searching the database
Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000454
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 1 => [1] => ([],1)
=> 0
1 => 1 => [1] => ([],1)
=> 0
00 => 01 => [1,1] => ([(0,1)],2)
=> 1
01 => 10 => [1,1] => ([(0,1)],2)
=> 1
10 => 11 => [2] => ([],2)
=> 0
11 => 11 => [2] => ([],2)
=> 0
001 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
010 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
100 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
110 => 111 => [3] => ([],3)
=> 0
111 => 111 => [3] => ([],3)
=> 0
0010 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0011 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0101 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0110 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
1001 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1110 => 1111 => [4] => ([],4)
=> 0
1111 => 1111 => [4] => ([],4)
=> 0
00000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
00001 => 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
00101 => 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00110 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
00111 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01100 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01110 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
01111 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
10010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
10011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
11010 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11011 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11100 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11101 => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
11110 => 11111 => [5] => ([],5)
=> 0
11111 => 11111 => [5] => ([],5)
=> 0
001010 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001011 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001100 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001110 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001111 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
010110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
010111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
011001 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
011110 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
011111 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
100101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001644
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Values
0 => 1 => [1] => ([],1)
=> 0
1 => 1 => [1] => ([],1)
=> 0
00 => 01 => [1,1] => ([(0,1)],2)
=> 1
01 => 10 => [1,1] => ([(0,1)],2)
=> 1
10 => 11 => [2] => ([],2)
=> 0
11 => 11 => [2] => ([],2)
=> 0
001 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
010 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
100 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
110 => 111 => [3] => ([],3)
=> 0
111 => 111 => [3] => ([],3)
=> 0
0010 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0011 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0101 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0110 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
1001 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1110 => 1111 => [4] => ([],4)
=> 0
1111 => 1111 => [4] => ([],4)
=> 0
00000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
00001 => 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
00101 => 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00110 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
00111 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01100 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01110 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
01111 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
10010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
10011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
11010 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
11011 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
11100 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
11101 => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
11110 => 11111 => [5] => ([],5)
=> 0
11111 => 11111 => [5] => ([],5)
=> 0
001010 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001011 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001100 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001110 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001111 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
010110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
010111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
011001 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
011110 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
011111 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
100101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
100110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
100111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
110110 => 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
110111 => 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
111110 => 111111 => [6] => ([],6)
=> 0
111111 => 111111 => [6] => ([],6)
=> 0
1101110 => 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
1101111 => 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
Description
The dimension of a graph.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St001270
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 86%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 86%
Values
0 => 1 => [1] => ([],1)
=> 0
1 => 1 => [1] => ([],1)
=> 0
00 => 01 => [1,1] => ([(0,1)],2)
=> 1
01 => 10 => [1,1] => ([(0,1)],2)
=> 1
10 => 11 => [2] => ([],2)
=> 0
11 => 11 => [2] => ([],2)
=> 0
001 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
010 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
100 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
110 => 111 => [3] => ([],3)
=> 0
111 => 111 => [3] => ([],3)
=> 0
0010 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0011 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0101 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0110 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
1001 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1110 => 1111 => [4] => ([],4)
=> 0
1111 => 1111 => [4] => ([],4)
=> 0
00000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
00001 => 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
00101 => 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00110 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
00111 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01100 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01110 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
01111 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
10010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
10011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
11010 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11011 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11100 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11101 => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
11110 => 11111 => [5] => ([],5)
=> 0
11111 => 11111 => [5] => ([],5)
=> 0
001010 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001011 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001100 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001110 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001111 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
010110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
010111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
011001 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
011110 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
011111 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
100101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
0010101 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0010110 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
0010111 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
0011001 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0101010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0101011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0101100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0110010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0110011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
1001010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
1001011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
1001100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
Description
The bandwidth of a graph.
The bandwidth of a graph is the smallest number $k$ such that the vertices of the graph can be
ordered as $v_1,\dots,v_n$ with $k \cdot d(v_i,v_j) \geq |i-j|$.
