Identifier
-
Mp00234:
Binary words
—valleys-to-peaks⟶
Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤ
Values
0 => 1 => [1] => ([],1) => 0
1 => 1 => [1] => ([],1) => 0
00 => 01 => [1,1] => ([(0,1)],2) => 1
01 => 10 => [1,1] => ([(0,1)],2) => 1
10 => 11 => [2] => ([],2) => 0
11 => 11 => [2] => ([],2) => 0
001 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
010 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
100 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
110 => 111 => [3] => ([],3) => 0
111 => 111 => [3] => ([],3) => 0
0010 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
0011 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
0101 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
0110 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
1001 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
1110 => 1111 => [4] => ([],4) => 0
1111 => 1111 => [4] => ([],4) => 0
00000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
00001 => 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
00101 => 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
00110 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
00111 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
01010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01100 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01110 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
01111 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
10010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
11010 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
11011 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
11100 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
11101 => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
11110 => 11111 => [5] => ([],5) => 0
11111 => 11111 => [5] => ([],5) => 0
001010 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
001011 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
001100 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
001110 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
001111 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
010101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
010111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
011001 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011110 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
011111 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
100101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
100111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
110110 => 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
110111 => 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
111110 => 111111 => [6] => ([],6) => 0
111111 => 111111 => [6] => ([],6) => 0
0010101 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
0010110 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
0010111 => 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
0011001 => 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
0011110 => 0101111 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
0011111 => 0101111 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
0101010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
0101011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
0101100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
0101110 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
0101111 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
0110010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
0110011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
0111110 => 1011111 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
0111111 => 1011111 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
1001010 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
1001011 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
1001100 => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
1001110 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
1001111 => 1010111 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
1101110 => 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
1101111 => 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
1111110 => 1111111 => [7] => ([],7) => 0
1111111 => 1111111 => [7] => ([],7) => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
Map
valleys-to-peaks
Description
Return the binary word with every valley replaced by a peak.
A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. This map replaces every valley with a peak.
A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. This map replaces every valley with a peak.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!