Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000497
Mp00240: Permutations weak exceedance partitionSet partitions
Mp00115: Set partitions Kasraoui-ZengSet partitions
Mp00217: Set partitions Wachs-White-rho Set partitions
St000497: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,2,3] => {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> {{1},{2,3}}
=> {{1},{2,3}}
=> 0
[2,1,3] => {{1,2},{3}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 0
[2,3,1] => {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[3,1,2] => {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[3,2,1] => {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[1,2,3,4] => {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> 0
[1,3,2,4] => {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 0
[1,3,4,2] => {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> 0
[1,4,2,3] => {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[1,4,3,2] => {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[2,1,3,4] => {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 0
[2,1,4,3] => {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[2,3,1,4] => {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 0
[2,3,4,1] => {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[2,4,1,3] => {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> 1
[2,4,3,1] => {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> 1
[3,1,2,4] => {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> 1
[3,1,4,2] => {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> 1
[3,2,1,4] => {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> 1
[3,2,4,1] => {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> 1
[3,4,1,2] => {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 1
[3,4,2,1] => {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 1
[4,1,2,3] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,1,3,2] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,2,1,3] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,2,3,1] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,3,1,2] => {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> 2
[4,3,2,1] => {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> 2
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> {{1},{2},{3},{4,5}}
=> {{1},{2},{3},{4,5}}
=> 0
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1},{2},{3,4},{5}}
=> 0
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> {{1},{2},{3,4,5}}
=> {{1},{2},{3,4,5}}
=> 0
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> 1
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> 1
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> 0
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> {{1},{2,3},{4,5}}
=> {{1},{2,3},{4,5}}
=> 0
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> 0
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> {{1},{2,3,4,5}}
=> {{1},{2,3,4,5}}
=> 0
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> 1
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> 1
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> 1
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> 1
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> {{1},{2,5},{3,4}}
=> {{1},{2,4},{3,5}}
=> 1
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> {{1},{2,5},{3,4}}
=> {{1},{2,4},{3,5}}
=> 1
Description
The lcb statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''lcb''' (left-closer-bigger) of $S$ is given by a pair $i < j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a > b$.
Matching statistic: St000491
Mp00240: Permutations weak exceedance partitionSet partitions
Mp00115: Set partitions Kasraoui-ZengSet partitions
Mp00215: Set partitions Wachs-WhiteSet partitions
St000491: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,2,3] => {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> {{1},{2,3}}
=> {{1,2},{3}}
=> 0
[2,1,3] => {{1,2},{3}}
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 0
[2,3,1] => {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[3,1,2] => {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[3,2,1] => {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[1,2,3,4] => {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> 0
[1,3,2,4] => {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 0
[1,3,4,2] => {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> 0
[1,4,2,3] => {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1
[1,4,3,2] => {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1
[2,1,3,4] => {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 0
[2,1,4,3] => {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[2,3,1,4] => {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 0
[2,3,4,1] => {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[2,4,1,3] => {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,3},{2,4}}
=> 1
[2,4,3,1] => {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,3},{2,4}}
=> 1
[3,1,2,4] => {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[3,1,4,2] => {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 1
[3,2,1,4] => {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[3,2,4,1] => {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 1
[3,4,1,2] => {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> 1
[3,4,2,1] => {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> 1
[4,1,2,3] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,1,3,2] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,2,1,3] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,2,3,1] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[4,3,1,2] => {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1,3,4},{2}}
=> 2
[4,3,2,1] => {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1,3,4},{2}}
=> 2
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> 0
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> 0
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> 0
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> 1
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> 1
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> 0
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> 0
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> 0
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> 0
