819,807),(819,1010),(820,808),(820,1011),(821,741),(821,841),(822,742),(822,842),(823,731),(823,739),(824,732),(824,740),(825,745),(825,767),(825,883),(826,746),(826,768),(826,884),(827,805),(827,813),(828,806),(828,814),(829,773),(829,781),(830,774),(830,782),(831,717),(831,761),(831,849),(832,718),(832,762),(832,850),(833,875),(834,876),(835,897),(836,898),(837,883),(838,884),(839,899),(840,900),(841,851),(841,899),(841,1016),(842,852),(842,900),(842,1017),(843,799),(843,1004),(844,800),(844,1005),(845,855),(845,859),(845,863),(846,856),(846,860),(846,864),(847,881),(847,1018),(848,882),(848,1019),(849,861),(849,1013),(850,862),(850,1014),(851,857),(851,1004),(852,858),(852,1005),(853,877),(854,878),(855,885),(855,1022),(856,886),(856,1023),(857,853),(858,854),(859,885),(859,909),(860,886),(860,910),(861,907),(861,1001),(862,908),(862,1002),(863,203),(863,909),(863,1022),(864,204),(864,910),(864,1023),(865,209),(865,1003),(866,210),(866,1003),(867,889),(868,890),(869,849),(869,881),(870,850),(870,882),(871,221),(871,1020),(872,222),(872,1021),(873,831),(873,869),(874,832),(874,870),(875,789),(875,835),(876,790),(876,836),(877,1012),(878,1012),(879,871),(879,907),(880,872),(880,908),(881,1013),(882,1014),(883,905),(883,1016),(884,906),(884,1017),(885,1010),(886,1011),(887,791),(887,1008),(888,792),(888,1009),(889,760),(890,759),(891,763),(891,1006),(892,764),(892,1007),(893,716),(893,1018),(894,715),(894,1019),(895,769),(895,871),(895,1001),(896,770),(896,872),(896,1002),(897,723),(897,867),(898,724),(898,868),(899,749),(899,857),(900,750),(900,858),(901,754),(901,908),(902,753),(902,907),(903,765),(903,1008),(904,766),(904,1009),(905,1004),(906,1005),(907,1020),(908,1021),(909,865),(909,1010),(910,866),(910,1011),(911,747),(911,909),(912,748),(912,910),(913,39),(913,683),(913,751),(914,40),(914,684),(914,752),(915,55),(915,727),(915,937),(916,56),(916,728),(916,938),(917,37),(917,805),(917,947),(918,38),(918,806),(918,948),(919,346),(919,1015),(920,345),(920,1015),(921,345),(921,542),(921,981),(922,346),(922,543),(922,982),(923,341),(924,342),(925,399),(925,581),(926,400),(926,582),(927,289),(928,290),(929,431),(929,811),(930,432),(930,812),(931,343),(931,679),(932,344),(932,680),(933,291),(934,292),(935,403),(935,677),(935,713),(936,404),(936,678),(936,714),(937,481),(937,1006),(938,482),(938,1007),(939,401),(939,703),(939,711),(940,402),(940,704),(940,712),(941,471),(941,875),(941,961),(942,472),(942,876),(942,962),(943,473),(943,713),(943,951),(944,474),(944,714),(944,952),(945,465),(945,1018),(946,466),(946,1019),(947,487),(947,819),(947,1022),(948,488),(948,820),(948,1023),(949,305),(949,614),(949,705),(950,306),(950,615),(950,706),(951,475),(951,873),(952,476),(952,874),(953,372),(953,492),(953,967),(954,371),(954,491),(954,968),(955,253),(955,495),(955,1006),(956,254),(956,496),(956,1007),(957,375),(957,665),(957,707),(958,376),(958,666),(958,708),(959,264),(959,840),(960,263),(960,839),(961,239),(961,835),(962,240),(962,836),(963,317),(963,701),(963,987),(964,318),(964,702),(964,988),(965,253),(965,763),(966,254),(966,764),(967,312),(967,736),(967,935),(968,311),(968,735),(968,936),(969,259),(970,260),(971,381),(971,801),(972,382),(972,802),(973,413),(974,414),(975,257),(975,1018),(976,258),(976,1019),(977,279),(977,1001),(978,280),(978,1002),(979,337),(979,1003),(980,338),(980,1003),(981,243),(981,669),(981,791),(982,244),(982,670),(982,792),(983,421),(983,827),(984,422),(984,828),(985,377),(985,559),(985,1008),(986,378),(986,560),(986,1009),(987,241),(987,671),(987,721),(988,242),(988,672),(988,722),(989,388),(989,753),(990,387),(990,754),(991,257),(991,667),(991,716),(992,258),(992,668),(992,715),(993,329),(993,739),(994,330),(994,740),(995,259),(995,559),(996,260),(996,560),(997,335),(997,425),(998,336),(998,426),(999,329),(999,351),(999,731),(1000,330),(1000,352),(1000,732),(1001,997),(1001,1020),(1002,998),(1002,1021),(1003,927),(1003,928),(1004,719),(1004,853),(1005,720),(1005,854),(1006,509),(1006,973),(1007,510),(1007,974),(1008,781),(1008,821),(1009,782),(1009,822),(1010,779),(1011,780),(1013,134),(1013,1001),(1014,135),(1014,1002),(1015,669),(1015,670),(1016,749),(1016,1004),(1017,750),(1017,1005),(1018,247),(1018,989),(1019,248),(1019,990),(1020,335),(1021,336),(1022,379),(1022,1010),(1023,380),(1023,1011)],1024)
