searching the database
Your data matches 253 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001931
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001931: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001931: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,2)],3)
=> [2,1] => [1,1] => 1
([(0,2),(1,2)],3)
=> [2,1] => [1,1] => 1
([(2,3)],4)
=> [3,1] => [1,1] => 1
([(1,3),(2,3)],4)
=> [3,1] => [1,1] => 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1] => 1
([(3,4)],5)
=> [4,1] => [1,1] => 1
([(2,4),(3,4)],5)
=> [4,1] => [1,1] => 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => 1
([(1,4),(2,3)],5)
=> [3,2] => [1,1] => 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1] => 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,1] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 1
([(4,5)],6)
=> [5,1] => [1,1] => 1
([(3,5),(4,5)],6)
=> [5,1] => [1,1] => 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => 1
([(2,5),(3,4)],6)
=> [4,2] => [1,1] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1] => 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1] => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1] => 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => 3
Description
The weak major index of an integer composition regarded as a word.
This is the sum of the positions of the weak descents, regarding the composition as a word. That is, for a composition $c = (c_1,\dots,c_n)$,
$$
\sum_{\substack{1\leq i < n\\ c_i\geq c_{i+1}}} i.
$$
Matching statistic: St000008
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,2)],3)
=> [2,1] => [1,2] => [1,1] => 1
([(0,2),(1,2)],3)
=> [2,1] => [1,2] => [1,1] => 1
([(2,3)],4)
=> [3,1] => [1,3] => [1,1] => 1
([(1,3),(2,3)],4)
=> [3,1] => [1,3] => [1,1] => 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,3] => [1,1] => 1
([(3,4)],5)
=> [4,1] => [1,4] => [1,1] => 1
([(2,4),(3,4)],5)
=> [4,1] => [1,4] => [1,1] => 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => [1,1] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => [1,1] => 1
([(1,4),(2,3)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [2,3] => [1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,2] => 1
([(4,5)],6)
=> [5,1] => [1,5] => [1,1] => 1
([(3,5),(4,5)],6)
=> [5,1] => [1,5] => [1,1] => 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => [1,1] => 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => [1,1] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => [1,1] => 1
([(2,5),(3,4)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [2,4] => [1,1] => 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => [1,1,1] => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => [1,1,1] => 3
Description
The major index of the composition.
The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000185
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,2)],3)
=> [2,1] => [1,1] => [1,1]
=> 1
([(0,2),(1,2)],3)
=> [2,1] => [1,1] => [1,1]
=> 1
([(2,3)],4)
=> [3,1] => [1,1] => [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1] => [1,1] => [1,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1] => [1,1]
=> 1
([(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(1,4),(2,3)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(2,5),(3,4)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => [1,1,1]
=> 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => [1,1,1]
=> 3
Description
The weighted size of a partition.
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$
\sum_i \binom{\lambda^{\prime}_i}{2}
$$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Matching statistic: St000456
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,2)],3)
=> [2,1] => [1,1] => ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> [2,1] => [1,1] => ([(0,1)],2)
=> 1
([(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> 1
([(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> 1
([(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([(4,5)],6)
=> [5,1] => [1,1] => ([(0,1)],2)
=> 1
([(3,5),(4,5)],6)
=> [5,1] => [1,1] => ([(0,1)],2)
=> 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ([(0,1)],2)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ([(0,1)],2)
=> 1
([(2,5),(3,4)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001961
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001961: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001961: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,2)],3)
=> [2,1] => [1,1] => [1,1]
=> 1
([(0,2),(1,2)],3)
=> [2,1] => [1,1] => [1,1]
=> 1
([(2,3)],4)
=> [3,1] => [1,1] => [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1] => [1,1] => [1,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1] => [1,1]
=> 1
([(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,1]
=> 1
([(1,4),(2,3)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [2,1]
=> 1
([(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1] => [1,1]
=> 1
([(2,5),(3,4)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => [1,1,1]
=> 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,1,1] => [1,1,1]
=> 3
Description
The sum of the greatest common divisors of all pairs of parts.
Matching statistic: St001001
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001001: Dyck paths ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 67%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001001: Dyck paths ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 67%
Values
([(1,2)],3)
=> [2,1] => [2,1]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
([(2,3)],4)
=> [3,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
([(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
([(4,5)],6)
=> [5,1] => [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(3,5),(4,5)],6)
=> [5,1] => [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(2,5),(3,4)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(5,6)],7)
=> [6,1] => [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(4,6),(5,6)],7)
=> [6,1] => [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(3,6),(4,6),(5,6)],7)