We adopt the convention that the singleton graph has bandwidth $0$, consistent with the bandwith of the complete graph on $n$ vertices having bandwidth $n-1$, but in contrast to any path graph on more than one vertex having bandwidth $1$. The bandwidth of a disconnected graph is the maximum of the bandwidths of the connected components.
Matching statistic: St001962
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 86%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 86%
Values
0 => 1 => [1] => ([],1)
=> 0
1 => 1 => [1] => ([],1)
=> 0
00 => 01 => [1,1] => ([(0,1)],2)
=> 1
01 => 10 => [1,1] => ([(0,1)],2)
=> 1
10 => 11 => [2] => ([],2)
=> 0
11 => 11 => [2] => ([],2)
=> 0
001 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
010 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
100 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
110 => 111 => [3] => ([],3)
=> 0
111 => 111 => [3] => ([],3)
=> 0
0010 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0011 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0101 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0110 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
1001 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1110 => 1111 => [4] => ([],4)
=> 0
1111 => 1111 => [4] => ([],4)
=> 0
00000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
00001 => 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
00101 => 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00110 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
00111 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01100 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01110 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
01111 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
10010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
10011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
11010 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11011 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11100 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
11101 => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
11110 => 11111 => [5] => ([],5)
=> 0
11111 => 11111 => [5] => ([],5)
=> 0
001010 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001011 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001100 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
001110 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001111 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
010110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
010111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
011001 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
011110 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
011111 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
100101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
0010101 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0010110 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
0010111 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
0011001 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0101010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0101011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0101100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0110010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
0110011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
1001010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
1001011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
1001100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
Description
The proper pathwidth of a graph.
The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the [[St000482|zero forcing number]] $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$.
The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy
$$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Matching statistic: St001645
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Values
0 => 1 => [1] => ([],1)
=> 1 = 0 + 1
1 => 1 => [1] => ([],1)
=> 1 = 0 + 1
00 => 01 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
01 => 10 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
10 => 11 => [2] => ([],2)
=> ? = 0 + 1
11 => 11 => [2] => ([],2)
=> ? = 0 + 1
001 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
010 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
100 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
110 => 111 => [3] => ([],3)
=> ? = 0 + 1
111 => 111 => [3] => ([],3)
=> ? = 0 + 1
0010 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
0011 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
0101 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
0110 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
1001 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
1110 => 1111 => [4] => ([],4)
=> ? = 0 + 1
1111 => 1111 => [4] => ([],4)
=> ? = 0 + 1
00000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
00001 => 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
00101 => 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
00110 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
00111 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
01010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
01011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
01100 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
01110 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
01111 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
10010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
10011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
11010 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
11011 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
11100 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
11101 => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
11110 => 11111 => [5] => ([],5)
=> ? = 0 + 1
11111 => 11111 => [5] => ([],5)
=> ? = 0 + 1
001010 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
001011 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
001100 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
001110 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
001111 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
010101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
010110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
010111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
011001 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
011110 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
011111 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
100101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
100110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
100111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
110110 => 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
110111 => 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
111110 => 111111 => [6] => ([],6)
=> ? = 0 + 1
111111 => 111111 => [6] => ([],6)
=> ? = 0 + 1
0010101 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
0010110 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
0010111 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
0011001 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
0011110 => 0101111 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
0011111 => 0101111 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
0101010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
0101011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
0101100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
0101110 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
0101111 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
0110010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
0110011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
0111110 => 1011111 => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
0111111 => 1011111 => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
1001010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
1001011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
1001100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
1001110 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
1001111 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
1101110 => 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
1101111 => 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
1111110 => 1111111 => [7] => ([],7)
=> ? = 0 + 1
1111111 => 1111111 => [7] => ([],7)
=> ? = 0 + 1
Description
The pebbling number of a connected graph.