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,5],[6]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> ? = 1 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,14),(0,15),(1,26),(2,9),(2,25),(3,13),(3,24),(4,16),(5,11),(5,12),(6,69),(7,64),(8,49),(9,6),(9,52),(10,20),(10,59),(11,19),(11,65),(12,17),(12,65),(13,18),(13,22),(13,71),(14,2),(14,29),(15,3),(15,29),(16,39),(16,55),(17,56),(17,68),(18,57),(18,66),(19,58),(19,67),(20,51),(20,53),(21,40),(21,41),(22,57),(22,72),(23,28),(23,54),(23,70),(24,58),(24,71),(25,52),(25,56),(26,27),(26,69),(26,72),(27,45),(27,60),(28,34),(28,48),(28,50),(29,1),(30,76),(31,75),(32,77),(33,74),(33,80),(34,73),(34,78),(35,73),(35,77),(36,82),(37,79),(38,80),(39,74),(40,7),(40,76),(41,8),(41,76),(42,55),(42,79),(43,59),(44,39),(45,53),(45,83),(46,33),(46,81),(47,32),(47,83),(48,42),(48,78),(49,44),(50,46),(50,73),(51,44),(52,10),(52,43),(53,62),(54,34),(54,75),(55,36),(55,74),(56,43),(57,63),(58,61),(59,49),(59,51),(60,35),(60,50),(60,83),(61,31),(61,70),(62,33),(62,38),(63,32),(63,35),(64,37),(64,42),(65,21),(65,67),(65,68),(66,31),(66,54),(67,30),(67,40),(68,30),(68,41),(69,45),(69,47),(70,48),(70,64),(70,75),(71,23),(71,61),(71,66),(72,47),(72,60),(72,63),(73,81),(74,82),(75,37),(75,78),(76,4),(77,38),(77,81),(78,79),(79,36),(80,82),(81,80),(83,46),(83,62),(83,77)],84)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,3,4,5],[4,4,5],[5,6],[6]]
=> ([(0,10),(0,11),(1,13),(1,14),(2,21),(3,20),(4,14),(4,20),(5,17),(6,16),(7,18),(8,12),(9,1),(9,22),(10,5),(10,15),(11,8),(11,15),(12,3),(12,4),(13,21),(14,19),(15,9),(15,17),(17,22),(18,16),(19,18),(20,7),(20,19),(21,6),(22,2),(22,13)],23)
=> ? = 1 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,1],[2,2,2,3,4],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,4),(0,14),(0,15),(1,29),(2,6),(2,27),(3,13),(3,28),(4,10),(4,11),(5,102),(6,5),(6,87),(7,31),(7,99),(8,25),(8,98),(9,26),(9,72),(10,23),(10,109),(11,24),(11,33),(11,109),(12,22),(12,108),(13,17),(13,18),(13,107),(14,2),(14,38),(15,3),(15,38),(16,84),(16,85),(17,90),(17,111),(18,90),(18,101),(19,82),(19,83),(20,81),(20,100),(21,34),(21,89),(21,104),(22,86),(22,106),(23,91),(23,110),(24,80),(24,105),(25,78),(25,79),(26,52),(26,88),(27,87),(27,103),(28,91),(28,107),(29,30),(29,102),(29,111),(30,63),(30,96),(31,44),(31,71),(31,76),(32,37),(32,51),(32,77),(33,80),(33,94),(33,103),(34,62),(34,74),(34,75),(35,133),(36,9),(37,8),(37,127),(38,1),(39,118),(40,117),(40,122),(41,119),(42,119),(42,126),(43,116),(43,127),(44,112),(44,120),(45,112),(45,113),(46,114),(46,116),(47,121),(48,122),(49,125),(50,113),(51,20),(51,114),(51,127),(52,117),(53,72),(54,88),(54,121),(55,45),(55,132),(56,48),(57,84),(57,124),(58,76),(58,134),(59,66),(60,56),(61,54),(62,55),(62,126),(63,86),(63,129),(64,53),(64,134),(65,47),(66,70),(67,40),(68,40),(68,123),(69,41),(69,129),(70,39),(70,128),(71,54),(71,120),(72,52),(73,44),(73,118),(74,58),(74,115),(75,82),(75,115),(75,126),(76,68),(76,112),(77,16),(77,57),(77,114),(78,65),(79,61),(80,59),(80,130),(81,36),(82,60),(82,131),(83,53),(83,131),(84,78),(84,128),(85,73),(85,128),(86,92),(87,12),(87,95),(88,49),(88,117),(89,19),(89,75),(89,133),(90,97),(91,93),(92,45),(92,50),(93,35),(93,104),(94,46),(94,77),(94,130),(95,66),(95,108),(96,42),(96,62),(96,129),(97,41),(97,42),(98,36),(98,79),(99,61),(99,71),(100,58),(100,64),(101,35),(101,89),(102,63),(102,69),(103,59),(103,95),(104,74),(104,100),(104,133),(105,37),(105,43),(105,130),(106,39),(106,73),(107,21),(107,93),(107,101),(108,70),(108,85),(108,106),(109,32),(109,94),(109,105),(109,110),(110,43),(110,46),(110,51),(111,69),(111,96),(111,97),(112,123),(113,48),(113,123),(114,7),(114,124),(115,131),(115,134),(116,124),(117,125),(118,47),(118,120),(119,50),(119,132),(120,121),(121,49),(122,125),(123,122),(124,99),(126,60),(126,132),(127,81),(127,98),(128,65),(128,118),(129,55),(129,92),(129,119),(130,57),(130,116),(131,67),(132,56),(132,113),(133,64),(133,83),(133,115),(134,67),(134,68)],135)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,3,4,5],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> [[1,1,1,1,1,1],[2,3,4,5,6],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,25),(0,26),(0,87),(0,88),(1,76),(2,75),(3,105),(3,594),(4,106),(4,595),(5,587),(6,588),(7,557),(8,558),(9,23),(9,103),(9,367),(10,24),(10,104),(10,368),(11,97),(11,577),(12,98),(12,578),(13,99),(13,642),(14,100),(14,643),(15,45),(15,449),(16,46),(16,450),(17,71),(17,662),(18,72),(18,663),(19,51),(19,526),(20,52),(20,527),(21,73),(21,93),(21,656),(22,74),(22,94),(22,657),(23,65),(23,69),(23,592),(24,66),(24,70),(24,593),(25,21),(25,67),(25,365),(26,22),(26,68),(26,366),(27,117),(27,620),(27,652),(28,118),(28,621),(28,653),(29,473),(29,616),(30,474),(30,617),(31,471),(31,477),(32,472),(32,478),(33