=> [6,1] => [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(3,6),(4,5)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(3,6),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(2,3),(4,6),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,2] => [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 - 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3 - 1
Description
The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000455
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 33%
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 33%
Values
([(1,2)],3)
=> [2,1] => [1,2] => ([(1,2)],3)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [2,1] => [1,2] => ([(1,2)],3)
=> 0 = 1 - 1
([(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> 0 = 1 - 1
([(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 0 = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 0 = 1 - 1
([(2,5),(3,4)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(5,6)],7)
=> [6,1] => [1,6] => ([(5,6)],7)
=> 0 = 1 - 1
([(4,6),(5,6)],7)
=> [6,1] => [1,6] => ([(5,6)],7)
=> 0 = 1 - 1
([(3,6),(4,6),(5,6)],7)
=> [6,1] => [1,6] => ([(5,6)],7)
=> 0 = 1 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [1,6] => ([(5,6)],7)
=> 0 = 1 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [1,6] => ([(5,6)],7)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [1,6] => ([(5,6)],7)
=> 0 = 1 - 1
([(3,6),(4,5)],7)
=> [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> 0 = 1 - 1
([(3,6),(4,5),(5,6)],7)
=> [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> 0 = 1 - 1
([(2,3),(4,6),(5,6)],7)
=> [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> 0 = 1 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> 0 = 1 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> 0 = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000422
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 67%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 67%
Values
([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 3
([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 3
([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 1 + 3
([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 1 + 3
([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 1 + 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 1 + 3
([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
([(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 3
([(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 3
([(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 3
([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(1,2),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 1 + 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 3 + 3
([(1,6),(2,5),(3,4)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,3),(1,2),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4 = 1 + 3
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000454
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Values
([(1,2)],3)
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,2),(1,2)],3)
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(2,3)],4)
=> [3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 1
([(1,3),(2,3)],4)
=> [3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 1
([(3,4)],5)
=> [4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> [4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,4),(2,3)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(4,5)],6)
=> [5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
([(3,5),(4,5)],6)
=> [5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
([(2,5),(3,4)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,6),(2,5),(3,4)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,3] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001651
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([(1,2)],3)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,25),(2,13),(2,14),(2,15),(2,25),(3,10),(3,11),(3,12),(3,25),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,21),(7,24),(7,29),(8,19),(8,22),(8,29),(9,20),(9,23),(9,29),(10,26),(10,29),(11,27),(11,29),(12,28),(12,29),(13,19),(13,21),(13,26),(14,20),(14,21),(14,27),(15,19),(15,20),(15,28),(16,22),(16,24),(16,26),(17,23),(17,24),(17,27),(18,22),(18,23),(18,28),(19,30),(20,30),(21,30),(22,30),(23,30),(24,30),(25,26),(25,27),(25,28),(26,30),(27,30),(28,30),(29,30)],31)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,24),(1,26),(2,8),(2,9),(2,24),(2,25),(3,16),(3,17),(3,18),(3,19),(3,24),(4,9),(4,14),(4,15),(4,17),(4,26),(5,8),(5,12),(5,13),(5,16),(5,26),(6,11),(6,13),(6,15),(6,19),(6,25),(7,10),(7,12),(7,14),(7,18),(7,25),(8,27),(8,31),(9,28),(9,31),(10,29),(10,32),(11,30),(11,32),(12,20),(12,27),(12,29),(13,21),(13,27),(13,30),(14,22),(14,28),(14,29),(15,23),(15,28),(15,30),(16,20),(16,21),(16,31),(17,22),(17,23),(17,31),(18,20),(18,22),(18,32),(19,21),(19,23),(19,32),(20,33),(21,33),(22,33),(23,33),(24,31),(24,32),(25,27),(25,28),(25,32),(26,29),(26,30),(26,31),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,10),(1,28),(1,29),(2,12),(2,16),(2,20),(2,22),(2,29),(3,11),(3,15),(3,20),(3,21),(3,28),(4,13),(4,17),(4,19),(4,21),(4,29),(5,14),(5,18),(5,19),(5,22),(5,28),(6,8),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,9),(7,11),(7,12),(7,13),(7,14),(8,27),(8,34),(8,35),(9,27),(9,30),(9,31),(10,27),(10,32),(10,33),(11,23),(11,30),(11,34),(12,24),(12,31),(12,34),(13,23),(13,31),(13,35),(14,24),(14,30),(14,35),(15,25),(15,32),(15,34),(16,26),(16,33),(16,34),(17,25),(17,33),(17,35),(18,26),(18,32),(18,35),(19,35),(19,36),(20,34),(20,36),(21,23),(21,25),(21,36),(22,24),(22,26),(22,36),(23,37),(24,37),(25,37),(26,37),(27,37),(28,30),(28,32),(28,36),(29,31),(29,33),(29,36),(30,37),(31,37),(32,37),(33,37),(34,37),(35,37),(36,37)],38)
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,16),(1,20),(1,24),(1,30),(1,32),(2,15),(2,19),(2,23),(2,30),(2,31),(3,17),(3,21),(3,23),(3,29),(3,32),(4,18),(4,22),(4,24),(4,29),(4,31),(5,10),(5,13),(5,14),(5,17),(5,18),(5,30),(6,10),(6,11),(6,12),(6,15),(6,16),(6,29),(7,9),(7,11),(7,13),(7,19),(7,22),(7,32),(8,9),(8,12),(8,14),(8,20),(8,21),(8,31),(9,35),(9,36),(9,41),(10,33),(10,34),(10,41),(11,25),(11,38),(11,41),(12,26),(12,37),(12,41),(13,28),(13,39),(13,41),(14,27),(14,40),(14,41),(15,25),(15,33),(15,37),(16,26),(16,33),(16,38),(17,27),(17,34),(17,39),(18,28),(18,34),(18,40),(19,25),(19,35),(19,39),(20,26),(20,36),(20,40),(21,27),(21,36),(21,37),(22,28),(22,35),(22,38),(23,37),(23,39),(24,38),(24,40),(25,42),(26,42),(27,42),(28,42),(29,34),(29,37),(29,38),(30,33),(30,39),(30,40),(31,35),(31,37),(31,40),(32,36),(32,38),(32,39),(33,42),(34,42),(35,42),(36,42),(37,42),(38,42),(39,42),(40,42),(41,42)],43)
