searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000464
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> 10
([(0,1),(0,2),(1,2)],3)
=> 12
([(0,3),(1,3),(2,3)],4)
=> 24
([(0,3),(1,2),(2,3)],4)
=> 28
([(0,3),(1,2),(1,3),(2,3)],4)
=> 30
([(0,2),(0,3),(1,2),(1,3)],4)
=> 32
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 34
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 36
([(0,4),(1,4),(2,4),(3,4)],5)
=> 44
([(0,4),(1,4),(2,3),(3,4)],5)
=> 52
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 54
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 61
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 58
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 62
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 66
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 68
([(0,4),(1,3),(2,3),(2,4)],5)
=> 60
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 64
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 64
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 60
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 66
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 70
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 67
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 68
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 74
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 72
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 76
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 78
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 80
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 70
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 82
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 84
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 98
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 86
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 96
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 92
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 96
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 104
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 106
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 100
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 106
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 112
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 114
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 94
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 98
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 98
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 100
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 100
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> 96
Description
The Schultz index of a connected graph.
This is
$$\sum_{\{u,v\}\subseteq V} (d(u)+d(v))d(u,v)$$
where $d(u)$ is the degree of vertex $u$ and $d(u,v)$ is the distance between vertices $u$ and $v$.
For trees on $n$ vertices, the Schultz index is related to the Wiener index via $S(T)=4W(T)-n(n-1)$ [2].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!