searching the database
Your data matches 64 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000081
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The number of edges of a graph.
Matching statistic: St000263
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The Szeged index of a graph.
Matching statistic: St000265
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The Wiener index of a graph.
This is the sum of the distances of all pairs of vertices.
Matching statistic: St000456
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000947
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 6
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 6
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 3
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 6
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 6
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 6
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 10
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> 3
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 3
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> 3
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> 6
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> 3
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> 3
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> 6
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> 3
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> 6
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> 6
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> 10
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> 3
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> 3
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> 6
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> 3
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> 6
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> 6
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> 10
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 3
Description
The major index east count of a Dyck path.
The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]].
The '''major index east count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = E\}$.
Matching statistic: St000976
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000976: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000976: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 6
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 3
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 3
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 6
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 6
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 6
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 10
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> 3
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> 3
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> 3
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> 6
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> 3
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> 3
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> 6
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> 3
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> 6
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> 6
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 10
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> 3
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> 3
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> 6
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> 3
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> 6
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> 6
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> 10
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> 3
Description
The sum of the positions of double up-steps of a Dyck path.
This is part of MacMahon's equal index of a word, see [1, p. 135].
Matching statistic: St001341
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The number of edges in the center of a graph.
The center of a graph is the set of vertices whose maximal distance to any other vertex is minimal. In particular, if the graph is disconnected, all vertices are in the certer.
Matching statistic: St001694
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The number of maximal dissociation sets in a graph.
Matching statistic: St000008
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1] => ([(0,2),(1,2)],3)
=> [2,1] => [1,2] => 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,3] => 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,3] => 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1,2] => 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,4] => 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,4] => 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,4] => 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,2] => 6
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [1,5] => 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [1,5] => 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,4] => 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [1,5] => 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,4] => 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,4] => 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,3] => 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [1,5] => 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,4] => 3
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,4] => 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,3] => 6
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,4] => 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,3] => 6
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,3] => 6
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,1,1,1,2] => 10
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [1,6] => 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [1,6] => 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [1,6] => 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1] => [1,1,1,4] => 6
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [1,6] => 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1] => [1,1,1,4] => 6
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1] => [1,1,1,4] => 6
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1] => [1,1,1,4] => 6
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [1,1,1,1,3] => 10
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [1,6] => 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1] => [1,1,1,4] => 6
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1] => [1,1,1,4] => 6
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1] => [1,1,1,4] => 6
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [1,1,1,1,3] => 10
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1] => [1,1,5] => 3
Description
The major index of the composition.
The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000185
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1] => [1,1,0,0,1,0]
=> [3,1,2] => [2,1]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,1]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,1,1]
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,1]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,1]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,1,1]
=> 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,1]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,1]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [3,1,1]
=> 3
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [2,1,1,1]
=> 6
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [5,1]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [5,1]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [4,1,1]
=> 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [5,1]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [4,1,1]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [4,1,1]
=> 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [3,1,1,1]
=> 6
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [5,1]
=> 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => [4,1,1]
=> 3
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => [4,1,1]
=> 3
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => [3,1,1,1]
=> 6
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => [4,1,1]
=> 3
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,5,1,2,3] => [3,1,1,1]
=> 6
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => [3,1,1,1]
=> 6
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [2,1,1,1,1]
=> 10
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [6,1]
=> 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [6,1]
=> 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [5,1,1]
=> 3
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [6,1]
=> 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => [5,1,1]
=> 3
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => [5,1,1]
=> 3
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => [4,1,1,1]
=> 6
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => [6,1]
=> 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,2,3,1] => [5,1,1]
=> 3
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,2,3,1] => [5,1,1]
=> 3
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,2,3,1] => [4,1,1,1]
=> 6
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [7,6,5,2,3,4,1] => [5,1,1]
=> 3
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [7,5,6,2,3,4,1] => [4,1,1,1]
=> 6
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,3,4,5,1] => [4,1,1,1]
=> 6
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,6,1] => [3,1,1,1,1]
=> 10
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,2] => [6,1]
=> 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,1,2] => [5,1,1]
=> 3
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,1,2] => [5,1,1]
=> 3
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,1,2] => [4,1,1,1]
=> 6
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,1,2] => [5,1,1]
=> 3
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,1,2] => [4,1,1,1]
=> 6
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,1,2] => [4,1,1,1]
=> 6
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,1,2] => [3,1,1,1,1]
=> 10
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,1,2,3] => [5,1,1]
=> 3
Description
The weighted size of a partition.
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$
\sum_i \binom{\lambda^{\prime}_i}{2}
$$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
The following 54 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000347The inversion sum of a binary word. St000448The number of pairs of vertices of a graph with distance 2. St000490The intertwining number of a set partition. St000493The los statistic of a set partition. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000573The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton and 2 a maximal element. St000574The number of occurrences of the pattern {{1},{2}} such that 1 is a minimal and 2 a maximal element. St000576The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal and 2 a minimal element. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001931The weak major index of an integer composition regarded as a word. St001961The sum of the greatest common divisors of all pairs of parts. St000472The sum of the ascent bottoms of a permutation. St000332The positive inversions of an alternating sign matrix. St000004The major index of a permutation. St000154The sum of the descent bottoms of a permutation. St000156The Denert index of a permutation. St000304The load of a permutation. St000305The inverse major index of a permutation. St000796The stat' of a permutation. St000798The makl of a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St001874Lusztig's a-function for the symmetric group. St001734The lettericity of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001330The hat guessing number of a graph. St000455The second largest eigenvalue of a graph if it is integral. St001651The Frankl number of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001618The cardinality of the Frattini sublattice of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001848The atomic length of a signed permutation. St001851The number of Hecke atoms of a signed permutation. St001893The flag descent of a signed permutation. St000422The energy of a graph, if it is integral. St001625The Möbius invariant of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001754The number of tolerances of a finite lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!