searching the database
Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000454
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00013: Binary trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> ([],1)
=> 0
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 0
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000849
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000849: Posets ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 75%
Mp00013: Binary trees —to poset⟶ Posets
St000849: Posets ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 75%
Values
[1] => [.,.]
=> ([],1)
=> ? = 0
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> 0
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 0
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 0
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 0
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,3,4,6,7,5] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,3,4,7,6,5] => [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,3,5,6,7,4] => [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,3,5,7,6,4] => [.,[.,[.,[[.,[[.,.],.]],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,3,6,7,5,4] => [.,[.,[.,[[[.,[.,.]],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,3,7,6,5,4] => [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,4,5,3,6,7] => [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,4,5,3,7,6] => [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,4,5,6,7,3] => [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,4,5,7,6,3] => [.,[.,[[.,[.,[[.,.],.]]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,4,6,3,5,7] => [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,4,6,3,7,5] => [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,4,6,7,5,3] => [.,[.,[[.,[[.,[.,.]],.]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,4,7,3,5,6] => [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,4,7,3,6,5] => [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,4,7,6,5,3] => [.,[.,[[.,[[[.,.],.],.]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,5,4,3,6,7] => [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,5,4,3,7,6] => [.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,5,6,3,4,7] => [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,5,6,3,7,4] => [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,5,6,7,4,3] => [.,[.,[[[.,[.,[.,.]]],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,5,7,3,4,6] => [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,5,7,3,6,4] => [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,5,7,6,4,3] => [.,[.,[[[.,[[.,.],.]],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,6,4,3,5,7] => [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,6,4,3,7,5] => [.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,6,5,3,4,7] => [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,6,5,3,7,4] => [.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,6,7,3,4,5] => [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,6,7,3,5,4] => [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,6,7,5,4,3] => [.,[.,[[[[.,[.,.]],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,2,7,4,3,5,6] => [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,7,4,3,6,5] => [.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,7,5,3,4,6] => [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,7,5,3,6,4] => [.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,7,6,3,4,5] => [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,7,6,3,5,4] => [.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
[1,2,7,6,5,4,3] => [.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,4,5,6,7,2] => [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,4,5,7,6,2] => [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,4,6,7,5,2] => [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,4,7,6,5,2] => [.,[[.,[.,[[[.,.],.],.]]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,5,6,7,4,2] => [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,5,7,6,4,2] => [.,[[.,[[.,[[.,.],.]],.]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,6,7,5,4,2] => [.,[[.,[[[.,[.,.]],.],.]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,3,7,6,5,4,2] => [.,[[.,[[[[.,.],.],.],.]],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[1,4,5,3,6,7,2] => [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2
Description
The number of 1/3-balanced pairs in a poset.
A pair of elements x,y of a poset is α-balanced if the proportion of linear extensions where x comes before y is between α and 1−α.
Kislitsyn [1] conjectured that every poset which is not a chain has a 1/3-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a (1−√5)/10-balanced pair exists in posets which are not chains.
Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a 1/3-balanced pair.
Matching statistic: St001681
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001681: Lattices ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001681: Lattices ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Values
[1] => [.,.]
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,5,4,2,1] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,2,1,3,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,2,1,5,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,1,2,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,1,5,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[4,5,1,2,3] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,5,1,3,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,2,1,3,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,2,1,4,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,1,2,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,1,4,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[5,4,1,2,3] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,4,1,3,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 2 = 1 + 1
[1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,6,4,5] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 2 = 1 + 1
[1,3,4,2,5,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,4,2,6,5] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,2,4,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,2,6,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,6,2,4,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,6,2,5,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,3,2,6,5] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,5,2,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,5,2,6,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,6,2,3,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,6,2,5,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,3,2,4,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,3,2,6,4] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,2,3,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,2,6,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,6,2,3,4] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,6,2,4,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,3,2,4,5] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,3,2,5,4] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,4,2,3,5] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,4,2,5,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,5,2,3,4] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,5,2,4,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[2,1,3,4,5,6] => [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2 + 1
[2,1,3,4,6,5] => [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2 + 1
Description
The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element.
For example, the pentagon lattice has three such sets: the bottom element, and the two antichains of size two. The cube is the smallest lattice which has such sets of three different sizes: the bottom element, six antichains of size two and one antichain of size three.
Matching statistic: St001876
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Values
[1] => [.,.]
=> ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,5,4,2,1] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[4,2,1,3,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,2,1,5,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,3,1,2,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,3,1,5,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[4,5,1,2,3] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,5,1,3,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[5,2,1,3,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,2,1,4,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,3,1,2,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,3,1,4,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[5,4,1,2,3] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,4,1,3,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 1
[1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,3,6,4,5] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 1
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,3,4,2,5,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,4,2,6,5] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,5,2,4,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,5,2,6,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,6,2,4,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,6,2,5,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,3,2,6,5] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,5,2,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,5,2,6,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,6,2,3,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,6,2,5,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,3,2,4,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,3,2,6,4] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,4,2,3,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,4,2,6,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,6,2,3,4] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,6,2,4,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,6,3,2,4,5] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,6,3,2,5,4] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,6,4,2,3,5] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,6,4,2,5,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,6,5,2,3,4] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,6,5,2,4,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[2,1,3,4,5,6] => [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001603
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 25%
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 25%
Values
[1] => [1] => [1]
=> []
=> ? = 0 - 2
[1,2] => [1,2] => [1,1]
=> [1]
=> ? = 0 - 2
[2,1] => [2,1] => [2]
=> []
=> ? = 0 - 2
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? = 0 - 2
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? = 0 - 2
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? = 1 - 2
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? = 0 - 2
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? = 1 - 2
[3,2,1] => [3,2,1] => [3]
=> []
=> ? = 0 - 2
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 1 - 2
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 1 - 2
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? = 0 - 2
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? = 0 - 2
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? = 1 - 2
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? = 0 - 2
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? = 1 - 2
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? = 0 - 2
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,3,4,5,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[2,3,5,4,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[2,4,1,3,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,4,1,5,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,4,3,5,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 1 - 2
[2,4,5,3,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[2,5,1,3,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,5,1,4,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,5,3,4,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 1 - 2
[2,5,4,3,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2]
=> [2]
=> ? = 2 - 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> ? = 2 - 2
[3,4,1,2,5] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[3,4,1,5,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[3,4,5,2,1] => [3,5,4,2,1] => [4,1]
=> [1]
=> ? = 0 - 2
[3,4,2,1,5,6,7] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,4,2,1,5,7,6] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,4,2,1,6,7,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,4,2,1,7,6,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,4,6,7] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,4,7,6] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,6,7,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,7,6,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,4,5,7] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,4,7,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,5,7,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,7,5,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,4,5,6] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,4,6,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,5,6,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,6,5,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,3,2,1,5,6,7] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,3,2,1,5,7,6] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,3,2,1,6,7,5] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,3,2,1,7,6,5] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,5,2,1,3,6,7] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,2,1,3,7,6] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,2,1,6,7,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,2,1,7,6,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,2,6,7] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,2,7,6] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,6,7,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,7,6,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,3,5,7] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,3,7,5] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,5,7,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,7,5,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,2,5,7] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,2,7,5] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,5,7,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,7,5,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,3,5,6] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,3,6,5] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,5,6,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,6,5,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,2,5,6] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,2,6,5] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,5,6,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,6,5,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[5,3,2,1,4,6,7] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,3,2,1,4,7,6] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,3,2,1,6,7,4] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,3,2,1,7,6,4] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,4,2,1,3,6,7] => [5,4,2,1,7,6,3] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,4,2,1,3,7,6] => [5,4,2,1,7,6,3] => [4,3]
=> [3]
=> 1 = 3 - 2
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001605
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 25%
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 25%
Values
[1] => [1] => [1]
=> []
=> ? = 0 - 2
[1,2] => [1,2] => [1,1]
=> [1]
=> ? = 0 - 2
[2,1] => [2,1] => [2]
=> []
=> ? = 0 - 2
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? = 0 - 2
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? = 0 - 2
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? = 1 - 2
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? = 0 - 2
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? = 1 - 2
[3,2,1] => [3,2,1] => [3]
=> []
=> ? = 0 - 2
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 1 - 2
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 1 - 2
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? = 0 - 2
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? = 0 - 2
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? = 0 - 2
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? = 1 - 2
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? = 0 - 2
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? = 1 - 2
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? = 0 - 2
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 1 - 2
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? = 0 - 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,3,4,5,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[2,3,5,4,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[2,4,1,3,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,4,1,5,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,4,3,5,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 1 - 2
[2,4,5,3,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[2,5,1,3,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,5,1,4,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[2,5,3,4,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 1 - 2
[2,5,4,3,1] => [2,5,4,3,1] => [4,1]
=> [1]
=> ? = 0 - 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2]
=> [2]
=> ? = 2 - 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> ? = 2 - 2
[3,4,1,2,5] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[3,4,1,5,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> ? = 2 - 2