Matching statistic: St001488
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
St001488: Skew partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 57%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
St001488: Skew partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 57%
Values
0 => 1 => [1,1] => [[1,1],[]]
=> 2 = 0 + 2
1 => 1 => [1,1] => [[1,1],[]]
=> 2 = 0 + 2
00 => 01 => [2,1] => [[2,2],[1]]
=> 3 = 1 + 2
01 => 10 => [1,2] => [[2,1],[]]
=> 3 = 1 + 2
10 => 11 => [1,1,1] => [[1,1,1],[]]
=> 2 = 0 + 2
11 => 11 => [1,1,1] => [[1,1,1],[]]
=> 2 = 0 + 2
001 => 010 => [2,2] => [[3,2],[1]]
=> 4 = 2 + 2
010 => 101 => [1,2,1] => [[2,2,1],[1]]
=> 4 = 2 + 2
011 => 101 => [1,2,1] => [[2,2,1],[1]]
=> 4 = 2 + 2
100 => 101 => [1,2,1] => [[2,2,1],[1]]
=> 4 = 2 + 2
110 => 111 => [1,1,1,1] => [[1,1,1,1],[]]
=> 2 = 0 + 2
111 => 111 => [1,1,1,1] => [[1,1,1,1],[]]
=> 2 = 0 + 2
0010 => 0101 => [2,2,1] => [[3,3,2],[2,1]]
=> 5 = 3 + 2
0011 => 0101 => [2,2,1] => [[3,3,2],[2,1]]
=> 5 = 3 + 2
0101 => 1010 => [1,2,2] => [[3,2,1],[1]]
=> 5 = 3 + 2
0110 => 1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> 4 = 2 + 2
0111 => 1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> 4 = 2 + 2
1001 => 1010 => [1,2,2] => [[3,2,1],[1]]
=> 5 = 3 + 2
1110 => 1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> 2 = 0 + 2
1111 => 1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> 2 = 0 + 2
00000 => 00001 => [5,1] => [[5,5],[4]]
=> ? = 2 + 2
00001 => 00010 => [4,2] => [[5,4],[3]]
=> ? = 3 + 2
00101 => 01010 => [2,2,2] => [[4,3,2],[2,1]]
=> ? = 4 + 2
00110 => 01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ? = 3 + 2
00111 => 01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ? = 3 + 2
01010 => 10101 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
01011 => 10101 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
01100 => 10101 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
01110 => 10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ? = 2 + 2
01111 => 10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ? = 2 + 2
10010 => 10101 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
10011 => 10101 => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
11010 => 11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ? = 3 + 2
11011 => 11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ? = 3 + 2
11100 => 11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ? = 3 + 2
11101 => 11110 => [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ? = 2 + 2
11110 => 11111 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ? = 0 + 2
11111 => 11111 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ? = 0 + 2
001010 => 010101 => [2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ? = 5 + 2
001011 => 010101 => [2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ? = 5 + 2
001100 => 010101 => [2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ? = 5 + 2
001110 => 010111 => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ? = 3 + 2
001111 => 010111 => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ? = 3 + 2
010101 => 101010 => [1,2,2,2] => [[4,3,2,1],[2,1]]
=> ? = 5 + 2
010110 => 101011 => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ? = 4 + 2
010111 => 101011 => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ? = 4 + 2
011001 => 101010 => [1,2,2,2] => [[4,3,2,1],[2,1]]
=> ? = 5 + 2
011110 => 101111 => [1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> ? = 2 + 2
011111 => 101111 => [1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> ? = 2 + 2
100101 => 101010 => [1,2,2,2] => [[4,3,2,1],[2,1]]
=> ? = 5 + 2
100110 => 101011 => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ? = 4 + 2
100111 => 101011 => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> ? = 4 + 2
110110 => 111011 => [1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ? = 3 + 2
110111 => 111011 => [1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ? = 3 + 2
111110 => 111111 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ? = 0 + 2
111111 => 111111 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ? = 0 + 2
0010101 => 0101010 => [2,2,2,2] => [[5,4,3,2],[3,2,1]]
=> ? = 6 + 2
0010110 => 0101011 => [2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]]
=> ? = 5 + 2
0010111 => 0101011 => [2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]]
=> ? = 5 + 2
0011001 => 0101010 => [2,2,2,2] => [[5,4,3,2],[3,2,1]]
=> ? = 6 + 2
0011110 => 0101111 => [2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]]
=> ? = 3 + 2
0011111 => 0101111 => [2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]]
=> ? = 3 + 2
0101010 => 1010101 => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]]
=> ? = 6 + 2
0101011 => 1010101 => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]]
=> ? = 6 + 2
0101100 => 1010101 => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]]
=> ? = 6 + 2
0101110 => 1010111 => [1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]]
=> ? = 4 + 2
0101111 => 1010111 => [1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]]
=> ? = 4 + 2
0110010 => 1010101 => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]]
=> ? = 6 + 2
0110011 => 1010101 => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]]
=> ? = 6 + 2
0111110 => 1011111 => [1,2,1,1,1,1,1] => [[2,2,2,2,2,2,1],[1,1,1,1,1]]
=> ? = 2 + 2
Description
The number of corners of a skew partition.