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,4},{5}}
=> 1
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,4},{5}}
=> 1
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1,2,4},{3},{5}}
=> 1
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1,2,4},{3},{5}}
=> 1
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> 1
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> 1
[4,2,3,5,6,7,8,1] => {{1,4,5,6,7,8},{2},{3}}
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 2
[2,3,5,6,8,7,4,1] => {{1,2,3,5,8},{4,6,7}}
=> {{1,2,3,7},{4,5,6,8}}
=> {{1,3,6},{2,4,5,7,8}}
=> ? = 2
[2,3,4,7,6,5,8,1] => {{1,2,3,4,7,8},{5,6}}
=> {{1,2,3,4,6},{5,7,8}}
=> {{1,2,4,5},{3,6,7,8}}
=> ? = 2
[1,3,4,5,6,8,7,2] => {{1},{2,3,4,5,6,8},{7}}
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3},{2,4,5,6,7},{8}}
=> ? = 1
[1,4,3,5,6,7,8,2] => {{1},{2,4,5,6,7,8},{3}}
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,2,3,4,5,7},{6},{8}}
=> ? = 1
[1,2,4,5,6,7,8,3] => {{1},{2},{3,4,5,6,7,8}}
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 0
[2,3,5,1,6,7,8,4] => {{1,2,3,5,6,7,8},{4}}
=> {{1,2,3,5,6,7,8},{4}}
=> {{1,2,3,4,6},{5,7,8}}
=> ? = 1
[2,3,4,5,7,1,8,6] => {{1,2,3,4,5,7,8},{6}}
=> {{1,2,3,4,5,7,8},{6}}
=> {{1,2,4},{3,5,6,7,8}}
=> ? = 1
[4,1,2,5,6,7,8,3] => {{1,4,5,6,7,8},{2},{3}}
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 2
[1,4,2,5,6,7,8,3] => {{1},{2,4,5,6,7,8},{3}}
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,2,3,4,5,7},{6},{8}}
=> ? = 1
[2,3,6,5,1,7,8,4] => {{1,2,3,6,7,8},{4,5}}
=> {{1,2,3,5},{4,6,7,8}}
=> {{1,2,3,5,6},{4,7,8}}
=> ? = 2
[2,3,4,7,6,1,8,5] => {{1,2,3,4,7,8},{5,6}}
=> {{1,2,3,4,6},{5,7,8}}
=> {{1,2,4,5},{3,6,7,8}}
=> ? = 2
[2,3,4,5,8,7,1,6] => {{1,2,3,4,5,8},{6,7}}
=> {{1,2,3,4,5,7},{6,8}}
=> {{1,3,4},{2,5,6,7,8}}
=> ? = 2
[3,2,5,1,6,7,8,4] => {{1,3,5,6,7,8},{2},{4}}
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,2,3,4,6},{5,8},{7}}
=> ? = 2
Description
The number of inversions of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1], see also [2,3], an inversion of $S$ is given by a pair $i > j$ such that $j = \operatorname{min} B_b$ and $i \in B_a$ for $a < b$. This statistic is called '''ros''' in [1, Definition 3] for "right, opener, smaller". This is also the number of occurrences of the pattern {{1, 3}, {2}} such that 1 and 2 are minimal elements of blocks.
Matching statistic: St000609
Mp00240: Permutations weak exceedance partitionSet partitions
Mp00115: Set partitions Kasraoui-ZengSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
St000609: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,2,3] => {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 0
[2,1,3] => {{1,2},{3}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 0
[2,3,1] => {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[3,1,2] => {{1,3},{2}}
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 1
[3,2,1] => {{1,3},{2}}
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 1
[1,2,3,4] => {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 0
[1,3,2,4] => {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 0
[1,3,4,2] => {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> 0
[1,4,2,3] => {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[1,4,3,2] => {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[2,1,3,4] => {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 0
[2,1,4,3] => {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 0
[2,3,1,4] => {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 0
[2,3,4,1] => {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[2,4,1,3] => {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 1
[2,4,3,1] => {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 1
[3,1,2,4] => {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> 1
[3,1,4,2] => {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> 1
[3,2,1,4] => {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> 1
[3,2,4,1] => {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> 1
[3,4,1,2] => {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 1
[3,4,2,1] => {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 1
[4,1,2,3] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 2
[4,1,3,2] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 2
[4,2,1,3] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 2
[4,2,3,1] => {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 2
[4,3,1,2] => {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> 2
[4,3,2,1] => {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> 2
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 0
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 0
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 0
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> 1
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> 1
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 0
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 0
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1,3,4},{2},{5}}
=> 0
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> {{1},{2,3,4,5}}
=> {{1,3,4,5},{2}}
=> 0
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,5},{4}}
=> 1
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,5},{4}}
=> 1
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1,5},{2,4},{3}}
=> 1
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1,5},{2,4},{3}}
=> 1
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,5},{3}}
=> 1
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,5},{3}}
=> 1
[4,3,2,5,6,7,8,1] => {{1,4,5,6,7,8},{2,3}}
=> {{1,3},{2,4,5,6,7,8}}
=> {{1,5,6,7,8},{2,3,4}}
=> ? = 2
[4,2,3,5,6,7,8,1] => {{1,4,5,6,7,8},{2},{3}}
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,5,6,7,8},{2},{3,4}}
=> ? = 2
[2,3,5,6,8,7,4,1] => {{1,2,3,5,8},{4,6,7}}
=> {{1,2,3,7},{4,5,6,8}}
=> {{1,2,3,5,6},{4,7,8}}
=> ? = 2
[2,3,4,7,6,5,8,1] => {{1,2,3,4,7,8},{5,6}}
=> {{1,2,3,4,6},{5,7,8}}
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 2
[2,5,4,3,6,7,8,1] => {{1,2,5,6,7,8},{3,4}}
=> {{1,2,4},{3,5,6,7,8}}
=> {{1,2,6,7,8},{3,4,5}}
=> ? = 2
[1,3,4,5,6,8,7,2] => {{1},{2,3,4,5,6,8},{7}}
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6},{2,8},{7}}
=> ? = 1
[1,4,3,5,6,7,8,2] => {{1},{2,4,5,6,7,8},{3}}
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,5,6,7,8},{2,4},{3}}