,119),(33,655),(33,660),(34,120),(34,654),(34,661),(35,465),(35,618),(36,466),(36,619),(37,227),(37,487),(38,228),(38,488),(39,231),(39,628),(40,232),(40,629),(41,463),(41,606),(42,464),(42,607),(43,121),(43,608),(43,624),(44,122),(44,609),(44,625),(45,78),(45,604),(45,664),(46,77),(46,605),(46,664),(47,123),(47,467),(47,600),(48,124),(48,468),(48,601),(49,596),(49,626),(50,597),(50,627),(51,459),(51,469),(52,460),(52,470),(53,225),(53,612),(54,226),(54,613),(55,111),(55,481),(55,622),(56,112),(56,482),(56,623),(57,115),(57,475),(57,658),(58,116),(58,476),(58,659),(59,107),(59,479),(59,610),(60,108),(60,480),(60,611),(61,109),(61,229),(61,630),(62,110),(62,230),(62,631),(63,83),(63,485),(63,614),(64,84),(64,486),(64,615),(65,81),(65,489),(65,650),(66,82),(66,490),(66,651),(67,113),(67,598),(67,656),(68,114),(68,599),(68,657),(69,489),(69,647),(70,490),(70,646),(71,457),(71,648),(72,458),(72,649),(73,85),(73,483),(73,644),(74,86),(74,484),(74,645),(75,79),(75,461),(75,602),(76,80),(76,462),(76,603),(77,265),(77,546),(78,266),(78,547),(79,423),(79,567),(80,424),(80,568),(81,521),(81,604),(82,522),(82,605),(83,277),(83,519),(84,278),(84,520),(85,523),(85,544),(86,524),(86,545),(87,9),(87,366),(87,525),(88,10),(88,365),(88,525),(89,437),(89,439),(89,554),(90,438),(90,440),(90,555),(91,363),(91,550),(91,553),(92,364),(92,551),(92,552),(93,483),(93,548),(93,556),(94,484),(94,549),(94,556),(95,357),(95,361),(95,455),(96,358),(96,362),(96,456),(97,195),(97,433),(97,435),(98,196),(98,434),(98,436),(99,189),(99,359),(99,569),(100,190),(100,360),(100,570),(101,223),(101,451),(101,453),(102,224),(102,452),(102,454),(103,283),(103,301),(103,592),(104,284),(104,302),(104,593),(105,91),(105,523),(105,634),(105,646),(106,92),(106,524),(106,635),(106,647),(107,269),(107,271),(107,275),(108,270),(108,272),(108,276),(109,273),(109,391),(109,395),(110,274),(110,392),(110,396),(111,132),(111,267),(111,528),(112,133),(112,268),(112,529),(113,301),(113,303),(113,636),(114,302),(114,304),(114,637),(115,393),(115,445),(115,561),(116,394),(116,446),(116,562),(117,249),(117,251),(117,499),(118,250),(118,252),(118,500),(119,299),(119,502),(119,536),(120,300),(120,501),(120,537),(121,171),(121,373),(121,503),(122,172),(122,374),(122,504),(123,89),(123,505),(123,563),(123,565),(124,90),(124,506),(124,564),(124,566),(125,859),(125,860),(126,857),(126,858),(127,979),(127,980),(128,861),(128,977),(129,862),(129,978),(130,843),(130,851),(131,844),(131,852),(132,679),(132,691),(133,680),(133,692),(134,997),(135,998),(136,891),(136,937),(137,892),(137,938),(138,893),(138,945),(139,894),(139,946),(140,697),(140,929),(141,698),(141,930),(142,919),(142,920),(143,677),(143,951),(144,678),(144,952),(145,677),(145,931),(146,678),(146,932),(147,699),(148,700),(149,689),(149,971),(150,690),(150,972),(151,945),(151,975),(152,946),(152,976),(153,709),(153,765),(154,710),(154,766),(155,761),(155,881),(156,762),(156,882),(157,775),(157,961),(158,776),(158,962),(159,771),(159,963),(160,772),(160,964),(161,769),(161,883),(162,770),(162,884),(163,767),(164,768),(165,763),(165,983),(166,764),(166,984),(167,775),(167,901),(168,776),(168,902),(169,759),(169,877),(170,760),(170,878),(171,685),(171,813),(172,686),(172,814),(173,774),(173,959),(174,773),(174,960),(175,773),(175,879),(176,774),(176,880),(177,755),(178,756),(179,707),(179,815),(180,708),(180,816),(181,683),(181,757),(182,684),(182,758),(183,19),(183,777),(184,20),(184,778),(185,819),(185,885),(186,820),(186,886),(187,817),(187,887),(188,818),(188,888),(189,689),(189,787),(190,690),(190,788),(191,759),(191,760),(192,771),(192,772),(193,745),(193,769),(194,746),(194,770),(195,723),(195,799),(196,724),(196,800),(197,671),(198,672),(199,867),(200,868),(201,869),(202,870),(203,865),(203,979),(204,866),(204,980),(205,999),(206,1000),(207,833),(208,834),(209,928),(210,927),(211,741),(212,742),(213,753),(213,871),(214,754),(214,872),(215,729),(215,863),(216,730),(216,864),(217,777),(218,778),(219,765),(219,791),(220,766),(220,792),(221,749),(222,750),(223,49),(223,695),(223,697),(224,50),(224,696),(224,698),(225,7),(225,915),(226,8),(226,916),(227,5),(227,807),(228,6),(228,808),(229,43),(229,809),(230,44),(230,810),(231,35),(231,747),(232,36),(232,748),(233,296),(233,693),(233,968),(234,295),(234,694),(234,967),(235,293),(235,967),(236,294),(236,968),(237,349),(237,992),(238,350),(238,991),(239,195),(239,897),(240,196),(240,898),(241,219),(241,981),(242,220),(242,982),(243,211),(243,959),(244,212),(244,960),(245,191),(245,889),(246,191),(246,890),(247,388),(248,387