=> ? = 1 - 1
([(4,5)],6)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 1 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,11),(1,12),(1,16),(1,20),(2,8),(2,9),(2,12),(2,15),(2,19),(3,7),(3,9),(3,11),(3,14),(3,18),(4,7),(4,8),(4,10),(4,13),(4,17),(5,17),(5,18),(5,19),(5,20),(5,21),(6,13),(6,14),(6,15),(6,16),(6,21),(7,24),(7,30),(7,44),(8,22),(8,28),(8,44),(9,23),(9,29),(9,44),(10,25),(10,31),(10,44),(11,26),(11,32),(11,44),(12,27),(12,33),(12,44),(13,22),(13,24),(13,25),(13,34),(14,23),(14,24),(14,26),(14,35),(15,22),(15,23),(15,27),(15,36),(16,25),(16,26),(16,27),(16,37),(17,28),(17,30),(17,31),(17,34),(18,29),(18,30),(18,32),(18,35),(19,28),(19,29),(19,33),(19,36),(20,31),(20,32),(20,33),(20,37),(21,34),(21,35),(21,36),(21,37),(22,38),(22,45),(23,39),(23,45),(24,40),(24,45),(25,41),(25,45),(26,42),(26,45),(27,43),(27,45),(28,38),(28,46),(29,39),(29,46),(30,40),(30,46),(31,41),(31,46),(32,42),(32,46),(33,43),(33,46),(34,38),(34,40),(34,41),(35,39),(35,40),(35,42),(36,38),(36,39),(36,43),(37,41),(37,42),(37,43),(38,47),(39,47),(40,47),(41,47),(42,47),(43,47),(44,45),(44,46),(45,47),(46,47)],48)
=> ? = 1 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,23),(1,24),(1,25),(1,26),(1,27),(1,28),(2,10),(2,12),(2,16),(2,21),(2,22),(2,24),(3,10),(3,11),(3,15),(3,19),(3,20),(3,23),(4,9),(4,14),(4,18),(4,20),(4,22),(4,26),(5,9),(5,13),(5,17),(5,19),(5,21),(5,25),(6,8),(6,15),(6,16),(6,17),(6,18),(6,28),(7,8),(7,11),(7,12),(7,13),(7,14),(7,27),(8,31),(8,61),(8,62),(9,30),(9,60),(9,62),(10,29),(10,60),(10,61),(11,32),(11,44),(11,45),(11,61),(12,33),(12,46),(12,47),(12,61),(13,34),(13,44),(13,46),(13,62),(14,35),(14,45),(14,47),(14,62),(15,36),(15,48),(15,49),(15,61),(16,37),(16,50),(16,51),(16,61),(17,38),(17,48),(17,50),(17,62),(18,39),(18,49),(18,51),(18,62),(19,40),(19,44),(19,48),(19,60),(20,41),(20,45),(20,49),(20,60),(21,42),(21,46),(21,50),(21,60),(22,43),(22,47),(22,51),(22,60),(23,29),(23,32),(23,36),(23,40),(23,41),(24,29),(24,33),(24,37),(24,42),(24,43),(25,30),(25,34),(25,38),(25,40),(25,42),(26,30),(26,35),(26,39),(26,41),(26,43),(27,31),(27,32),(27,33),(27,34),(27,35),(28,31),(28,36),(28,37),(28,38),(28,39),(29,63),(29,64),(30,63),(30,65),(31,64),(31,65),(32,52),(32,53),(32,64),(33,54),(33,55),(33,64),(34,52),(34,54),(34,65),(35,53),(35,55),(35,65),(36,56),(36,57),(36,64),(37,58),(37,59),(37,64),(38,56),(38,58),(38,65),(39,57),(39,59),(39,65),(40,52),(40,56),(40,63),(41,53),(41,57),(41,63),(42,54),(42,58),(42,63),(43,55),(43,59),(43,63),(44,52),(44,66),(45,53),(45,66),(46,54),(46,66),(47,55),(47,66),(48,56),(48,66),(49,57),(49,66),(50,58),(50,66),(51,59),(51,66),(52,67),(53,67),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,63),(60,66),(61,64),(61,66),(62,65),(62,66),(63,67),(64,67),(65,67),(66,67)],68)
=> ? = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(1,14),(1,18),(1,23),(1,24),(1,26),(1,32),(2,12),(2,13),(2,17),(2,21),(2,22),(2,25),(2,31),(3,11),(3,16),(3,20),(3,22),(3,24),(3,28),(3,34),(4,11),(4,15),(4,19),(4,21),(4,23),(4,27),(4,33),(5,10),(5,17),(5,18),(5,19),(5,20),(5,30),(5,36),(6,10),(6,13),(6,14),(6,15),(6,16),(6,29),(6,35),(7,9),(7,31),(7,32),(7,33),(7,34),(7,35),(7,36),(8,9),(8,25),(8,26),(8,27),(8,28),(8,29),(8,30),(9,88),(9,89),(9,90),(10,86),(10,87),(10,90),(11,85),(11,87),(11,89),(12,85),(12,86),(12,88),(13,37),(13,49),(13,61),(13,62),(13,86),(14,38),(14,50),(14,63),(14,64),(14,86),(15,39),(15,51),(15,61),(15,63),(15,87),(16,40),(16,52),(16,62),(16,64),(16,87),(17,41),(17,53),(17,65),(17,66),(17,86),(18,42),(18,54),(18,67),(18,68),(18,86),(19,43),(19,55),(19,65),(19,67),(19,87),(20,44),(20,56),(20,66),(20,68),(20,87),(21,45),(21,57),(21,61),(21,65),(21,85),(22,46),(22,58),(22,62),(22,66),(22,85),(23,47),(23,59),(23,63),(23,67),(23,85),(24,48),(24,60),(24,64),(24,68),(24,85),(25,37),(25,41),(25,45),(25,46),(25,88),(26,38),(26,42),(26,47),(26,48),(26,88),(27,39),(27,43),(27,45),(27,47),(27,89),(28,40),(28,44),(28,46),(28,48),(28,89),(29,37),(29,38),(29,39),(29,40),(29,90),(30,41),(30,42),(30,43),(30,44),(30,90),(31,49),(31,53),(31,57),(31,58),(31,88),(32,50),(32,54),(32,59),(32,60),(32,88),(33,51),(33,55),(33,57),(33,59),(33,89),(34,52),(34,56),(34,58),(34,60),(34,89),(35,49),(35,50),(35,51),(35,52),(35,90),(36,53),(36,54),(36,55),(36,56),(36,90),(37,69),(37,70),(37,92),(38,71),(38,72),(38,92),(39,69),(39,71),(39,93),(40,70),(40,72),(40,93),(41,73),(41,74),(41,92),(42,75),(42,76),(42,92),(43,73),(43,75),(43,93),(44,74),(44,76),(44,93),(45,69),(45,73),(45,94),(46,70),(46,74),(46,94),(47,71),(47,75),(47,94),(48,72),(48,76),(48,94),(49,77),(49,78),(49,92),(50,79),(50,80),(50,92),(51,77),(51,79),(51,93),(52,78),(52,80),(52,93),(53,81),(53,82),(53,92),(54,83),(54,84),(54,92),(55,81),(55,83),(55,93),(56,82),(56,84),(56,93),(57,77),(57,81),(57,94),(58,78),(58,82),(58,94),(59,79),(59,83),(59,94),(60,80),(60,84),(60,94),(61,69),(61,77),(61,91),(62,70),(62,78),(62,91),(63,71),(63,79),(63,91),(64,72),(64,80),(64,91),(65,73),(65,81),(65,91),(66,74),(66,82),(66,91),(67,75),(67,83),(67,91),(68,76),(68,84),(68,91),(69,95),(70,95),(71,95),(72,95),(73,95),(74,95),(75,95),(76,95),(77,95),(78,95),(79,95),(80,95),(81,95),(82,95),(83,95),(84,95),(85,91),(85,94),(86,91),(86,92),(87,91),(87,93),(88,92),(88,94),(89,93),(89,94),(90,92),(90,93),(91,95),(92,95),(93,95),(94,95)],96)
=> ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 3 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 3 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,20),(1,21),(1,22),(1,33),(2,9),(2,17),(2,18),(2,19),(2,33),(3,8),(3,14),(3,15),(3,16),(3,33),(4,13),(4,16),(4,19),(4,22),(4,32),(5,12),(5,15),(5,18),(5,21),(5,32),(6,11),(6,14),(6,17),(6,20),(6,32),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,23),(8,24),(8,25),(8,40),(9,26),(9,27),(9,28),(9,40),(10,29),(10,30),(10,31),(10,40),(11,23),(11,26),(11,29),(11,41),(12,24),(12,27),(12,30),(12,41),(13,25),(13,28),(13,31),(13,41),(14,23),(14,34),(14,37),(15,24),(15,35),(15,37),(16,25),(16,36),(16,37),(17,26),(17,34),(17,38),(18,27),(18,35),(18,38),(19,28),(19,36),(19,38),(20,29),(20,34),(20,39),(21,30),(21,35),(21,39),(22,31),(22,36),(22,39),(23,42),(23,45),(24,43),(24,45),(25,44),(25,45),(26,42),(26,46),(27,43),(27,46),(28,44),(28,46),(29,42),(29,47),(30,43),(30,47),(31,44),(31,47),(32,37),(32,38),(32,39),(32,41),(33,34),(33,35),(33,36),(33,40),(34,42),(34,48),(35,43),(35,48),(36,44),(36,48),(37,45),(37,48),(38,46),(38,48),(39,47),(39,48),(40,42),(40,43),(40,44),(41,45),(41,46),(41,47),(42,49),(43,49),(44,49),(45,49),(46,49),(47,49),(48,49)],50)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ? = 3 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,25),(2,13),(2,14),(2,15),(2,25),(3,10),(3,11),(3,12),(3,25),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,21),(7,24),(7,29),(8,19),(8,22),(8,29),(9,20),(9,23),(9,29),(10,26),(10,29),(11,27),(11,29),(12,28),(12,29),(13,19),(13,21),(13,26),(14,20),(14,21),(14,27),(15,19),(15,20),(15,28),(16,22),(16,24),(16,26),(17,23),(17,24),(17,27),(18,22),(18,23),(18,28),(19,30),(20,30),(21,30),(22,30),(23,30),(24,30),(25,26),(25,27),(25,28),(26,30),(27,30),(28,30),(29,30)],31)
=> ? = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,16),(1,21),(2,10),(2,11),(2,12),(2,16),(2,20),(3,8),(3,9),(3,12),(3,15),(3,19),(4,7),(4,9),(4,11),(4,14),(4,18),(5,7),(5,8),(5,10),(5,13),(5,17),(6,17),(6,18),(6,19),(6,20),(6,21),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,51),(22,52),(23,48),(23,52),(24,49),(24,52),(25,50),(25,52),(26,42),(26,52),(27,43),(27,52),(28,44),(28,52),(29,45),(29,52),(30,46),(30,52),(31,47),(31,52),(32,42),(32,48),(32,51),(33,43),(33,49),(33,51),(34,44),(34,50),(34,51),(35,45),(35,48),(35,50),(36,46),(36,49),(36,50),(37,47),(37,48),(37,49),(38,42),(38,44),(38,45),(39,43),(39,44),(39,46),(40,42),(40,43),(40,47),(41,45),(41,46),(41,47),(42,53),(43,53),(44,53),(45,53),(46,53),(47,53),(48,53),(49,53),(50,53),(51,53),(52,53)],54)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,16),(1,19),(1,21),(1,22),(1,25),(2,9),(2,15),(2,18),(2,20),(2,22),(2,24),(3,8),(3,14),(3,17),(3,20),(3,21),(3,23),(4,11),(4,12),(4,13),(4,23),(4,24),(4,25),(5,8),(5,9),(5,10),(5,11),(5,26),(6,13),(6,17),(6,18),(6,19),(6,26),(7,12),(7,14),(7,15),(7,16),(7,26),(8,30),(8,51),(8,58),(9,31),(9,52),(9,58),(10,32),(10,53),(10,58),(11,30),(11,31),(11,32),(11,54),(12,39),(12,40),(12,41),(12,54),(13,42),(13,43),(13,44),(13,54),(14,33),(14,34),(14,39),(14,51),(15,33),(15,35),(15,40),(15,52),(16,34),(16,35),(16,41),(16,53),(17,36),(17,37),(17,42),(17,51),(18,36),(18,38),(18,43),(18,52),(19,37),(19,38),(19,44),(19,53),(20,29),(20,33),(20,36),(20,58),(21,27),(21,34),(21,37),(21,58),(22,28),(22,35),(22,38),(22,58),(23,27),(23,29),(23,30),(23,39),(23,42),(24,28),(24,29),(24,31),(24,40),(24,43),(25,27),(25,28),(25,32),(25,41),(25,44),(26,51),(26,52),(26,53),(26,54),(27,45),(27,48),(27,59),(28,46),(28,49),(28,59),(29,47),(29,50),(29,59),(30,55),(30,59),(31,56),(31,59),(32,57),(32,59),(33,47),(33,60),(34,45),(34,60),(35,46),(35,60),(36,50),(36,60),(37,48),(37,60),(38,49),(38,60),(39,45),(39,47),(39,55),(40,46),(40,47),(40,56),(41,45),(41,46),(41,57),(42,48),(42,50),(42,55),(43,49),(43,50),(43,56),(44,48),(44,49),(44,57),(45,61),(46,61),(47,61),(48,61),(49,61),(50,61),(51,55),(51,60),(52,56),(52,60),(53,57),(53,60),(54,55),(54,56),(54,57),(55,61),(56,61),(57,61),(58,59),(58,60),(59,61),(60,61)],62)
=> ? = 3 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,24),(1,26),(2,8),(2,9),(2,24),(2,25),(3,16),(3,17),(3,18),(3,19),(3,24),(4,9),(4,14),(4,15),(4,17),(4,26),(5,8),(5,12),(5,13),(5,16),(5,26),(6,11),(6,13),(6,15),(6,19),(6,25),(7,10),(7,12),(7,14),(7,18),(7,25),(8,27),(8,31),(9,28),(9,31),(10,29),(10,32),(11,30),(11,32),(12,20),(12,27),(12,29),(13,21),(13,27),(13,30),(14,22),(14,28),(14,29),(15,23),(15,28),(15,30),(16,20),(16,21),(16,31),(17,22),(17,23),(17,31),(18,20),(18,22),(18,32),(19,21),(19,23),(19,32),(20,33),(21,33),(22,33),(23,33),(24,31),(24,32),(25,27),(25,28),(25,32),(26,29),(26,30),(26,31),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,44),(1,46),(2,9),(2,11),(2,12),(2,44),(2,45),(3,15),(3,24),(3,25),(3,26),(3,27),(3,44),(4,12),(4,17),(4,22),(4,23),(4,25),(4,46),(5,11),(5,16),(5,20),(5,21),(5,24),(5,46),(6,14),(6,19),(6,21),(6,23),(6,27),(6,45),(7,13),(7,18),(7,20),(7,22),(7,26),(7,45),(8,9),(8,10),(8,15),(8,16),(8,17),(8,18),(8,19),(9,36),(9,37),(9,47),(9,52),(10,38),(10,39),(10,47),(10,53),(11,36),(11,48),(11,62),(12,37),(12,49),(12,62),(13,38),(13,50),(13,63),(14,39),(14,51),(14,63),(15,32),(15,33),(15,34),(15,35),(15,47),(16,32),(16,36),(16,40),(16,41),(16,53),(17,33),(17,37),(17,42),(17,43),(17,53),(18,34),(18,38),(18,40),(18,42),(18,52),(19,35),(19,39),(19,41),(19,43),(19,52),(20,28),(20,40),(20,48),(20,50),(21,29),(21,41),(21,48),(21,51),(22,30),(22,42),(22,49),(22,50),(23,31),(23,43),(23,49),(23,51),(24,28),(24,29),(24,32),(24,62),(25,30),(25,31),(25,33),(25,62),(26,28),(26,30),(26,34),(26,63),(27,29),(27,31),(27,35),(27,63),(28,54),(28,66),(29,55),(29,66),(30,56),(30,66),(31,57),(31,66),(32,54),(32,55),(32,64),(33,56),(33,57),(33,64),(34,54),(34,56),(34,65),(35,55),(35,57),(35,65),(36,58),(36,64),(37,59),(37,64),(38,60),(38,65),(39,61),(39,65),(40,54),(40,58),(40,60),(41,55),(41,58),(41,61),(42,56),(42,59),(42,60),(43,57),(43,59),(43,61),(44,47),(44,62),(44,63),(45,48),(45,49),(45,52),(45,63),(46,50),(46,51),(46,53),(46,62),(47,64),(47,65),(48,58),(48,66),(49,59),(49,66),(50,60),(50,66),(51,61),(51,66),(52,58),(52,59),(52,65),(53,60),(53,61),(53,64),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,67),(61,67),(62,64),(62,66),(63,65),(63,66),(64,67),(65,67),(66,67)],68)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 3 