[3,4,5,2,1] => [3,5,4,2,1] => [4,1]
=> [1]
=> ? = 0 - 2
[3,4,2,1,5,6,7] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,4,2,1,5,7,6] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,4,2,1,6,7,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,4,2,1,7,6,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,4,6,7] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,4,7,6] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,6,7,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,5,2,1,7,6,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,4,5,7] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,4,7,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,5,7,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,6,2,1,7,5,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,4,5,6] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,4,6,5] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,5,6,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[3,7,2,1,6,5,4] => [3,7,2,1,6,5,4] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,3,2,1,5,6,7] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,3,2,1,5,7,6] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,3,2,1,6,7,5] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,3,2,1,7,6,5] => [4,3,2,1,7,6,5] => [4,3]
=> [3]
=> 1 = 3 - 2
[4,5,2,1,3,6,7] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,2,1,3,7,6] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,2,1,6,7,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,2,1,7,6,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,2,6,7] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,2,7,6] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,6,7,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,5,3,1,7,6,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,3,5,7] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,3,7,5] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,5,7,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,2,1,7,5,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,2,5,7] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,2,7,5] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,5,7,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,6,3,1,7,5,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,3,5,6] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,3,6,5] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,5,6,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,2,1,6,5,3] => [4,7,2,1,6,5,3] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,2,5,6] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,2,6,5] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,5,6,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[4,7,3,1,6,5,2] => [4,7,3,1,6,5,2] => [4,2,1]
=> [2,1]
=> 1 = 3 - 2
[5,3,2,1,4,6,7] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,3,2,1,4,7,6] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,3,2,1,6,7,4] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,3,2,1,7,6,4] => [5,3,2,1,7,6,4] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,4,2,1,3,6,7] => [5,4,2,1,7,6,3] => [4,3]
=> [3]
=> 1 = 3 - 2
[5,4,2,1,3,7,6] => [5,4,2,1,7,6,3] => [4,3]
=> [3]
=> 1 = 3 - 2
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the cyclic group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St000264
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Mp00223: Permutations —runsort⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 25%
Values
[1] => [1] => [1] => ([],1)
=> ? = 0 + 1
[1,2] => [1,2] => [1,2] => ([],2)
=> ? = 0 + 1
[2,1] => [2,1] => [1,2] => ([],2)
=> ? = 0 + 1
[1,2,3] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? = 0 + 1
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? = 0 + 1
[2,1,3] => [2,1,3] => [1,3,2] => ([(1,2)],3)
=> ? = 1 + 1
[2,3,1] => [2,3,1] => [1,2,3] => ([],3)
=> ? = 0 + 1
[3,1,2] => [3,1,2] => [1,2,3] => ([],3)
=> ? = 1 + 1
[3,2,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? = 0 + 1
[1,2,3,4] => [1,4,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[1,2,4,3] => [1,4,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[1,3,2,4] => [1,4,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,3,4,2] => [1,4,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[1,4,2,3] => [1,4,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,4,3,2] => [1,4,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[2,3,4,1] => [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[2,4,3,1] => [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[3,2,4,1] => [3,2,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? = 1 + 1
[3,4,2,1] => [3,4,2,1] => [1,2,3,4] => ([],4)
=> ? = 0 + 1
[4,2,3,1] => [4,2,3,1] => [1,2,3,4] => ([],4)
=> ? = 1 + 1
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? = 0 + 1
[1,2,3,4,5] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,2,3,5,4] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,2,4,3,5] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,4,5,3] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,2,5,3,4] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,5,4,3] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,3,4,5,2] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,4,3,5,2] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,1,4,5] => [2,5,1,4,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,3,1,5,4] => [2,5,1,4,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,3,4,5,1] => [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,5,4,1] => [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[2,4,1,3,5] => [2,5,1,4,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,4,1,5,3] => [2,5,1,4,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,4,3,5,1] => [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[2,4,5,3,1] => [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[2,5,1,3,4] => [2,5,1,4,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,5,1,4,3] => [2,5,1,4,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,5,3,4,1] => [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[2,5,4,3,1] => [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[3,2,1,4,5] => [3,2,1,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,2,1,5,4] => [3,2,1,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,1,2,5] => [3,5,1,4,2] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,1,5,2] => [3,5,1,4,2] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,5,2,1] => [3,5,4,2,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? = 0 + 1
[2,3,4,1,5,6,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,4,1,5,7,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,4,1,6,7,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,4,1,7,6,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,5,1,4,6,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,5,1,4,7,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,5,1,6,7,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,5,1,7,6,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,6,1,4,5,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,6,1,4,7,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,6,1,5,7,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,6,1,7,5,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,7,1,4,5,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,7,1,4,6,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,7,1,5,6,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,3,7,1,6,5,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,3,1,5,6,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,3,1,5,7,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,3,1,6,7,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,3,1,7,6,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,5,1,3,6,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,5,1,3,7,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,5,1,6,7,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,5,1,7,6,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,6,1,3,5,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,6,1,3,7,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,6,1,5,7,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,6,1,7,5,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,7,1,3,5,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,7,1,3,6,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,7,1,5,6,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,4,7,1,6,5,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,3,1,4,6,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,3,1,4,7,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,3,1,6,7,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,3,1,7,6,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,4,1,3,6,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,4,1,3,7,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,4,1,6,7,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,4,1,7,6,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,6,1,3,4,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,6,1,3,7,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,6,1,4,7,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,6,1,7,4,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,7,1,3,4,6] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,7,1,3,6,4] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,7,1,4,6,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,5,7,1,6,4,3] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,6,3,1,4,5,7] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
[2,6,3,1,4,7,5] => [2,7,6,1,5,4,3] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 3 + 1
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001621
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001621: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001621: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Values
[1] => [.,.]