This is also known as the number of removable cells of the skew partition.
Matching statistic: St000632
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000632: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 43%
Mp00262: Binary words —poset of factors⟶ Posets
St000632: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 43%
Values
0 => 1 => ([(0,1)],2)
=> 0
1 => 1 => ([(0,1)],2)
=> 0
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
01 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
10 => 11 => ([(0,2),(2,1)],3)
=> 0
11 => 11 => ([(0,2),(2,1)],3)
=> 0
001 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
010 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
011 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
100 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
110 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0
111 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0
0010 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
0011 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
0101 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
0110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0111 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
1001 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
1110 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
1111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
00000 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
00001 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
00101 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
00110 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
00111 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
01010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
01011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
01100 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
01110 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
01111 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
10010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
10011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
11010 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11011 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11100 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11101 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
11110 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
11111 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
001010 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
001011 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
001100 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
001110 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3
001111 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3
010101 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
010110 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4
010111 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4
011001 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
011110 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
011111 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
100101 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
100110 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4
100111 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4
110110 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3
110111 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3
111110 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
111111 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
0010101 => 0101010 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0010110 => 0101011 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5
0010111 => 0101011 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5
0011001 => 0101010 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0011110 => 0101111 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3
0011111 => 0101111 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3
0101010 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0101011 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0101100 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0101110 => 1010111 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 4
0101111 => 1010111 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 4
0110010 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
Description
The jump number of the poset.
A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Matching statistic: St001633
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00280: Binary words —path rowmotion⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001633: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 43%
Mp00262: Binary words —poset of factors⟶ Posets
St001633: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 43%
Values
0 => 1 => ([(0,1)],2)
=> 0
1 => 0 => ([(0,1)],2)
=> 0
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
01 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
10 => 11 => ([(0,2),(2,1)],3)
=> 0
11 => 00 => ([(0,2),(2,1)],3)
=> 0
001 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
010 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
011 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
100 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
110 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0
111 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 0
0010 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
0011 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
0101 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
0110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0111 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
1001 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 3
1110 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
1111 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
00000 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
00001 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
00101 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
00110 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
00111 => 01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
01010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
01011 => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
01100 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 4
01110 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
01111 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
10010 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 4
10011 => 01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 4
11010 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11011 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 3
11100 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
11101 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
11110 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
11111 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
001010 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
001011 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5
001100 => 010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 5
001110 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3
001111 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 3
010101 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
010110 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4
010111 => 101000 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4
011001 => 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ? = 5
011110 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
011111 => 100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
100101 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 5
100110 => 011011 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 4
100111 => 011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4
110110 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3
110111 => 111000 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 3
111110 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
111111 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
0010101 => 0101010 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0010110 => 0101011 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5
0010111 => 0101000 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 5
0011001 => 0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 6
0011110 => 0101111 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3
0011111 => 0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 3
0101010 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0101011 => 1010100 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 6
0101100 => 1010011 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 6
0101110 => 1010111 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 4
0101111 => 1010000 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 4
0110010 => 1001101 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 6
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St000307
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000307: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 43%
Mp00262: Binary words —poset of factors⟶ Posets
St000307: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 43%
Values
0 => 1 => ([(0,1)],2)
=> 1 = 0 + 1
1 => 1 => ([(0,1)],2)
=> 1 = 0 + 1