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(1,15),(1,19),(1,23),(1,24),(1,25),(2,10),(2,14),(2,18),(2,21),(2,22),(2,25),(3,9),(3,13),(3,17),(3,20),(3,22),(3,24),(4,8),(4,12),(4,16),(4,20),(4,21),(4,23),(5,16),(5,17),(5,18),(5,19),(5,26),(6,12),(6,13),(6,14),(6,15),(6,26),(7,8),(7,9),(7,10),(7,11),(7,26),(8,27),(8,28),(8,30),(8,45),(9,27),(9,29),(9,31),(9,46),(10,28),(10,29),(10,32),(10,47),(11,30),(11,31),(11,32),(11,48),(12,33),(12,34),(12,36),(12,45),(13,33),(13,35),(13,37),(13,46),(14,34),(14,35),(14,38),(14,47),(15,36),(15,37),(15,38),(15,48),(16,39),(16,40),(16,42),(16,45),(17,39),(17,41),(17,43),(17,46),(18,40),(18,41),(18,44),(18,47),(19,42),(19,43),(19,44),(19,48),(20,27),(20,33),(20,39),(20,55),(21,28),(21,34),(21,40),(21,55),(22,29),(22,35),(22,41),(22,55),(23,30),(23,36),(23,42),(23,55),(24,31),(24,37),(24,43),(24,55),(25,32),(25,38),(25,44),(25,55),(26,45),(26,46),(26,47),(26,48),(27,51),(27,56),(28,49),(28,56),(29,50),(29,56),(30,52),(30,56),(31,53),(31,56),(32,54),(32,56),(33,51),(33,57),(34,49),(34,57),(35,50),(35,57),(36,52),(36,57),(37,53),(37,57),(38,54),(38,57),(39,51),(39,58),(40,49),(40,58),(41,50),(41,58),(42,52),(42,58),(43,53),(43,58),(44,54),(44,58),(45,49),(45,51),(45,52),(46,50),(46,51),(46,53),(47,49),(47,50),(47,54),(48,52),(48,53),(48,54),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,56),(55,57),(55,58),(56,59),(57,59),(58,59)],60)
=> ? = 3 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 3 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,20),(1,21),(1,22),(1,33),(2,9),(2,17),(2,18),(2,19),(2,33),(3,8),(3,14),(3,15),(3,16),(3,33),(4,13),(4,16),(4,19),(4,22),(4,32),(5,12),(5,15),(5,18),(5,21),(5,32),(6,11),(6,14),(6,17),(6,20),(6,32),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,23),(8,24),(8,25),(8,40),(9,26),(9,27),(9,28),(9,40),(10,29),(10,30),(10,31),(10,40),(11,23),(11,26),(11,29),(11,41),(12,24),(12,27),(12,30),(12,41),(13,25),(13,28),(13,31),(13,41),(14,23),(14,34),(14,37),(15,24),(15,35),(15,37),(16,25),(16,36),(16,37),(17,26),(17,34),(17,38),(18,27),(18,35),(18,38),(19,28),(19,36),(19,38),(20,29),(20,34),(20,39),(21,30),(21,35),(21,39),(22,31),(22,36),(22,39),(23,42),(23,45),(24,43),(24,45),(25,44),(25,45),(26,42),(26,46),(27,43),(27,46),(28,44),(28,46),(29,42),(29,47),(30,43),(30,47),(31,44),(31,47),(32,37),(32,38),(32,39),(32,41),(33,34),(33,35),(33,36),(33,40),(34,42),(34,48),(35,43),(35,48),(36,44),(36,48),(37,45),(37,48),(38,46),(38,48),(39,47),(39,48),(40,42),(40,43),(40,44),(41,45),(41,46),(41,47),(42,49),(43,49),(44,49),(45,49),(46,49),(47,49),(48,49)],50)
=> ? = 3 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,10),(1,11),(1,40),(1,41),(2,15),(2,16),(2,17),(2,26),(2,27),(2,41),(3,12),(3,13),(3,14),(3,24),(3,25),(3,41),(4,21),(4,22),(4,23),(4,25),(4,27),(4,40),(5,18),(5,19),(5,20),(5,24),(5,26),(5,40),(6,11),(6,14),(6,17),(6,20),(6,23),(6,42),(7,10),(7,13),(7,16),(7,19),(7,22),(7,42),(8,9),(8,12),(8,15),(8,18),(8,21),(8,42),(9,43),(9,46),(9,49),(10,44),(10,47),(10,49),(11,45),(11,48),(11,49),(12,28),(12,31),(12,43),(12,50),(13,29),(13,32),(13,44),(13,50),(14,30),(14,33),(14,45),(14,50),(15,34),(15,37),(15,43),(15,51),(16,35),(16,38),(16,44),(16,51),(17,36),(17,39),(17,45),(17,51),(18,28),(18,34),(18,46),(18,52),(19,29),(19,35),(19,47),(19,52),(20,30),(20,36),(20,48),(20,52),(21,31),(21,37),(21,46),(21,53),(22,32),(22,38),(22,47),(22,53),(23,33),(23,39),(23,48),(23,53),(24,28),(24,29),(24,30),(24,58),(25,31),(25,32),(25,33),(25,58),(26,34),(26,35),(26,36),(26,58),(27,37),(27,38),(27,39),(27,58),(28,54),(28,61),(29,54),(29,62),(30,54),(30,63),(31,55),(31,61),(32,55),(32,62),(33,55),(33,63),(34,56),(34,61),(35,56),(35,62),(36,56),(36,63),(37,57),(37,61),(38,57),(38,62),(39,57),(39,63),(40,46),(40,47),(40,48),(40,58),(41,43),(41,44),(41,45),(41,58),(42,49),(42,50),(42,51),(42,52),(42,53),(43,59),(43,61),(44,59),(44,62),(45,59),(45,63),(46,60),(46,61),(47,60),(47,62),(48,60),(48,63),(49,59),(49,60),(50,54),(50,55),(50,59),(51,56),(51,57),(51,59),(52,54),(52,56),(52,60),(53,55),(53,57),(53,60),(54,64),(55,64),(56,64),(57,64),(58,61),(58,62),(58,63),(59,64),(60,64),(61,64),(62,64),(63,64)],65)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 3 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,13),(1,17),(1,18),(1,19),(2,8),(2,9),(2,13),(2,14),(2,15),(2,16),(3,9),(3,11),(3,12),(3,23),(3,24),(3,25),(4,8),(4,10),(4,12),(4,20),(4,21),(4,22),(5,16),(5,19),(5,22),(5,25),(5,27),(5,28),(6,15),(6,18),(6,21),(6,24),(6,26),(6,28),(7,14),(7,17),(7,20),(7,23),(7,26),(7,27),(8,35),(8,36),(8,37),(8,72),(9,38),(9,39),(9,40),(9,72),(10,41),(10,42),(10,43),(10,72),(11,44),(11,45),(11,46),(11,72),(12,32),(12,33),(12,34),(12,72),(13,29),(13,30),(13,31),(13,72),(14,29),(14,35),(14,38),(14,48),(14,49),(15,30),(15,36),(15,39),(15,48),(15,50),(16,31),(16,37),(16,40),(16,49),(16,50),(17,29),(17,41),(17,44),(17,51),(17,52),(18,30),(18,42),(18,45),(18,51),(18,53),(19,31),(19,43),(19,46),(19,52),(19,53),(20,32),(20,35),(20,41),(20,54),(20,55),(21,33),(21,36),(21,42),(21,54),(21,56),(22,34),(22,37),(22,43),(22,55),(22,56),(23,32),(23,38),(23,44),(23,57),(23,58),(24,33),(24,39),(24,45),(24,57),(24,59),(25,34),(25,40),(25,46),(25,58),(25,59),(26,47),(26,48),(26,51),(26,54),(26,57),(27,47),(27,49),(27,52),(27,55),(27,58),(28,47),(28,50),(28,53),(28,56),(28,59),(29,73),(29,76),(30,74),(30,76),(31,75),(31,76),(32,73),(32,77),(33,74),(33,77),(34,75),(34,77),(35,60),(35,61),(35,73),(36,60),(36,62),(36,74),(37,61),(37,62),(37,75),(38,63),(38,64),(38,73),(39,63),(39,65),(39,74),(40,64),(40,65),(40,75),(41,66),(41,67),(41,73),(42,66),(42,68),(42,74),(43,67),(43,68),(43,75),(44,69),(44,70),(44,73),(45,69),(45,71),(45,74),(46,70),(46,71),(46,75),(47,76),(47,77),(48,60),(48,63),(48,76),(49,61),(49,64),(49,76),(50,62),(50,65),(50,76),(51,66),(51,69),(51,76),(52,67),(52,70),(52,76),(53,68),(53,71),(53,76),(54,60),(54,66),(54,77),(55,61),(55,67),(55,77),(56,62),(56,68),(56,77),(57,63),(57,69),(57,77),(58,64),(58,70),(58,77),(59,65),(59,71),(59,77),(60,78),(61,78),(62,78),(63,78),(64,78),(65,78),(66,78),(67,78),(68,78),(69,78),(70,78),(71,78),(72,73),(72,74),(72,75),(73,78),(74,78),(75,78),(76,78),(77,78)],79)