),(249,540),(249,969),(250,541),(250,970),(251,542),(251,969),(252,543),(252,970),(253,407),(253,973),(254,408),(254,974),(255,193),(255,895),(255,977),(256,194),(256,896),(256,978),(257,213),(257,989),(258,214),(258,990),(259,443),(260,444),(261,397),(261,917),(262,398),(262,918),(263,126),(263,899),(264,126),(264,900),(265,457),(265,687),(266,458),(266,688),(267,321),(267,679),(268,322),(268,680),(269,287),(269,705),(270,288),(270,706),(271,371),(271,693),(272,372),(272,694),(273,401),(273,913),(274,402),(274,914),(275,485),(275,693),(275,705),(276,486),(276,694),(276,706),(277,307),(277,993),(278,308),(278,994),(279,435),(279,997),(280,436),(280,998),(281,455),(281,937),(281,955),(282,456),(282,938),(282,956),(283,449),(283,933),(284,450),(284,934),(285,327),(285,941),(286,328),(286,942),(287,359),(287,925),(288,360),(288,926),(289,245),(290,246),(291,600),(292,601),(293,145),(293,673),(293,935),(294,146),(294,674),(294,936),(295,143),(295,935),(295,943),(296,144),(296,936),(296,944),(297,132),(297,931),(297,951),(298,133),(298,932),(298,952),(299,492),(299,965),(300,491),(300,966),(301,515),(301,933),(302,516),(302,934),(303,517),(303,933),(304,518),(304,934),(305,511),(305,925),(306,512),(306,926),(307,315),(308,316),(309,189),(309,703),(310,190),(310,704),(311,404),(311,971),(312,403),(312,972),(313,136),(313,707),(313,915),(314,137),(314,708),(314,916),(315,461),(316,462),(317,241),(317,921),(318,242),(318,922),(319,147),(319,949),(320,148),(320,950),(321,602),(321,923),(322,603),(322,924),(323,235),(323,953),(324,236),(324,954),(325,415),(325,703),(326,416),(326,704),(327,163),(327,961),(328,164),(328,962),(329,153),(329,995),(330,154),(330,996),(331,187),(331,671),(331,691),(332,188),(332,672),(332,692),(333,181),(333,711),(333,913),(334,182),(334,712),(334,914),(335,169),(336,170),(337,177),(337,927),(338,178),(338,928),(339,185),(339,855),(339,947),(340,186),(340,856),(340,948),(341,161),(341,837),(342,162),(342,838),(343,155),(343,923),(344,156),(344,924),(345,173),(345,669),(346,174),(346,670),(347,179),(347,695),(347,929),(348,180),(348,696),(348,930),(349,176),(349,668),(350,175),(350,667),(351,153),(351,903),(351,985),(352,154),(352,904),(352,986),(353,155),(353,847),(353,975),(354,156),(354,848),(354,976),(355,167),(355,668),(356,168),(356,667),(357,608),(357,673),(358,609),(358,674),(359,399),(359,689),(360,400),(360,690),(361,297),(361,673),(361,943),(362,298),(362,674),(362,944),(363,299),(363,665),(363,953),(364,300),(364,666),(364,954),(365,3),(365,598),(366,4),(366,599),(367,15),(367,283),(368,16),(368,284),(369,429),(369,675),(369,797),(370,430),(370,676),(370,798),(371,149),(371,735),(372,150),(372,736),(373,411),(373,813),(374,412),(374,814),(375,357),(375,727),(375,955),(376,358),(376,728),(376,956),(377,385),(377,781),(378,386),(378,782),(379,477),(379,779),(380,478),(380,780),(381,447),(381,797),(382,448),(382,798),(383,128),(383,737),(383,849),(384,129),(384,738),(384,850),(385,130),(385,745),(385,841),(386,131),(386,746),(386,842),(387,199),(387,755),(388,200),(388,756),(389,229),(389,815),(390,230),(390,816),(391,261),(391,795),(392,262),(392,796),(393,377),(393,829),(394,378),(394,830),(395,419),(395,795),(395,913),(396,420),(396,796),(396,914),(397,459),(397,729),(397,947),(398,460),(398,730),(398,948),(399,369),(399,801),(400,370),(400,802),(401,215),(401,751),(402,216),(402,752),(403,201),(403,743),(404,202),(404,744),(405,409),(405,731),(406,410),(406,732),(407,138),(407,685),(407,743),(408,139),(408,686),(408,744),(409,393),(409,817),(409,985),(410,394),(410,818),(410,986),(411,441),(411,785),(412,442),(412,786),(413,383),(413,785),(414,384),(414,786),(415,125),(415,758),(415,845),(416,125),(416,757),(416,846),(417,251),(417,739),(417,921),(418,252),(418,740),(418,922),(419,171),(419,683),(419,827),(420,172),(420,684),(420,828),(421,185),(421,805),(422,186),(422,806),(423,163),(423,825),(424,164),(424,826),(425,169),(425,719),(426,170),(426,720),(427,187),(427,721),(427,919),(428,188),(428,722),(428,920),(429,157),(429,783),(429,941),(430,158),(430,784),(430,942),(431,165),(431,803),(432,166),(432,804),(433,245),(433,723),(434,246),(434,724),(435,425),(435,799),(436,426),(436,800),(437,417),(437,701),(437,823),(438,418),(438,702),(438,824),(439,405),(439,823),(440,406),(440,824),(441,255),(441,737),(441,761),(442,256),(442,738),(442,762),(443,130),(443,741),(443,767),(444,131),(444,742),(444,768),(445,175),(445,717),(445,829),(446,176),(446,718),(446,830),(447,167),(447,715),(447,783),(448,168),(448,716),(448,784),(449,47),(449