=> ? = 1
[4,1,2,5,6,7,8,3] => {{1,4,5,6,7,8},{2},{3}}
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,5,6,7,8},{2},{3,4}}
=> ? = 2
[1,4,2,5,6,7,8,3] => {{1},{2,4,5,6,7,8},{3}}
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,5,6,7,8},{2,4},{3}}
=> ? = 1
[4,3,1,5,6,7,8,2] => {{1,4,5,6,7,8},{2,3}}
=> {{1,3},{2,4,5,6,7,8}}
=> {{1,5,6,7,8},{2,3,4}}
=> ? = 2
[2,5,4,1,6,7,8,3] => {{1,2,5,6,7,8},{3,4}}
=> {{1,2,4},{3,5,6,7,8}}
=> {{1,2,6,7,8},{3,4,5}}
=> ? = 2
[2,3,6,5,1,7,8,4] => {{1,2,3,6,7,8},{4,5}}
=> {{1,2,3,5},{4,6,7,8}}
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 2
[2,3,4,7,6,1,8,5] => {{1,2,3,4,7,8},{5,6}}
=> {{1,2,3,4,6},{5,7,8}}
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 2
[2,3,4,5,8,7,1,6] => {{1,2,3,4,5,8},{6,7}}
=> {{1,2,3,4,5,7},{6,8}}
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 2
[6,3,4,5,7,1,8,2] => {{1,6},{2,3,4,5,7,8}}
=> {{1,3,5,6},{2,4,7,8}}
=> {{1,6,8},{2,3,4,5,7}}
=> ? = 4
[3,2,5,1,6,7,8,4] => {{1,3,5,6,7,8},{2},{4}}
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,6,7,8},{2,3,5},{4}}
=> ? = 2
Description
The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal.
Mp00240: Permutations weak exceedance partitionSet partitions
Mp00080: Set partitions to permutationPermutations
St001727: Permutations ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 70%
Values
[1,2] => {{1},{2}}
=> [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => 0
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => 0
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => 0
[2,3,1] => {{1,2,3}}
=> [2,3,1] => 0
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => 1
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => 1
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => 0
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => 0
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => 0
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => 1
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => 1
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => 0
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => 0
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 0
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => 0
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => 1
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => 1
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 1
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => 1
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 1
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => 1
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => 1
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => 1
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 2
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => 2
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 2
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => 2
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => 2
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => 2
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 0
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 0
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 0
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 1
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 1
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 0
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 0
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 0
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 0
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 1
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 1
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 1
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 1
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 1
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 1
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => 1
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => 1
[1,4,6,5,7,2,3] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 2
[1,4,6,5,7,3,2] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 2
[1,4,6,7,2,3,5] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 3
[1,4,6,7,2,5,3] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 3
[1,4,6,7,3,2,5] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 3
[1,4,6,7,3,5,2] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 3
[1,4,6,7,5,2,3] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 3
[1,4,6,7,5,3,2] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 3
[1,4,7,2,3,5,6] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,2,3,6,5] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,2,5,3,6] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,2,5,6,3] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,2,6,3,5] => {{1},{2,4},{3,7},{5,6}}
=> [1,4,7,2,6,5,3] => ? = 3
[1,4,7,2,6,5,3] => {{1},{2,4},{3,7},{5,6}}
=> [1,4,7,2,6,5,3] => ? = 3
[1,4,7,3,2,5,6] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,3,2,6,5] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,3,5,2,6] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,3,5,6,2] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 3
[1,4,7,3,6,2,5] => {{1},{2,4},{3,7},{5,6}}
=> [1,4,7,2,6,5,3] => ? = 3
[1,4,7,3,6,5,2] => {{1},{2,4},{3,7},{5,6}}
=> [1,4,7,2,6,5,3] => ? = 3
[1,4,7,5,2,3,6] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 3
[1,4,7,5,2,6,3] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 3
[1,4,7,5,3,2,6] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 3
[1,4,7,5,3,6,2] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 3
[1,4,7,5,6,2,3] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 3
[1,4,7,5,6,3,2] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 3
[1,4,7,6,2,3,5] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,4,7,6,2,5,3] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,4,7,6,3,2,5] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,4,7,6,3,5,2] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,4,7,6,5,2,3] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,4,7,6,5,3,2] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,5,2,3,4,6,7] => {{1},{2,5},{3},{4},{6},{7}}
=> [1,5,3,4,2,6,7] => ? = 2
[1,5,2,3,4,7,6] => {{1},{2,5},{3},{4},{6,7}}
