Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000662
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000662: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 1
Description
The staircase size of the code of a permutation. The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$. The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$. This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St000647
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000647: Permutations ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 1
{{1,2,3,4,6,7},{5}}
=> [2,3,4,6,5,7,1] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1
{{1,2,3,5,6,7},{4}}
=> [2,3,5,4,6,7,1] => [1,2,3,5,6,7,4] => [4,5,7,1,2,3,6] => ? = 1
{{1,2,3,5,7},{4,6}}
=> [2,3,5,6,7,4,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1
{{1,2,3,5,7},{4},{6}}
=> [2,3,5,4,7,6,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1
{{1,2,3,5},{4,7},{6}}
=> [2,3,5,7,1,6,4] => [1,2,3,5,4,7,6] => [4,7,1,2,3,5,6] => ? = 1
{{1,2,3,6,7},{4,5}}
=> [2,3,6,5,4,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2
{{1,2,3,6,7},{4},{5}}
=> [2,3,6,4,5,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2
{{1,2,3},{4,6,7},{5}}
=> [2,3,1,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1
{{1,2,4,5,6,7},{3}}
=> [2,4,3,5,6,7,1] => [1,2,4,5,6,7,3] => [3,4,5,7,1,2,6] => ? = 1
{{1,2,4,5,6},{3,7}}
=> [2,4,7,5,6,1,3] => [1,2,4,5,6,3,7] => [3,4,6,1,2,5,7] => ? = 1
{{1,2,4,5,6},{3},{7}}
=> [2,4,3,5,6,1,7] => [1,2,4,5,6,3,7] => [3,4,6,1,2,5,7] => ? = 1
{{1,2,4,5,7},{3,6}}
=> [2,4,6,5,7,3,1] => [1,2,4,5,7,3,6] => [3,4,6,7,1,2,5] => ? = 1
{{1,2,4,5},{3,6,7}}
=> [2,4,6,5,1,7,3] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1
{{1,2,4,5},{3,6},{7}}
=> [2,4,6,5,1,3,7] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1
{{1,2,4,5,7},{3},{6}}
=> [2,4,3,5,7,6,1] => [1,2,4,5,7,3,6] => [3,4,6,7,1,2,5] => ? = 1
{{1,2,4,5},{3,7},{6}}
=> [2,4,7,5,1,6,3] => [1,2,4,5,3,7,6] => [3,4,7,1,2,5,6] => ? = 1
{{1,2,4,5},{3},{6,7}}
=> [2,4,3,5,1,7,6] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1
{{1,2,4,5},{3},{6},{7}}
=> [2,4,3,5,1,6,7] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1
{{1,2,4,7},{3,5,6}}
=> [2,4,5,7,6,3,1] => [1,2,4,7,3,5,6] => [3,5,6,7,1,2,4] => ? = 1
{{1,2,4,7},{3,5},{6}}
=> [2,4,5,7,3,6,1] => [1,2,4,7,3,5,6] => [3,5,6,7,1,2,4] => ? = 1
{{1,2,4},{3,5,7},{6}}
=> [2,4,5,1,7,6,3] => [1,2,4,3,5,7,6] => [3,7,1,2,4,5,6] => ? = 1
{{1,2,4,6},{3,7},{5}}
=> [2,4,7,6,5,1,3] => [1,2,4,6,3,7,5] => [7,3,5,1,2,4,6] => ? = 2
{{1,2,4,7},{3,6},{5}}
=> [2,4,6,7,5,3,1] => [1,2,4,7,3,6,5] => [7,3,5,6,1,2,4] => ? = 2
{{1,2,4},{3,6,7},{5}}
=> [2,4,6,1,5,7,3] => [1,2,4,3,6,7,5] => [3,5,7,1,2,4,6] => ? = 1