,291),(450,48),(450,292),(451,41),(451,589),(451,697),(452,42),(452,590),(452,698),(453,61),(453,389),(453,695),(454,62),(454,390),(454,696),(455,29),(455,495),(455,943),(456,30),(456,496),(456,944),(457,579),(458,580),(459,207),(459,675),(460,208),(460,676),(461,423),(461,709),(462,424),(462,710),(463,309),(463,939),(464,310),(464,940),(465,247),(466,248),(467,563),(467,699),(468,564),(468,700),(469,285),(469,675),(470,286),(470,676),(471,239),(471,789),(472,240),(472,790),(473,238),(473,733),(474,237),(474,734),(475,445),(475,831),(476,446),(476,832),(477,177),(477,789),(478,178),(478,790),(479,63),(479,275),(479,949),(480,64),(480,276),(480,950),(481,57),(481,509),(482,58),(482,510),(483,33),(483,507),(483,681),(484,34),(484,508),(484,682),(485,27),(485,573),(485,725),(486,28),(486,574),(486,726),(487,31),(487,379),(487,807),(488,32),(488,380),(488,808),(489,18),(489,639),(490,17),(490,638),(491,149),(491,311),(492,150),(492,312),(493,321),(493,411),(494,322),(494,412),(495,407),(495,616),(495,713),(496,408),(496,617),(496,714),(497,355),(497,447),(497,992),(498,356),(498,448),(498,991),(499,349),(499,355),(500,350),(500,356),(501,309),(501,325),(502,310),(502,326),(503,151),(503,353),(503,685),(504,152),(504,354),(504,686),(505,554),(505,585),(505,963),(506,555),(506,586),(506,964),(507,532),(507,655),(508,532),(508,654),(509,413),(509,658),(510,414),(510,659),(511,307),(511,526),(512,308),(512,527),(513,405),(513,528),(513,999),(514,406),(514,529),(514,1000),(515,319),(515,610),(516,320),(516,611),(517,225),(517,313),(518,226),(518,314),(519,317),(519,417),(519,993),(520,318),(520,418),(520,994),(521,147),(521,467),(522,148),(522,468),(523,323),(523,363),(523,957),(524,324),(524,364),(524,958),(525,367),(525,368),(526,315),(526,469),(527,316),(527,470),(528,351),(528,409),(528,691),(529,352),(529,410),(529,692),(530,325),(530,533),(530,939),(531,326),(531,533),(531,940),(532,530),(532,531),(533,415),(533,416),(533,711),(533,712),(534,181),(534,419),(534,983),(535,182),(535,420),(535,984),(536,165),(536,534),(536,965),(537,166),(537,535),(537,966),(538,159),(538,192),(538,688),(539,160),(539,192),(539,687),(540,157),(540,327),(541,158),(541,328),(542,173),(542,243),(543,174),(543,244),(544,179),(544,389),(544,957),(545,180),(545,390),(545,958),(546,159),(546,505),(546,687),(547,160),(547,506),(547,688),(548,140),(548,451),(548,681),(549,141),(549,452),(549,682),(550,136),(550,281),(550,665),(551,137),(551,282),(551,666),(552,233),(552,271),(552,954),(553,234),(553,272),(553,953),(554,142),(554,427),(554,701),(555,142),(555,428),(555,702),(556,507),(556,508),(557,205),(557,513),(558,206),(558,514),(559,385),(559,443),(559,821),(560,386),(560,444),(560,822),(561,128),(561,255),(561,717),(562,129),(562,256),(562,718),(563,437),(563,519),(563,793),(563,963),(564,438),(564,520),(564,794),(564,964),(565,439),(565,513),(565,793),(566,440),(566,514),(566,794),(567,161),(567,193),(567,825),(568,162),(568,194),(568,826),(569,339),(569,397),(569,787),(570,340),(570,398),(570,788),(571,343),(571,353),(572,344),(572,354),(573,583),(573,652),(574,584),(574,653),(575,339),(575,421),(575,917),(576,340),(576,422),(576,918),(577,289),(577,433),(578,290),(578,434),(579,197),(579,331),(580,198),(580,332),(581,369),(581,632),(582,370),(582,633),(583,381),(583,497),(584,382),(584,498),(585,331),(585,427),(585,987),(586,332),(586,428),(586,988),(587,134),(587,279),(588,135),(588,280),(589,606),(589,640),(589,811),(590,607),(590,641),(590,812),(591,263),(591,264),(592,59),(592,515),(592,650),(593,60),(593,516),(593,651),(594,53),(594,517),(594,634),(595,54),(595,518),(595,635),(596,287),(596,305),(597,288),(597,306),(598,303),(598,594),(599,304),(599,595),(600,557),(600,565),(600,699),(601,558),(601,566),(601,700),(602,341),(602,567),(602,709),(603,342),(603,568),(603,710),(604,266),(604,538),(605,265),(605,539),(606,273),(606,333),(606,939),(607,274),(607,334),(607,940),(608,503),(608,571),(609,504),(609,572),(610,269),(610,596),(610,949),(611,270),(611,597),(611,950),(612,95),(612,281),(612,375),(612,915),(613,96),(613,282),(613,376),(613,916),(614,277),(614,511),(614,725),(615,278),(615,512),(615,726),(616,138),(616,151),(616,733),(617,139),(617,152),(617,734),(618,209),(618,338),(619,210),(619,337),(620,249),(620,632),(621,250),(621,633),(622,267),(622,493),(623,268),(623,494),(624,373),(624,493),(625,374),(625,494),(626,183),(626,217),(627,184),(627,218),(628,127),(628,203),(628,747),(629,127),(629,204),(629,748),(630,183),(630,391),(630,809),(631,184),(631,392),(631,810),(632,285