=> ? = 3 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,15),(1,19),(1,23),(1,27),(1,32),(1,33),(2,10),(2,15),(2,18),(2,22),(2,26),(2,30),(2,31),(3,13),(3,14),(3,21),(3,25),(3,29),(3,31),(3,33),(4,12),(4,14),(4,20),(4,24),(4,28),(4,30),(4,32),(5,9),(5,16),(5,17),(5,26),(5,27),(5,28),(5,29),(6,9),(6,10),(6,11),(6,12),(6,13),(6,34),(7,17),(7,22),(7,23),(7,24),(7,25),(7,34),(8,16),(8,18),(8,19),(8,20),(8,21),(8,34),(9,71),(9,80),(9,81),(10,35),(10,36),(10,72),(10,80),(11,37),(11,38),(11,73),(11,80),(12,35),(12,37),(12,74),(12,81),(13,36),(13,38),(13,75),(13,81),(14,44),(14,46),(14,81),(14,82),(15,43),(15,45),(15,80),(15,82),(16,55),(16,56),(16,57),(16,58),(16,71),(17,59),(17,60),(17,61),(17,62),(17,71),(18,43),(18,47),(18,48),(18,55),(18,72),(19,43),(19,49),(19,50),(19,56),(19,73),(20,44),(20,47),(20,49),(20,57),(20,74),(21,44),(21,48),(21,50),(21,58),(21,75),(22,45),(22,51),(22,52),(22,59),(22,72),(23,45),(23,53),(23,54),(23,60),(23,73),(24,46),(24,51),(24,53),(24,61),(24,74),(25,46),(25,52),(25,54),(25,62),(25,75),(26,39),(26,40),(26,55),(26,59),(26,80),(27,41),(27,42),(27,56),(27,60),(27,80),(28,39),(28,41),(28,57),(28,61),(28,81),(29,40),(29,42),(29,58),(29,62),(29,81),(30,35),(30,39),(30,47),(30,51),(30,82),(31,36),(31,40),(31,48),(31,52),(31,82),(32,37),(32,41),(32,49),(32,53),(32,82),(33,38),(33,42),(33,50),(33,54),(33,82),(34,71),(34,72),(34,73),(34,74),(34,75),(35,76),(35,87),(36,77),(36,87),(37,78),(37,87),(38,79),(38,87),(39,63),(39,67),(39,87),(40,64),(40,68),(40,87),(41,65),(41,69),(41,87),(42,66),(42,70),(42,87),(43,83),(43,85),(44,83),(44,86),(45,84),(45,85),(46,84),(46,86),(47,63),(47,76),(47,83),(48,64),(48,77),(48,83),(49,65),(49,78),(49,83),(50,66),(50,79),(50,83),(51,67),(51,76),(51,84),(52,68),(52,77),(52,84),(53,69),(53,78),(53,84),(54,70),(54,79),(54,84),(55,63),(55,64),(55,85),(56,65),(56,66),(56,85),(57,63),(57,65),(57,86),(58,64),(58,66),(58,86),(59,67),(59,68),(59,85),(60,69),(60,70),(60,85),(61,67),(61,69),(61,86),(62,68),(62,70),(62,86),(63,88),(64,88),(65,88),(66,88),(67,88),(68,88),(69,88),(70,88),(71,85),(71,86),(72,76),(72,77),(72,85),(73,78),(73,79),(73,85),(74,76),(74,78),(74,86),(75,77),(75,79),(75,86),(76,88),(77,88),(78,88),(79,88),(80,85),(80,87),(81,86),(81,87),(82,83),(82,84),(82,87),(83,88),(84,88),(85,88),(86,88),(87,88)],89)
=> ? = 3 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(2,11),(2,15),(2,20),(2,21),(2,23),(2,50),(3,10),(3,14),(3,18),(3,19),(3,22),(3,50),(4,13),(4,17),(4,19),(4,21),(4,25),(4,49),(5,12),(5,16),(5,18),(5,20),(5,24),(5,49),(6,14),(6,15),(6,16),(6,17),(6,27),(6,48),(7,10),(7,11),(7,12),(7,13),(7,26),(7,48),(8,9),(8,48),(8,49),(8,50),(9,59),(9,60),(9,61),(10,28),(10,40),(10,41),(10,63),(11,29),(11,42),(11,43),(11,63),(12,30),(12,40),(12,42),(12,64),(13,31),(13,41),(13,43),(13,64),(14,32),(14,44),(14,45),(14,63),(15,33),(15,46),(15,47),(15,63),(16,34),(16,44),(16,46),(16,64),(17,35),(17,45),(17,47),(17,64),(18,36),(18,40),(18,44),(18,62),(19,37),(19,41),(19,45),(19,62),(20,38),(20,42),(20,46),(20,62),(21,39),(21,43),(21,47),(21,62),(22,28),(22,32),(22,36),(22,37),(22,59),(23,29),(23,33),(23,38),(23,39),(23,59),(24,30),(24,34),(24,36),(24,38),(24,60),(25,31),(25,35),(25,37),(25,39),(25,60),(26,28),(26,29),(26,30),(26,31),(26,61),(27,32),(27,33),(27,34),(27,35),(27,61),(28,51),(28,52),(28,66),(29,53),(29,54),(29,66),(30,51),(30,53),(30,67),(31,52),(31,54),(31,67),(32,55),(32,56),(32,66),(33,57),(33,58),(33,66),(34,55),(34,57),(34,67),(35,56),(35,58),(35,67),(36,51),(36,55),(36,65),(37,52),(37,56),(37,65),(38,53),(38,57),(38,65),(39,54),(39,58),(39,65),(40,51),(40,68),(41,52),(41,68),(42,53),(42,68),(43,54),(43,68),(44,55),(44,68),(45,56),(45,68),(46,57),(46,68),(47,58),(47,68),(48,61),(48,63),(48,64),(49,60),(49,62),(49,64),(50,59),(50,62),(50,63),(51,69),(52,69),(53,69),(54,69),(55,69),(56,69),(57,69),(58,69),(59,65),(59,66),(60,65),(60,67),(61,66),(61,67),(62,65),(62,68),(63,66),(63,68),(64,67),(64,68),(65,69),(66,69),(67,69),(68,69)],70)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,10),(1,13),(1,14),(1,44),(1,46),(2,9),(2,11),(2,12),(2,44),(2,45),(3,15),(3,24),(3,25),(3,26),(3,27),(3,44),(4,12),(4,17),(4,22),(4,23),(4,25),(4,46),(5,11),(5,16),(5,20),(5,21),(5,24),(5,46),(6,14),(6,19),(6,21),(6,23),(6,27),(6,45),(7,13),(7,18),(7,20),(7,22),(7,26),(7,45),(8,9),(8,10),(8,15),(8,16),(8,17),(8,18),(8,19),(9,36),(9,37),(9,47),(9,52),(10,38),(10,39),(10,47),(10,53),(11,36),(11,48),(11,62),(12,37),(12,49),(12,62),(13,38),(13,50),(13,63),(14,39),(14,51),(14,63),(15,32),(15,33),(15,34),(15,35),(15,47),(16,32),(16,36),(16,40),(16,41),(16,53),(17,33),(17,37),(17,42),(17,43),(17,53),(18,34),(18,38),(18,40),(18,42),(18,52),(19,35),(19,39),(19,41),(19,43),(19,52),(20,28),(20,40),(20,48),(20,50),(21,29),(21,41),(21,48),(21,51),(22,30),(22,42),(22,49),(22,50),(23,31),(23,43),(23,49),(23,51),(24,28),(24,29),(24,32),(24,62),(25,30),(25,31),(25,33),(25,62),(26,28),(26,30),(26,34),(26,63),(27,29),(27,31),(27,35),(27,63),(28,54),(28,66),(29,55),(29,66),(30,56),(30,66),(31,57),(31,66),(32,54),(32,55),(32,64),(33,56),(33,57),(33,64),(34,54),(34,56),(34,65),(35,55),(35,57),(35,65),(36,58),(36,64),(37,59),(37,64),(38,60),(38,65),(39,61),(39,65),(40,54),(40,58),(40,60),(41,55),(41,58),(41,61),(42,56),(42,59),(42,60),(43,57),(43,59),(43,61),(44,47),(44,62),(44,63),(45,48),(45,49),(45,52),(45,63),(46,50),(46,51),(46,53),(46,62),(47,64),(47,65),(48,58),(48,66),(49,59),(49,66),(50,60),(50,66),(51,61),(51,66),(52,58),(52,59),(52,65),(53,60),(53,61),(53,64),(54,67),(55,67),(56,67),(57,67),(58,67),(59,67),(60,67),(61,67),(62,64),(62,66),(63,65),(63,66),(64,67),(65,67),(66,67)],68)
=> ? = 3 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,18),(1,21),(1,24),(1,27),(1,30),(2,10),(2,16),(2,18),(2,20),(2,23),(2,26),(2,29),(3,9),(3,16),(3,17),(3,19),(3,22),(3,25),(3,28),(4,14),(4,15),(4,22),(4,23),(4,24),(4,56),(5,12),(5,13),(5,19),(5,20),(5,21),(5,56),(6,13),(6,15),(6,28),(6,29),(6,30),(6,55),(7,12),(7,14),(7,25),(7,26),(7,27),(7,55),(8,9),(8,10),(8,11),(8,55),(8,56),(9,69),(9,72),(9,75),(10,70),(10,73),(10,75),(11,71),(11,74),(11,75),(12,43),(12,44),(12,45),(12,76),(13,46),(13,47),(13,48),(13,76),(14,49),(14,50),(14,51),(14,76),(15,52),(15,53),(15,54),(15,76),(16,33),(16,36),(16,39),(16,42),(16,75),(17,31),(17,34),(17,37),(17,40),(17,75),(18,32),(18,35),(18,38),(18,41),(18,75),(19,31),(19,33),(19,43),(19,46),(19,69),(20,32),(20,33),(20,44),(20,47),(20,70),(21,31),(21,32),(21,45),(21,48),(21,71),(22,34),(22,36),(22,49),(22,52),(22,69),(23,35),(23,36),(23,50),(23,53),(23,70),(24,34),(24,35),(24,51),(24,54),(24,71),(25,37),(25,39),(25,43),(25,49),(25,72),(26,38),(26,39),(26,44),(26,50),(26,73),(27