=> [1,5,3,4,2,7,6] => ? = 2
[1,5,2,3,6,4,7] => {{1},{2,5,6},{3},{4},{7}}
=> [1,5,3,4,6,2,7] => ? = 2
[1,5,2,3,6,7,4] => {{1},{2,5,6,7},{3},{4}}
=> [1,5,3,4,6,7,2] => ? = 2
[1,5,2,3,7,4,6] => {{1},{2,5,7},{3},{4},{6}}
=> [1,5,3,4,7,6,2] => ? = 3
[1,5,2,3,7,6,4] => {{1},{2,5,7},{3},{4},{6}}
=> [1,5,3,4,7,6,2] => ? = 3
[1,5,2,4,3,6,7] => {{1},{2,5},{3},{4},{6},{7}}
=> [1,5,3,4,2,6,7] => ? = 2
[1,5,2,4,3,7,6] => {{1},{2,5},{3},{4},{6,7}}
=> [1,5,3,4,2,7,6] => ? = 2
[1,5,2,4,6,3,7] => {{1},{2,5,6},{3},{4},{7}}
=> [1,5,3,4,6,2,7] => ? = 2
[1,5,2,4,6,7,3] => {{1},{2,5,6,7},{3},{4}}
=> [1,5,3,4,6,7,2] => ? = 2
[1,5,2,4,7,3,6] => {{1},{2,5,7},{3},{4},{6}}
=> [1,5,3,4,7,6,2] => ? = 3
[1,5,2,4,7,6,3] => {{1},{2,5,7},{3},{4},{6}}
=> [1,5,3,4,7,6,2] => ? = 3
[1,5,2,6,3,4,7] => {{1},{2,5},{3},{4,6},{7}}
=> [1,5,3,6,2,4,7] => ? = 2
[1,5,2,6,3,7,4] => {{1},{2,5},{3},{4,6,7}}
=> [1,5,3,6,2,7,4] => ? = 2
[1,5,2,6,4,3,7] => {{1},{2,5},{3},{4,6},{7}}
=> [1,5,3,6,2,4,7] => ? = 2
[1,5,2,6,4,7,3] => {{1},{2,5},{3},{4,6,7}}
=> [1,5,3,6,2,7,4] => ? = 2
[1,5,2,6,7,3,4] => {{1},{2,5,7},{3},{4,6}}
=> [1,5,3,6,7,4,2] => ? = 2
[1,5,2,6,7,4,3] => {{1},{2,5,7},{3},{4,6}}
=> [1,5,3,6,7,4,2] => ? = 2
Description
The number of invisible inversions of a permutation. A visible inversion of a permutation $\pi$ is a pair $i < j$ such that $\pi(j) \leq \min(i, \pi(i))$. Thus, an invisible inversion satisfies $\pi(i) > \pi(j) > i$.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 60%
Values
[1,2] => [1,2] => [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[2,1] => [1,2] => [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[1,2,3] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,3,2] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[2,1,3] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[2,3,1] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[3,1,2] => [1,3,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
[3,2,1] => [1,3,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
[1,2,3,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,4,3] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,2,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,4,2] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,2,3] => [1,2,4,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,4,3,2] => [1,2,4,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,3,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,4,3] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,1,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,4,1] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,4,1,3] => [1,2,4,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[2,4,3,1] => [1,2,4,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,2,4] => [1,3,2,4] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,4,2] => [1,3,4,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,2,1,4] => [1,3,2,4] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,2,4,1] => [1,3,4,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,4,1,2] => [1,3,2,4] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,4,2,1] => [1,3,2,4] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[4,1,2,3] => [1,4,3,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 2 + 2
[4,1,3,2] => [1,4,2,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 2
[4,2,1,3] => [1,4,3,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 2 + 2
[4,2,3,1] => [1,4,2,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 2
[4,3,1,2] => [1,4,2,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 2
[4,3,2,1] => [1,4,2,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 2
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,4,3,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,4,5,3] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,5,3,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,2,5,4,3] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,3,2,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,4,2,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,4,5,2] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,5,2,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,3,5,4,2] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,4,2,3,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,4,2,5,3] => [1,2,4,5,3] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,4,3,2,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,4,3,5,2] => [1,2,4,5,3] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,4,5,2,3] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,4,5,3,2] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,5,2,3,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,5,2,4,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,5,3,2,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,5,3,4,2] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,5,4,2,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,5,4,3,2] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,1,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,3,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,4,3,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,4,5,3] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,5,3,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,1,5,4,3] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,3,1,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,3,1,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,3,4,1,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,3,4,5,1] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,3,5,1,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,3,5,4,1] => [1,2,3,5,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,4,1,3,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,4,1,5,3] => [1,2,4,5,3] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,4,3,1,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,4,3,5,1] => [1,2,4,5,3] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,4,5,1,3] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,4,5,3,1] => [1,2,4,3,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,5,1,3,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,5,1,4,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,5,3,1,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,5,3,4,1] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,5,4,1,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,5,4,3,1] => [1,2,5,3,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[3,1,2,4,5] => [1,3,2,4,5] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[3,1,2,5,4] => [1,3,2,4,5] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[3,1,4,2,5] => [1,3,4,2,5] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[3,1,4,5,2] => [1,3,4,5,2] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[5,1,2,3,4] => [1,5,4,3,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 3 + 2