),(632,429),(632,540),(633,286),(633,430),(633,541),(634,313),(634,550),(634,612),(634,957),(635,314),(635,551),(635,613),(635,958),(636,140),(636,223),(636,347),(637,141),(637,224),(637,348),(638,234),(638,235),(638,662),(639,233),(639,236),(639,663),(640,333),(640,395),(640,534),(640,803),(641,334),(641,396),(641,535),(641,804),(642,261),(642,569),(642,575),(643,262),(643,570),(643,576),(644,347),(644,453),(644,544),(644,681),(645,348),(645,454),(645,545),(645,682),(646,323),(646,553),(646,638),(647,324),(647,552),(647,639),(648,143),(648,145),(648,297),(649,144),(649,146),(649,298),(650,319),(650,479),(650,521),(651,320),(651,480),(651,522),(652,237),(652,497),(652,499),(653,238),(653,498),(653,500),(654,463),(654,501),(654,530),(655,464),(655,502),(655,531),(656,101),(656,548),(656,636),(656,644),(657,102),(657,549),(657,637),(657,645),(658,383),(658,441),(658,561),(658,831),(659,384),(659,442),(659,562),(659,832),(660,431),(660,536),(660,640),(661,432),(661,537),(661,641),(662,293),(662,295),(662,361),(662,648),(663,294),(663,296),(663,362),(663,649),(664,538),(664,539),(664,546),(664,547),(665,891),(665,955),(665,965),(666,892),(666,956),(666,966),(667,213),(667,879),(667,902),(668,214),(668,880),(668,901),(669,591),(669,959),(670,591),(670,960),(671,219),(671,887),(671,903),(672,220),(672,888),(672,904),(673,571),(673,931),(674,572),(674,932),(675,833),(675,941),(676,834),(676,942),(677,201),(677,873),(678,202),(678,874),(679,923),(680,924),(681,589),(681,660),(681,929),(682,590),(682,661),(682,930),(683,231),(683,911),(684,232),(684,912),(685,847),(685,945),(686,848),(686,946),(687,579),(687,585),(687,771),(688,580),(688,586),(688,772),(689,801),(690,802),(691,817),(691,903),(692,818),(692,904),(693,573),(693,735),(694,574),(694,736),(695,626),(695,630),(695,815),(696,627),(696,631),(696,816),(697,13),(697,811),(698,14),(698,812),(699,205),(699,793),(700,206),(700,794),(701,721),(701,920),(701,921),(702,722),(702,919),(702,922),(703,215),(703,787),(703,845),(704,216),(704,788),(704,846),(705,725),(705,925),(706,726),(706,926),(707,727),(707,891),(708,728),(708,892),(709,825),(709,837),(710,826),(710,838),(711,751),(711,757),(711,845),(712,752),(712,758),(712,846),(713,733),(713,743),(713,873),(714,734),(714,744),(714,874),(715,901),(715,990),(716,902),(716,989),(717,861),(717,879),(717,895),(718,862),(718,880),(718,896),(719,877),(720,878),(721,887),(721,981),(721,1015),(722,888),(722,982),(722,1015),(723,889),(724,890),(725,581),(725,620),(726,582),(726,621),(727,622),(727,1006),(728,623),(728,1007),(729,207),(729,1022),(730,208),(730,1023),(731,985),(731,995),(732,986),(732,996),(733,893),(733,975),(733,991),(734,894),(734,976),(734,992),(735,583),(735,971),(736,584),(736,972),(737,587),(737,977),(737,1013),(738,588),(738,978),(738,1014),(739,969),(739,995),(740,970),(740,996),(741,851),(741,905),(742,852),(742,906),(743,847),(743,869),(743,893),(744,848),(744,870),(744,894),(745,843),(745,1016),(746,844),(746,1017),(747,618),(747,865),(747,980),(748,619),(748,866),(748,979),(749,853),(750,854),(751,628),(751,863),(751,911),(752,629),(752,864),(752,912),(753,200),(753,1020),(754,199),(754,1021),(755,867),(756,868),(757,859),(757,911),(758,860),(758,912),(759,1012),(760,1012),(761,895),(761,1013),(762,896),(762,1014),(763,973),(764,974),(765,837),(766,838),(767,843),(767,905),(768,844),(768,906),(769,221),(769,1016),(770,222),(770,1017),(771,197),(771,987),(772,198),(772,988),(773,839),(774,840),(775,835),(776,836),(777,2),(778,1),(779,577),(780,578),(781,839),(781,841),(782,840),(782,842),(783,775),(783,875),(784,776),(784,876),(785,737),(786,738),(787,729),(787,855),(788,730),(788,856),(789,755),(789,897),(790,756),(790,898),(791,211),(791,821),(792,212),(792,822),(793,823),(793,993),(793,999),(794,824),(794,994),(794,1000),(795,827),(795,917),(796,828),(796,918),(797,783),(797,833),(798,784),(798,834),(799,719),(800,720),(801,797),(802,798),(803,575),(803,795),(803,983),(804,576),(804,796),(804,984),(805,227),(805,819),(806,228),(806,820),(807,11),(807,779),(808,12),(808,780),(809,624),(809,777),(810,625),(810,778),(811,642),(811,803),(812,643),(812,804),(813,785),(814,786),(815,217),(815,809),(816,218),(816,810),(817,829),(817,1008),(818,830),(818,1009),(819,807),(819,1010),(820,808),(820,1011),(821,741),(821,841),(822,742),(822,842),(823,731),(823,739),(824,732),(824,740),(825,745),(825,767),(825,883),(826,746),(826,768),(826,884),(827,805),(827,813),(828,806),(828,814),(829,773),(829,781),(830,774),(830,782),(831,717),(831,761),(831,849),(832,718),