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
01 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
10 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
11 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
001 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3 = 2 + 1
010 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3 = 2 + 1
011 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3 = 2 + 1
100 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3 = 2 + 1
110 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
111 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
0010 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 + 1
0011 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 + 1
0101 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 + 1
0110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 + 1
0111 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 + 1
1001 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 + 1
1110 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
1111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
00000 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 + 1
00001 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
00101 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4 + 1
00110 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3 + 1
00111 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3 + 1
01010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4 + 1
01011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4 + 1
01100 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4 + 1
01110 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
01111 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
10010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4 + 1
10011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4 + 1
11010 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
11011 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
11100 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
11101 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 + 1
11110 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
11111 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
001010 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 + 1
001011 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 + 1
001100 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 + 1
001110 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3 + 1
001111 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3 + 1
010101 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 + 1
010110 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4 + 1
010111 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4 + 1
011001 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 + 1
011110 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2 + 1
011111 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2 + 1
100101 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 + 1
100110 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4 + 1
100111 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4 + 1
110110 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3 + 1
110111 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3 + 1
111110 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
111111 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
0010101 => 0101010 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6 + 1
0010110 => 0101011 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5 + 1
0010111 => 0101011 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5 + 1
0011001 => 0101010 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6 + 1
0011110 => 0101111 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3 + 1
0011111 => 0101111 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3 + 1
0101010 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6 + 1
0101011 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6 + 1
0101100 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6 + 1
0101110 => 1010111 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 4 + 1
0101111 => 1010111 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 4 + 1
0110010 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6 + 1
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Matching statistic: St000848
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00280: Binary words —path rowmotion⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000848: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 43%
Mp00262: Binary words —poset of factors⟶ Posets
St000848: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 43%
Values
0 => 1 => ([(0,1)],2)
=> 0
1 => 0 => ([(0,1)],2)
=> 0
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
01 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
10 => 11 => ([(0,2),(2,1)],3)
=> 0
11 => 00 => ([(0,2),(2,1)],3)
=> 0
001 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
010 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
011 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
100 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
110 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0
111 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 0
0010 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
0011 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
0101 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
0110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0111 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
1001 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 3
1110 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
1111 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
00000 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
00001 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
00101 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
00110 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
00111 => 01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
01010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 4
01011 => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
01100 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 4
01110 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
01111 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
10010 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 4
10011 => 01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 4
11010 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11011 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 3
11100 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
11101 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
11110 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
11111 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
001010 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
001011 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5
001100 => 010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 5
001110 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3
001111 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 3
010101 => 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
010110 => 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 4
010111 => 101000 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4
011001 => 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ? = 5
011110 => 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
011111 => 100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
100101 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 5
100110 => 011011 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 4
100111 => 011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4
110110 => 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3
110111 => 111000 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 3
111110 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
111111 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
0010101 => 0101010 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0010110 => 0101011 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5
0010111 => 0101000 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 5
0011001 => 0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 6
0011110 => 0101111 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3
0011111 => 0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 3
0101010 => 1010101 => ([(0,1),(0,2),(1,12),(1,13),(2,12),(2,13),(4,3),(5,3),(6,10),(6,11),(7,10),(7,11),(8,6),(8,7),(9,6),(9,7),(10,4),(10,5),(11,4),(11,5),(12,8),(12,9),(13,8),(13,9)],14)
=> ? = 6
0101011 => 1010100 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 6
0101100 => 1010011 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 6
0101110 => 1010111 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 4
Description
The balance constant multiplied with the number of linear extensions of a poset.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion $P(x,y)$ of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. The balance constant of a poset is $\max\min(P(x,y), P(y,x)).$
Kislitsyn [1] conjectured that every poset which is not a chain is $1/3$-balanced. Brightwell, Felsner and Trotter [2] show that it is at least $(1-\sqrt 5)/10$-balanced.
Olson and Sagan [3] exhibit various posets that are $1/2$-balanced.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!