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,5,4,2,1] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,2,1,3,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,2,1,5,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,1,2,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,1,5,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[4,5,1,2,3] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,5,1,3,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,2,1,3,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,2,1,4,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,1,2,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,1,4,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[5,4,1,2,3] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,4,1,3,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,6,4,5] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,5,4,6,3] => [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,2,6,4,5,3] => [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,3,4,2,5,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,4,2,6,5] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,2,4,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,2,6,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,4,6,2] => [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,3,6,2,4,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,6,2,5,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,6,4,5,2] => [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,3,2,6,5] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,5,2,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,5,2,6,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,6,2,3,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,6,2,5,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,3,2,4,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,3,2,6,4] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,2,3,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,2,6,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,6,3,2] => [.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,5,6,2,3,4] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,6,2,4,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,3,2,4,5] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
Description
The number of atoms of a lattice.
An element of a lattice is an '''atom''' if it covers the least element.
Matching statistic: St001624
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Values
[1] => [.,.]
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[3,5,4,2,1] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,2,1,3,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,2,1,5,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,1,2,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,1,5,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[4,5,1,2,3] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,5,1,3,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,2,1,3,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,2,1,4,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,1,2,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,1,4,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[5,4,1,2,3] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,4,1,3,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 1
[5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,6,4,5] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,5,4,6,3] => [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,2,6,4,5,3] => [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,3,4,2,5,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,4,2,6,5] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,2,4,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,2,6,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,5,4,6,2] => [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,3,6,2,4,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,6,2,5,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,3,6,4,5,2] => [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,3,2,6,5] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,5,2,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,5,2,6,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,6,2,3,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,4,6,2,5,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,3,2,4,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,3,2,6,4] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,2,3,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,2,6,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,4,6,3,2] => [.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1 + 1
[1,5,6,2,3,4] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,5,6,2,4,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
[1,6,3,2,4,5] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2 + 1
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer b such that any join x1∨x2∨⋯∨xn, with n>b, can be expressed as a join over a proper subset of {x1,x2,…,xn}.
Matching statistic: St001877
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Values
[1] => [.,.]
=> ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[3,5,4,2,1] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[4,2,1,3,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,2,1,5,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,3,1,2,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,3,1,5,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[4,5,1,2,3] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,5,1,3,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[5,2,1,3,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,2,1,4,3] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,3,1,2,4] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,3,1,4,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[5,4,1,2,3] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,4,1,3,2] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1
[1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,3,6,4,5] => [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,4,5,6,3] => [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,4,6,5,3] => [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,2,5,4,6,3] => [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1
[1,2,6,4,5,3] => [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1
[1,3,4,2,5,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,4,2,6,5] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,5,2,4,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,5,2,6,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,5,4,6,2] => [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1
[1,3,6,2,4,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,6,2,5,4] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,3,6,4,5,2] => [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1
[1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,3,2,6,5] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,5,2,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,5,2,6,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,6,2,3,5] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,4,6,2,5,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,3,2,4,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,3,2,6,4] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,4,2,3,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,4,2,6,3] => [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,4,6,3,2] => [.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 1
[1,5,6,2,3,4] => [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[1,5,6,2,4,3] => [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
Description
Number of indecomposable injective modules with projective dimension 2.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001569The maximal modular displacement of a permutation. St001896The number of right descents of a signed permutations. St001171The vector space dimension of Ext1A(Io,A) when Io is the tilting module corresponding to the permutation o in the Auslander algebra A of K[x]/(xn). St001823The Stasinski-Voll length of a signed permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!