(832,762),(832,850),(833,875),(834,876),(835,897),(836,898),(837,883),(838,884),(839,899),(840,900),(841,851),(841,899),(841,1016),(842,852),(842,900),(842,1017),(843,799),(843,1004),(844,800),(844,1005),(845,855),(845,859),(845,863),(846,856),(846,860),(846,864),(847,881),(847,1018),(848,882),(848,1019),(849,861),(849,1013),(850,862),(850,1014),(851,857),(851,1004),(852,858),(852,1005),(853,877),(854,878),(855,885),(855,1022),(856,886),(856,1023),(857,853),(858,854),(859,885),(859,909),(860,886),(860,910),(861,907),(861,1001),(862,908),(862,1002),(863,203),(863,909),(863,1022),(864,204),(864,910),(864,1023),(865,209),(865,1003),(866,210),(866,1003),(867,889),(868,890),(869,849),(869,881),(870,850),(870,882),(871,221),(871,1020),(872,222),(872,1021),(873,831),(873,869),(874,832),(874,870),(875,789),(875,835),(876,790),(876,836),(877,1012),(878,1012),(879,871),(879,907),(880,872),(880,908),(881,1013),(882,1014),(883,905),(883,1016),(884,906),(884,1017),(885,1010),(886,1011),(887,791),(887,1008),(888,792),(888,1009),(889,760),(890,759),(891,763),(891,1006),(892,764),(892,1007),(893,716),(893,1018),(894,715),(894,1019),(895,769),(895,871),(895,1001),(896,770),(896,872),(896,1002),(897,723),(897,867),(898,724),(898,868),(899,749),(899,857),(900,750),(900,858),(901,754),(901,908),(902,753),(902,907),(903,765),(903,1008),(904,766),(904,1009),(905,1004),(906,1005),(907,1020),(908,1021),(909,865),(909,1010),(910,866),(910,1011),(911,747),(911,909),(912,748),(912,910),(913,39),(913,683),(913,751),(914,40),(914,684),(914,752),(915,55),(915,727),(915,937),(916,56),(916,728),(916,938),(917,37),(917,805),(917,947),(918,38),(918,806),(918,948),(919,346),(919,1015),(920,345),(920,1015),(921,345),(921,542),(921,981),(922,346),(922,543),(922,982),(923,341),(924,342),(925,399),(925,581),(926,400),(926,582),(927,289),(928,290),(929,431),(929,811),(930,432),(930,812),(931,343),(931,679),(932,344),(932,680),(933,291),(934,292),(935,403),(935,677),(935,713),(936,404),(936,678),(936,714),(937,481),(937,1006),(938,482),(938,1007),(939,401),(939,703),(939,711),(940,402),(940,704),(940,712),(941,471),(941,875),(941,961),(942,472),(942,876),(942,962),(943,473),(943,713),(943,951),(944,474),(944,714),(944,952),(945,465),(945,1018),(946,466),(946,1019),(947,487),(947,819),(947,1022),(948,488),(948,820),(948,1023),(949,305),(949,614),(949,705),(950,306),(950,615),(950,706),(951,475),(951,873),(952,476),(952,874),(953,372),(953,492),(953,967),(954,371),(954,491),(954,968),(955,253),(955,495),(955,1006),(956,254),(956,496),(956,1007),(957,375),(957,665),(957,707),(958,376),(958,666),(958,708),(959,264),(959,840),(960,263),(960,839),(961,239),(961,835),(962,240),(962,836),(963,317),(963,701),(963,987),(964,318),(964,702),(964,988),(965,253),(965,763),(966,254),(966,764),(967,312),(967,736),(967,935),(968,311),(968,735),(968,936),(969,259),(970,260),(971,381),(971,801),(972,382),(972,802),(973,413),(974,414),(975,257),(975,1018),(976,258),(976,1019),(977,279),(977,1001),(978,280),(978,1002),(979,337),(979,1003),(980,338),(980,1003),(981,243),(981,669),(981,791),(982,244),(982,670),(982,792),(983,421),(983,827),(984,422),(984,828),(985,377),(985,559),(985,1008),(986,378),(986,560),(986,1009),(987,241),(987,671),(987,721),(988,242),(988,672),(988,722),(989,388),(989,753),(990,387),(990,754),(991,257),(991,667),(991,716),(992,258),(992,668),(992,715),(993,329),(993,739),(994,330),(994,740),(995,259),(995,559),(996,260),(996,560),(997,335),(997,425),(998,336),(998,426),(999,329),(999,351),(999,731),(1000,330),(1000,352),(1000,732),(1001,997),(1001,1020),(1002,998),(1002,1021),(1003,927),(1003,928),(1004,719),(1004,853),(1005,720),(1005,854),(1006,509),(1006,973),(1007,510),(1007,974),(1008,781),(1008,821),(1009,782),(1009,822),(1010,779),(1011,780),(1013,134),(1013,1001),(1014,135),(1014,1002),(1015,669),(1015,670),(1016,749),(1016,1004),(1017,750),(1017,1005),(1018,247),(1018,989),(1019,248),(1019,990),(1020,335),(1021,336),(1022,379),(1022,1010),(1023,380),(1023,1011)],1024)
=> ? = 3 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,4),(0,7),(1,5),(1,17),(2,6),(2,8),(2,18),(3,1),(3,13),(4,2),(4,14),(5,10),(5,15),(6,11),(6,16),(7,13),(7,14),(8,12),(8,15),(8,16),(9,21),(10,19),(11,20),(12,19),(12,20),(13,17),(14,18),(15,9),(15,19),(16,9),(16,20),(17,10),(18,11),(18,12),(19,21),(20,21)],22)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,4,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,4,5],[4,5,6],[5,6],[6]]