{{1,2,4,7},{3},{5,6}}
=> [2,4,3,7,6,5,1] => [1,2,4,7,3,5,6] => [3,5,6,7,1,2,4] => ? = 1
{{1,2,4},{3,7},{5,6}}
=> [2,4,7,1,6,5,3] => [1,2,4,3,7,5,6] => [3,6,7,1,2,4,5] => ? = 1
{{1,2,4,7},{3},{5},{6}}
=> [2,4,3,7,5,6,1] => [1,2,4,7,3,5,6] => [3,5,6,7,1,2,4] => ? = 1
{{1,2,4},{3,7},{5},{6}}
=> [2,4,7,1,5,6,3] => [1,2,4,3,7,5,6] => [3,6,7,1,2,4,5] => ? = 1
{{1,2,4},{3},{5,7},{6}}
=> [2,4,3,1,7,6,5] => [1,2,4,3,5,7,6] => [3,7,1,2,4,5,6] => ? = 1
{{1,2,5,6,7},{3,4}}
=> [2,5,4,3,6,7,1] => [1,2,5,6,7,3,4] => [3,6,4,7,1,2,5] => ? = 2
{{1,2,5,6},{3,4,7}}
=> [2,5,4,7,6,1,3] => [1,2,5,6,3,4,7] => [5,3,6,1,2,4,7] => ? = 2
{{1,2,5,6},{3,4},{7}}
=> [2,5,4,3,6,1,7] => [1,2,5,6,3,4,7] => [5,3,6,1,2,4,7] => ? = 2
{{1,2,5},{3,4,6,7}}
=> [2,5,4,6,1,7,3] => [1,2,5,3,4,6,7] => [4,5,1,2,3,6,7] => ? = 1
{{1,2,5},{3,4,6},{7}}
=> [2,5,4,6,1,3,7] => [1,2,5,3,4,6,7] => [4,5,1,2,3,6,7] => ? = 1
{{1,2,5},{3,4},{6,7}}
=> [2,5,4,3,1,7,6] => [1,2,5,3,4,6,7] => [4,5,1,2,3,6,7] => ? = 1
{{1,2,5},{3,4},{6},{7}}
=> [2,5,4,3,1,6,7] => [1,2,5,3,4,6,7] => [4,5,1,2,3,6,7] => ? = 1
{{1,2,6,7},{3,4,5}}
=> [2,6,4,5,3,7,1] => [1,2,6,7,3,4,5] => [5,6,3,7,1,2,4] => ? = 2
{{1,2,7},{3,4,5,6}}
=> [2,7,4,5,6,3,1] => [1,2,7,3,4,5,6] => [4,5,6,7,1,2,3] => ? = 1
{{1,2,7},{3,4,5},{6}}
=> [2,7,4,5,3,6,1] => [1,2,7,3,4,5,6] => [4,5,6,7,1,2,3] => ? = 1
{{1,2,6,7},{3,4},{5}}
=> [2,6,4,3,5,7,1] => [1,2,6,7,3,4,5] => [5,6,3,7,1,2,4] => ? = 2
{{1,2,6},{3,4,7},{5}}
=> [2,6,4,7,5,1,3] => [1,2,6,3,4,7,5] => [7,4,5,1,2,3,6] => ? = 2
{{1,2},{3,4,6,7},{5}}
=> [2,1,4,6,5,7,3] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1
{{1,2,7},{3,4},{5,6}}
=> [2,7,4,3,6,5,1] => [1,2,7,3,4,5,6] => [4,5,6,7,1,2,3] => ? = 1
{{1,2,7},{3,4},{5},{6}}
=> [2,7,4,3,5,6,1] => [1,2,7,3,4,5,6] => [4,5,6,7,1,2,3] => ? = 1
{{1,2,5,6,7},{3},{4}}
=> [2,5,3,4,6,7,1] => [1,2,5,6,7,3,4] => [3,6,4,7,1,2,5] => ? = 2
{{1,2,5,6},{3,7},{4}}
=> [2,5,7,4,6,1,3] => [1,2,5,6,3,7,4] => [3,7,5,1,2,4,6] => ? = 2
{{1,2,5,6},{3},{4,7}}
=> [2,5,3,7,6,1,4] => [1,2,5,6,3,4,7] => [5,3,6,1,2,4,7] => ? = 2
{{1,2,5,6},{3},{4},{7}}
=> [2,5,3,4,6,1,7] => [1,2,5,6,3,4,7] => [5,3,6,1,2,4,7] => ? = 2
{{1,2,5,7},{3,6},{4}}
=> [2,5,6,4,7,3,1] => [1,2,5,7,3,6,4] => [3,7,5,6,1,2,4] => ? = 2
{{1,2,5},{3,6,7},{4}}
=> [2,5,6,4,1,7,3] => [1,2,5,3,6,7,4] => [5,3,7,1,2,4,6] => ? = 2
Description
The number of big descents of a permutation. For a permutation $\pi$, this is the number of indices $i$ such that $\pi(i)-\pi(i+1) > 1$. The generating functions of big descents is equal to the generating function of (normal) descents after sending a permutation from cycle to one-line notation [[Mp00090]], see [Theorem 2.5, 1]. For the number of small descents, see [[St000214]].