,37),(27,38),(27,45),(27,51),(27,74),(28,40),(28,42),(28,46),(28,52),(28,72),(29,41),(29,42),(29,47),(29,53),(29,73),(30,40),(30,41),(30,48),(30,54),(30,74),(31,57),(31,60),(31,80),(32,58),(32,61),(32,80),(33,59),(33,62),(33,80),(34,63),(34,66),(34,80),(35,64),(35,67),(35,80),(36,65),(36,68),(36,80),(37,57),(37,63),(37,81),(38,58),(38,64),(38,81),(39,59),(39,65),(39,81),(40,60),(40,66),(40,81),(41,61),(41,67),(41,81),(42,62),(42,68),(42,81),(43,57),(43,59),(43,77),(44,58),(44,59),(44,78),(45,57),(45,58),(45,79),(46,60),(46,62),(46,77),(47,61),(47,62),(47,78),(48,60),(48,61),(48,79),(49,63),(49,65),(49,77),(50,64),(50,65),(50,78),(51,63),(51,64),(51,79),(52,66),(52,68),(52,77),(53,67),(53,68),(53,78),(54,66),(54,67),(54,79),(55,72),(55,73),(55,74),(55,76),(56,69),(56,70),(56,71),(56,76),(57,82),(58,82),(59,82),(60,82),(61,82),(62,82),(63,82),(64,82),(65,82),(66,82),(67,82),(68,82),(69,77),(69,80),(70,78),(70,80),(71,79),(71,80),(72,77),(72,81),(73,78),(73,81),(74,79),(74,81),(75,80),(75,81),(76,77),(76,78),(76,79),(77,82),(78,82),(79,82),(80,82),(81,82)],83)
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,20),(1,21),(1,22),(1,23),(1,33),(1,61),(2,10),(2,16),(2,17),(2,18),(2,19),(2,32),(2,61),(3,13),(3,17),(3,21),(3,26),(3,27),(3,29),(3,60),(4,12),(4,16),(4,20),(4,24),(4,25),(4,28),(4,60),(5,15),(5,19),(5,23),(5,25),(5,27),(5,31),(5,59),(6,14),(6,18),(6,22),(6,24),(6,26),(6,30),(6,59),(7,28),(7,29),(7,30),(7,31),(7,32),(7,33),(7,58),(8,12),(8,13),(8,14),(8,15),(8,58),(8,61),(9,10),(9,11),(9,58),(9,59),(9,60),(10,70),(10,71),(10,84),(11,72),(11,73),(11,84),(12,34),(12,35),(12,74),(12,82),(13,36),(13,37),(13,75),(13,82),(14,34),(14,36),(14,76),(14,83),(15,35),(15,37),(15,77),(15,83),(16,38),(16,39),(16,46),(16,70),(16,74),(17,40),(17,41),(17,47),(17,70),(17,75),(18,38),(18,40),(18,48),(18,71),(18,76),(19,39),(19,41),(19,49),(19,71),(19,77),(20,42),(20,43),(20,50),(20,72),(20,74),(21,44),(21,45),(21,51),(21,72),(21,75),(22,42),(22,44),(22,52),(22,73),(22,76),(23,43),(23,45),(23,53),(23,73),(23,77),(24,34),(24,38),(24,42),(24,54),(24,85),(25,35),(25,39),(25,43),(25,55),(25,85),(26,36),(26,40),(26,44),(26,56),(26,85),(27,37),(27,41),(27,45),(27,57),(27,85),(28,46),(28,50),(28,54),(28,55),(28,82),(29,47),(29,51),(29,56),(29,57),(29,82),(30,48),(30,52),(30,54),(30,56),(30,83),(31,49),(31,53),(31,55),(31,57),(31,83),(32,46),(32,47),(32,48),(32,49),(32,84),(33,50),(33,51),(33,52),(33,53),(33,84),(34,78),(34,90),(35,79),(35,90),(36,80),(36,90),(37,81),(37,90),(38,62),(38,78),(38,86),(39,63),(39,79),(39,86),(40,64),(40,80),(40,86),(41,65),(41,81),(41,86),(42,66),(42,78),(42,87),(43,67),(43,79),(43,87),(44,68),(44,80),(44,87),(45,69),(45,81),(45,87),(46,62),(46,63),(46,88),(47,64),(47,65),(47,88),(48,62),(48,64),(48,89),(49,63),(49,65),(49,89),(50,66),(50,67),(50,88),(51,68),(51,69),(51,88),(52,66),(52,68),(52,89),(53,67),(53,69),(53,89),(54,62),(54,66),(54,90),(55,63),(55,67),(55,90),(56,64),(56,68),(56,90),(57,65),(57,69),(57,90),(58,82),(58,83),(58,84),(59,71),(59,73),(59,83),(59,85),(60,70),(60,72),(60,82),(60,85),(61,74),(61,75),(61,76),(61,77),(61,84),(62,91),(63,91),(64,91),(65,91),(66,91),(67,91),(68,91),(69,91),(70,86),(70,88),(71,86),(71,89),(72,87),(72,88),(73,87),(73,89),(74,78),(74,79),(74,88),(75,80),(75,81),(75,88),(76,78),(76,80),(76,89),(77,79),(77,81),(77,89),(78,91),(79,91),(80,91),(81,91),(82,88),(82,90),(83,89),(83,90),(84,88),(84,89),(85,86),(85,87),(85,90),(86,91),(87,91),(88,91),(89,91),(90,91)],92)
=> ? = 3 - 1
([(5,6)],7)
=> ([(0,1)],2)
=> 0 = 1 - 1
([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0 = 1 - 1
([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0 = 1 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 1 - 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0 = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0 = 1 - 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0 = 1 - 1
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
The following 243 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000068The number of minimal elements in a poset. St001330The hat guessing number of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001335The cardinality of a minimal cycle-isolating set of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000322The skewness of a graph. St000260The radius of a connected graph. St000273The domination number of a graph. St000544The cop number of a graph. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000916The packing number of a graph. St000917The open packing number of a graph. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001316The domatic number of a graph. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001342The number of vertices in the center of a graph. St001363The Euler characteristic of a graph according to Knill. St001368The number of vertices of maximal degree in a graph. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001672The restrained domination number of a graph. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St000258The burning number of a graph. St000259The diameter of a connected graph. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000379The number of Hamiltonian cycles in a graph. St000552The number of cut vertices of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000699The toughness times the least common multiple of 1,. St000918The 2-limited packing number of a graph. St000948The chromatic discriminant of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001119The length of a shortest maximal path in a graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001281The normalized isoperimetric number of a graph. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001341The number of edges in the center of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001395The number of strictly unfriendly partitions of a graph. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001477The number of nowhere zero 5-flows of a graph. St001478The number of nowhere zero 4-flows of a graph. St001691The number of kings in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St001826The maximal number of leaves on a vertex of a graph. St001957The number of Hasse diagrams with a given underlying undirected graph. St000264The girth of a graph, which is not a tree. St000056The decomposition (or block) number of a permutation. St000093The cardinality of a maximal independent set of vertices of a graph. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St000349The number of different adjacency matrices of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000486The number of cycles of length at least 3 of a permutation. St000535The rank-width of a graph. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000694The number of affine bounded permutations that project to a given permutation. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000785The number of distinct colouring schemes of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000864The number of circled entries of the shifted recording tableau of a permutation. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001057The Grundy value of the game of creating an independent set in a graph. St001081The number of minimal length factorizations of a permutation into star transpositions. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001256Number of simple reflexive modules that are 2-stable reflexive. St001271The competition number of a graph. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001352The number of internal nodes in the modular decomposition of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001393The induced matching number of a graph. St001461The number of topologically connected components of the chord diagram of a permutation. St001463The number of distinct columns in the nullspace of a graph. St001512The minimum rank of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001590The crossing number of a perfect matching. St001642The Prague dimension of a graph. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001665The number of pure excedances of a permutation. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001734The lettericity of a graph. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001765The number of connected components of the friends and strangers graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001890The maximum magnitude of the Möbius function of a poset. St001917The order of toric promotion on the set of labellings of a graph. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000299The number of nonisomorphic vertex-induced subtrees. St000312The number of leaves in a graph. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000403The Szeged index minus the Wiener index of a graph. St000406The number of occurrences of the pattern 3241 in a permutation. St000448The number of pairs of vertices of a graph with distance 2. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000542The number of left-to-right-minima of a permutation. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001093The detour number of a graph. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001261The Castelnuovo-Mumford regularity of a graph. St001305The number of induced cycles on four vertices in a graph. St001306The number of induced paths on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001308The number of induced paths on three vertices in a graph. St001310The number of induced diamond graphs in a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001350Half of the Albertson index of a graph. St001351The Albertson index of a graph. St001353The number of prime nodes in the modular decomposition of a graph. St001356The number of vertices in prime modules of a graph. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001374The Padmakar-Ivan index of a graph. St001381The fertility of a permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001411The number of patterns 321 or 3412 in a permutation. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001479The number of bridges of a graph. St001513The number of nested exceedences of a permutation. St001521Half the total irregularity of a graph. St001522The total irregularity of a graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001570The minimal number of edges to add to make a graph Hamiltonian. St001574The minimal number of edges to add or remove to make a graph regular. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001647The number of edges that can be added without increasing the clique number. St001648The number of edges that can be added without increasing the chromatic number. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001674The number of vertices of the largest induced star graph in the graph. St001689The number of celebrities in a graph. St001692The number of vertices with higher degree than the average degree in a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001708The number of pairs of vertices of different degree in a graph. St001715The number of non-records in a permutation. St001728The number of invisible descents of a permutation. St001741The largest integer such that all patterns of this size are contained in the permutation. St001742The difference of the maximal and the minimal degree in a graph. St001764The number of non-convex subsets of vertices in a graph. St001793The difference between the clique number and the chromatic number of a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001799The number of proper separations of a graph. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001847The number of occurrences of the pattern 1432 in a permutation. St001850The number of Hecke atoms of a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001488The number of corners of a skew partition. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000268The number of strongly connected orientations of a graph. St000344The number of strongly connected outdegree sequences of a graph. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001071The beta invariant of the graph. St001073The number of nowhere zero 3-flows of a graph. St001720The minimal length of a chain of small intervals in a lattice. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000741The Colin de Verdière graph invariant. St001060The distinguishing index of a graph. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!