[5,2,1,3,4] => [1,5,4,3,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 3 + 2
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,2,3,4,6,5] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,2,3,5,6,4] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,2,4,3,6,5] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,2,4,5,6,3] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,3,2,4,6,5] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,3,2,5,4,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,3,2,5,6,4] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,3,4,2,5,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,3,4,2,6,5] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00209: Permutations pattern posetPosets
St000307: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 20%
Values
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,4,3,2] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,3,1] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,1,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,1,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,2,4,1] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,4,1,2] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,4,2,1] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[4,1,2,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,1,3,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,2,1,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,2,3,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,3,1,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,3,2,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,5,2,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,2,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,3,2,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,3,4,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,4,2,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,4,3,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,4,1,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,5,1,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,1,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,3,1,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,3,4,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,4,1,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[3,1,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,2,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,4,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,1,4,5,2] => [1,3,4,5,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
[3,1,5,2,4] => [1,3,5,4,2] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,1,5,4,2] => [1,3,5,2,4] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The number of rowmotion orbits of a poset. Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00209: Permutations pattern posetPosets
St001632: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 20%
Values
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,4,3,2] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,3,1] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,1,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,1,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,2,4,1] => [1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,4,1,2] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[3,4,2,1] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 + 1
[4,1,2,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,1,3,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,2,1,3] => [1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,2,3,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,3,1,2] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[4,3,2,1] => [1,4,2,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,5,2,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,2,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,3,2,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,3,4,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,4,2,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,4,3,2] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,4,1,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,5,1,3,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,1,4,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,3,1,4] => [1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,3,4,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,4,1,3] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[3,1,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,2,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,1,4,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,1,4,5,2] => [1,3,4,5,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
[3,1,5,2,4] => [1,3,5,4,2] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,1,5,4,2] => [1,3,5,2,4] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Matching statistic: St000259
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000259: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 10%
Values
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000260: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 10%
Values
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000302: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 10%
Values
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The determinant of the distance matrix of a connected graph.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001866The nesting alignments of a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001822The number of alignments of a signed permutation. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001946The number of descents in a parking function.