Matching statistic: St000470
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000470: Permutations ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 1 = 0 + 1
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 2 = 1 + 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 2 = 1 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 2 = 1 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 2 = 1 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 2 = 1 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 2 = 1 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 2 = 1 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 2 = 1 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 2 = 1 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 2 = 1 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2 = 1 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2 = 1 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 2 = 1 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 2 = 1 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 2 = 1 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 2 = 1 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 2 = 1 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 2 = 1 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 2 = 1 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 3 = 2 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 2 = 1 + 1
{{1,2,3,4,5,7},{6}}
=> [2,3,4,5,7,6,1] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3,4,6,7},{5}}
=> [2,3,4,6,5,7,1] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1 + 1
{{1,2,3,4,6},{5,7}}
=> [2,3,4,6,7,1,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,4,6},{5},{7}}
=> [2,3,4,6,5,1,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,4,7},{5,6}}
=> [2,3,4,7,6,5,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3,4,7},{5},{6}}
=> [2,3,4,7,5,6,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3,4},{5,7},{6}}
=> [2,3,4,1,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3,5,6,7},{4}}
=> [2,3,5,4,6,7,1] => [1,2,3,5,6,7,4] => [4,5,7,1,2,3,6] => ? = 1 + 1
{{1,2,3,5,6},{4,7}}
=> [2,3,5,7,6,1,4] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1 + 1
{{1,2,3,5,6},{4},{7}}
=> [2,3,5,4,6,1,7] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1 + 1
{{1,2,3,5,7},{4,6}}
=> [2,3,5,6,7,4,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1 + 1
{{1,2,3,5},{4,6,7}}
=> [2,3,5,6,1,7,4] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5},{4,6},{7}}
=> [2,3,5,6,1,4,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5,7},{4},{6}}
=> [2,3,5,4,7,6,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1 + 1
{{1,2,3,5},{4,7},{6}}
=> [2,3,5,7,1,6,4] => [1,2,3,5,4,7,6] => [4,7,1,2,3,5,6] => ? = 1 + 1
{{1,2,3,5},{4},{6,7}}
=> [2,3,5,4,1,7,6] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5},{4},{6},{7}}
=> [2,3,5,4,1,6,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,6,7},{4,5}}
=> [2,3,6,5,4,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2 + 1
{{1,2,3,6},{4,5,7}}
