searching the database
Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000456
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 5
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [3,5,4,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [4,3,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => [5,3,4,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [4,5,3,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [2,5,4,6,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => [2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => [2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001311
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001311: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001311: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 4 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 3 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 4 = 5 - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [3,5,4,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [4,3,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 5 - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => [5,3,4,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 6 - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [4,5,3,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 6 - 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 3 - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [2,5,4,6,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => [2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => [2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
Description
The cyclomatic number of a graph.
This is the minimum number of edges that must be removed from the graph so that the result is a forest. This is also the first Betti number of the graph. It can be computed as c+m−n, where c is the number of connected components, m is the number of edges and n is the number of vertices.
Matching statistic: St000450
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000450: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000450: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Values
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 5
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [3,5,4,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [4,3,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => [5,3,4,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [4,5,3,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [2,5,4,6,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => [2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => [2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => [6,7,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 5
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => [5,7,1,2,3,4,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,7,5,6,1] => [5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 7
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => [6,5,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ? = 8
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => [4,7,1,2,3,5,6] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,4,7,6,1] => [4,6,7,1,2,3,5] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 6
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,6,4,5,7,1] => [4,5,7,1,2,3,6] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 5
[1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,7,4,5,6,1] => [4,5,6,7,1,2,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 7
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,7,4,6,5,1] => [4,6,5,7,1,2,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 8
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => [5,4,7,1,2,3,6] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ? = 6
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,7,5,4,6,1] => [5,4,6,7,1,2,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 8
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,7,5,6,4,1] => [6,4,5,7,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 9
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => [5,6,4,7,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 9
[1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,3,5,6,7,1] => [3,7,1,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,4,3,5,7,6,1] => [3,6,7,1,2,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 5
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,3,6,5,7,1] => [3,5,7,1,2,4,6] => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,4,3,7,5,6,1] => [3,5,6,7,1,2,4] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,3,7,6,5,1] => [3,6,5,7,1,2,4] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 7
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,5,3,4,6,7,1] => [3,4,7,1,2,5,6] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,5,3,4,7,6,1] => [3,4,6,7,1,2,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 5
[1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,6,3,4,5,7,1] => [3,4,5,7,1,2,6] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,7,3,4,5,6,1] => [3,4,5,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 5
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,7,3,4,6,5,1] => [3,4,6,5,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 6
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,6,3,5,4,7,1] => [3,5,4,7,1,2,6] => ([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 5
[1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [2,7,3,5,4,6,1] => [3,5,4,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 6
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,7,3,5,6,4,1] => [3,6,4,5,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 7
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,7,3,6,5,4,1] => [3,5,6,4,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 7
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,4,3,6,7,1] => [4,3,7,1,2,5,6] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,4,3,7,6,1] => [4,3,6,7,1,2,5] => ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 6
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [2,6,4,3,5,7,1] => [4,3,5,7,1,2,6] => ([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 5
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,4,3,5,6,1] => [4,3,5,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 6
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,7,4,3,6,5,1] => [4,3,6,5,7,1,2] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 7
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,6,4,5,3,7,1] => [5,3,4,7,1,2,6] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 6
[1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [2,7,4,5,3,6,1] => [5,3,4,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 7
[1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,7,4,5,6,3,1] => [6,3,4,5,7,1,2] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 8
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,7,4,6,5,3,1] => [5,6,3,4,7,1,2] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 9
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,5,4,3,7,1] => [4,5,3,7,1,2,6] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 6
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,7,5,4,3,6,1] => [4,5,3,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 7
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,5,4,6,3,1] => [4,6,3,5,7,1,2] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 8
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,7,6,4,5,3,1] => [4,5,6,3,7,1,2] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 8
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => [5,4,6,3,7,1,2] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 9
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 1
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,2,4,5,7,6,1] => [2,6,7,1,3,4,5] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,2,4,6,5,7,1] => [2,5,7,1,3,4,6] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,7,5,6,1] => [2,5,6,7,1,3,4] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 5
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,2,4,7,6,5,1] => [2,6,5,7,1,3,4] => ([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [3,2,5,4,6,7,1] => [2,4,7,1,3,5,6] => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,7,6,1] => [2,4,6,7,1,3,5] => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,6,4,5,7,1] => [2,4,5,7,1,3,6] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
Description
The number of edges minus the number of vertices plus 2 of a graph.
When G is connected and planar, this is also the number of its faces.
When G=(V,E) is a connected graph, this is its k-monochromatic index for k>2: for 2≤k≤|V|, the k-monochromatic index of G is the maximum number of edge colors allowed such that for each set S of k vertices, there exists a monochromatic tree in G which contains all vertices from S. It is shown in [1] that for k>2, this is given by this statistic.
Matching statistic: St001330
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 22%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 22%
Values
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 4 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? = 5 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [3,5,4,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 5 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [4,3,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 5 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => [5,3,4,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 6 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [4,5,3,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 6 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [2,5,4,6,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => [2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => [2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => [3,2,5,6,1,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [3,2,4,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [6,3,2,4,5,1] => [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [6,3,2,5,4,1] => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,3,4,2,6,1] => [4,2,3,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,3,4,2,5,1] => [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [6,3,4,5,2,1] => [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,5,4,2,1] => [4,5,2,3,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 5 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => [3,4,2,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [6,4,3,2,5,1] => [3,4,2,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [6,4,3,5,2,1] => [3,5,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [6,5,3,4,2,1] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => [6,7,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 5 + 1
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => [5,7,1,2,3,4,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [4,2,3,5,6,7,1] => [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [5,2,3,4,6,7,1] => [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [6,2,3,4,5,7,1] => [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [7,2,3,4,5,6,1] => [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!