=> ([(0,2),(0,3),(0,10),(1,9),(1,11),(1,31),(2,1),(2,24),(3,6),(3,8),(3,30),(4,18),(4,27),(5,19),(5,20),(6,17),(6,29),(7,15),(7,21),(8,12),(8,26),(8,29),(9,16),(9,28),(10,24),(10,30),(11,14),(11,23),(11,28),(12,13),(12,22),(12,23),(13,32),(13,33),(14,33),(14,39),(15,37),(16,39),(17,38),(18,36),(19,34),(20,34),(21,5),(21,37),(22,21),(22,32),(23,25),(23,33),(24,31),(25,27),(25,35),(26,13),(26,38),(27,19),(27,36),(28,4),(28,25),(28,39),(29,7),(29,22),(29,38),(30,17),(30,26),(31,14),(31,16),(32,37),(33,35),(35,36),(36,34),(37,20),(38,15),(38,32),(39,18),(39,35)],40)
=> ? = 1 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,4,5,6],[4,5,6],[5,6],[6]]
=> ([(0,5),(0,16),(0,17),(0,28),(1,23),(1,58),(2,19),(2,53),(3,11),(3,21),(3,80),(4,10),(4,20),(4,79),(5,12),(5,13),(5,81),(6,48),(6,73),(7,49),(7,74),(8,24),(8,75),(8,86),(9,25),(9,76),(9,87),(10,14),(10,71),(10,77),(11,15),(11,72),(11,78),(12,26),(12,69),(12,88),(13,27),(13,70),(13,88),(14,31),(14,82),(15,32),(15,83),(16,4),(16,36),(16,54),(17,3),(17,36),(17,55),(18,44),(18,67),(18,68),(19,39),(19,40),(19,43),(20,34),(20,56),(20,77),(21,35),(21,57),(21,78),(22,45),(22,46),(22,47),(23,18),(23,50),(23,82),(23,83),(24,41),(24,61),(24,63),(25,42),(25,62),(25,64),(26,37),(26,56),(26,84),(27,38),(27,57),(27,85),(28,54),(28,55),(28,81),(29,90),(29,118),(30,89),(30,117),(31,93),(32,94),(33,116),(33,124),(34,91),(34,122),(35,92),(35,123),(36,1),(36,121),(37,91),(37,110),(38,92),(38,111),(39,90),(39,104),(40,90),(40,105),(41,98),(41,108),(42,99),(42,109),(43,104),(43,105),(44,106),(44,107),(45,102),(45,103),(46,6),(46,89),(46,102),(47,7),(47,89),(47,103),(48,100),(49,101),(50,44),(50,93),(50,94),(51,39),(51,119),(52,40),(52,120),(53,43),(54,79),(54,121),(55,80),(55,121),(56,59),(56,91),(57,60),(57,92),(58,50),(59,86),(59,112),(60,87),(60,113),(61,65),(61,108),(62,66),(62,109),(63,51),(63,98),(64,52),(64,99),(65,29),(65,96),(66,29),(66,97),(67,61),(67,106),(67,124),(68,62),(68,107),(68,124),(69,37),(69,95),(70,38),(70,95),(71,31),(71,122),(72,32),(72,123),(73,51),(73,100),(74,52),(74,101),(75,41),(75,114),(76,42),(76,115),(77,8),(77,59),(77,122),(78,9),(78,60),(78,123),(79,34),(79,71),(80,35),(80,72),(81,69),(81,70),(82,33),(82,67),(82,93),(83,33),(83,68),(83,94),(84,30),(84,46),(84,110),(85,30),(85,47),(85,111),(86,63),(86,73),(86,114),(87,64),(87,74),(87,115),(88,22),(88,84),(88,85),(88,95),(89,2),(89,127),(90,125),(91,112),(92,113),(93,106),(93,116),(94,107),(94,116),(95,45),(95,110),(95,111),(96,118),(97,118),(98,119),(99,120),(100,119),(101,120),(102,48),(102,127),(103,49),(103,127),(104,125),(105,125),(106,108),(106,126),(107,109),(107,126),(108,96),(109,97),(110,102),(110,117),(111,103),(111,117),(112,114),(113,115),(114,98),(114,100),(115,99),(115,101),(116,126),(117,127),(118,125),(119,104),(120,105),(121,58),(122,75),(122,112),(123,76),(123,113),(124,65),(124,66),(124,126),(126,96),(126,97),(127,53)],128)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,5,6],[5,6],[6]]
=> ([(0,3),(0,4),(0,8),(1,7),(1,21),(2,6),(2,20),(3,2),(3,18),(4,1),(4,19),(5,12),(5,13),(6,11),(6,16),(7,11),(7,17),(8,5),(8,18),(8,19),(9,23),(10,23),(11,22),(12,14),(13,15),(14,9),(15,10),(16,9),(16,22),(17,10),(17,22),(18,12),(18,20),(19,13),(19,21),(20,14),(20,16),(21,15),(21,17),(22,23)],24)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
Description
The length of the shortest maximal antichain in a poset.
The following 37 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001532The leading coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001960The number of descents of a permutation minus one if its first entry is not one. St000914The sum of the values of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001866The nesting alignments of a signed permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000983The length of the longest alternating subword. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St000982The length of the longest constant subword. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001394The genus of a permutation. St000877The depth of the binary word interpreted as a path. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001821The sorting index of a signed permutation. St001823The Stasinski-Voll length of a signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001946The number of descents in a parking function. St001948The number of augmented double ascents of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000381The largest part of an integer composition. St000392The length of the longest run of ones in a binary word. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!