=> [2,3,6,5,7,1,4] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,6},{4,5},{7}}
=> [2,3,6,5,4,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,7},{4,5,6}}
=> [2,3,7,5,6,4,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3,7},{4,5},{6}}
=> [2,3,7,5,4,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,5,7},{6}}
=> [2,3,1,5,7,6,4] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3,6,7},{4},{5}}
=> [2,3,6,4,5,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2 + 1
{{1,2,3,6},{4,7},{5}}
=> [2,3,6,7,5,1,4] => [1,2,3,6,4,7,5] => [7,5,1,2,3,4,6] => ? = 2 + 1
{{1,2,3,6},{4},{5,7}}
=> [2,3,6,4,7,1,5] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,6},{4},{5},{7}}
=> [2,3,6,4,5,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,7},{4,6},{5}}
=> [2,3,7,6,5,4,1] => [1,2,3,7,4,6,5] => [7,5,6,1,2,3,4] => ? = 2 + 1
{{1,2,3},{4,6,7},{5}}
=> [2,3,1,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1 + 1
{{1,2,3},{4,6},{5,7}}
=> [2,3,1,6,7,4,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3},{4,6},{5},{7}}
=> [2,3,1,6,5,4,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,7},{4},{5,6}}
=> [2,3,7,4,6,5,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,7},{5,6}}
=> [2,3,1,7,6,5,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3,7},{4},{5},{6}}
=> [2,3,7,4,5,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,7},{5},{6}}
=> [2,3,1,7,5,6,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3},{4},{5,7},{6}}
=> [2,3,1,4,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,4,5,6,7},{3}}
=> [2,4,3,5,6,7,1] => [1,2,4,5,6,7,3] => [3,4,5,7,1,2,6] => ? = 1 + 1
{{1,2,4,5,6},{3,7}}
=> [2,4,7,5,6,1,3] => [1,2,4,5,6,3,7] => [3,4,6,1,2,5,7] => ? = 1 + 1
{{1,2,4,5,6},{3},{7}}
=> [2,4,3,5,6,1,7] => [1,2,4,5,6,3,7] => [3,4,6,1,2,5,7] => ? = 1 + 1
{{1,2,4,5,7},{3,6}}
=> [2,4,6,5,7,3,1] => [1,2,4,5,7,3,6] => [3,4,6,7,1,2,5] => ? = 1 + 1
{{1,2,4,5},{3,6,7}}
=> [2,4,6,5,1,7,3] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1 + 1
{{1,2,4,5},{3,6},{7}}
=> [2,4,6,5,1,3,7] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1 + 1
{{1,2,4,5,7},{3},{6}}
=> [2,4,3,5,7,6,1] => [1,2,4,5,7,3,6] => [3,4,6,7,1,2,5] => ? = 1 + 1
{{1,2,4,5},{3,7},{6}}
=> [2,4,7,5,1,6,3] => [1,2,4,5,3,7,6] => [3,4,7,1,2,5,6] => ? = 1 + 1
{{1,2,4,5},{3},{6,7}}
=> [2,4,3,5,1,7,6] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1 + 1
{{1,2,4,5},{3},{6},{7}}
=> [2,4,3,5,1,6,7] => [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1 + 1
{{1,2,4,6,7},{3,5}}
=> [2,4,5,6,3,7,1] => [1,2,4,6,7,3,5] => [6,3,4,7,1,2,5] => ? = 2 + 1
{{1,2,4,6},{3,5,7}}
=> [2,4,5,6,7,1,3] => [1,2,4,6,3,5,7] => [3,5,6,1,2,4,7] => ? = 1 + 1
{{1,2,4,6},{3,5},{7}}
=> [2,4,5,6,3,1,7] => [1,2,4,6,3,5,7] => [3,5,6,1,2,4,7] => ? = 1 + 1
{{1,2,4,7},{3,5,6}}
=> [2,4,5,7,6,3,1] => [1,2,4,7,3,5,6] => [3,5,6,7,1,2,4] => ? = 1 + 1
Description
The number of runs in a permutation. A run in a permutation is an inclusion-wise maximal increasing substring, i.e., a contiguous subsequence. This is the same as the number of descents plus 1.
Matching statistic: St000021
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000021: Permutations ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 1
{{1,2,3,4,5,6,7}}
=> [2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,4,5,6},{7}}
=> [2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,4,5,7},{6}}
=> [2,3,4,5,7,6,1] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1
{{1,2,3,4,5},{6,7}}
=> [2,3,4,5,1,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,4,5},{6},{7}}
=> [2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,4,6,7},{5}}
=> [2,3,4,6,5,7,1] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1
{{1,2,3,4,6},{5,7}}
=> [2,3,4,6,7,1,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1
{{1,2,3,4,6},{5},{7}}
=> [2,3,4,6,5,1,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1
{{1,2,3,4,7},{5,6}}
=> [2,3,4,7,6,5,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1
{{1,2,3,4},{5,6,7}}
=> [2,3,4,1,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,4},{5,6},{7}}
=> [2,3,4,1,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,4,7},{5},{6}}
=> [2,3,4,7,5,6,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1
{{1,2,3,4},{5,7},{6}}
=> [2,3,4,1,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1
{{1,2,3,4},{5},{6,7}}
=> [2,3,4,1,5,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,4},{5},{6},{7}}
=> [2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,5,6,7},{4}}
=> [2,3,5,4,6,7,1] => [1,2,3,5,6,7,4] => [4,5,7,1,2,3,6] => ? = 1
{{1,2,3,5,6},{4,7}}
=> [2,3,5,7,6,1,4] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1
{{1,2,3,5,6},{4},{7}}
=> [2,3,5,4,6,1,7] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1
{{1,2,3,5,7},{4,6}}
=> [2,3,5,6,7,4,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1
{{1,2,3,5},{4,6,7}}
=> [2,3,5,6,1,7,4] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1
{{1,2,3,5},{4,6},{7}}
=> [2,3,5,6,1,4,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1
{{1,2,3,5,7},{4},{6}}
=> [2,3,5,4,7,6,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1
{{1,2,3,5},{4,7},{6}}
=> [2,3,5,7,1,6,4] => [1,2,3,5,4,7,6] => [4,7,1,2,3,5,6] => ? = 1
{{1,2,3,5},{4},{6,7}}
=> [2,3,5,4,1,7,6] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1
{{1,2,3,5},{4},{6},{7}}
=> [2,3,5,4,1,6,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1
{{1,2,3,6,7},{4,5}}
=> [2,3,6,5,4,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2
{{1,2,3,6},{4,5,7}}
=> [2,3,6,5,7,1,4] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1
{{1,2,3,6},{4,5},{7}}
=> [2,3,6,5,4,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1
{{1,2,3,7},{4,5,6}}
=> [2,3,7,5,6,4,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1
{{1,2,3},{4,5,6,7}}
=> [2,3,1,5,6,7,4] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3},{4,5,6},{7}}
=> [2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,7},{4,5},{6}}
=> [2,3,7,5,4,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1
{{1,2,3},{4,5,7},{6}}
=> [2,3,1,5,7,6,4] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1
{{1,2,3},{4,5},{6,7}}
=> [2,3,1,5,4,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3},{4,5},{6},{7}}
=> [2,3,1,5,4,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,6,7},{4},{5}}
=> [2,3,6,4,5,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2
{{1,2,3,6},{4,7},{5}}
=> [2,3,6,7,5,1,4] => [1,2,3,6,4,7,5] => [7,5,1,2,3,4,6] => ? = 2
{{1,2,3,6},{4},{5,7}}
=> [2,3,6,4,7,1,5] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1
{{1,2,3,6},{4},{5},{7}}
=> [2,3,6,4,5,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1
{{1,2,3,7},{4,6},{5}}
=> [2,3,7,6,5,4,1] => [1,2,3,7,4,6,5] => [7,5,6,1,2,3,4] => ? = 2
{{1,2,3},{4,6,7},{5}}
=> [2,3,1,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1
{{1,2,3},{4,6},{5,7}}
=> [2,3,1,6,7,4,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1
{{1,2,3},{4,6},{5},{7}}
=> [2,3,1,6,5,4,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1
{{1,2,3,7},{4},{5,6}}
=> [2,3,7,4,6,5,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1
{{1,2,3},{4,7},{5,6}}
=> [2,3,1,7,6,5,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1
{{1,2,3},{4},{5,6,7}}
=> [2,3,1,4,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3},{4},{5,6},{7}}
=> [2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
{{1,2,3,7},{4},{5},{6}}
=> [2,3,7,4,5,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1
{{1,2,3},{4,7},{5},{6}}
=> [2,3,1,7,5,6,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1
{{1,2,3},{4},{5,7},{6}}
=> [2,3,1,4,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1
Description
The number of descents of a permutation. This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
Matching statistic: St000325
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000325: Permutations ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 1 = 0 + 1
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 2 = 1 + 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 2 = 1 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 2 = 1 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 2 = 1 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 2 = 1 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 2 = 1 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 2 = 1 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 2 = 1 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 2 = 1 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 2 = 1 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2 = 1 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2 = 1 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 2 = 1 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 2 = 1 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 2 = 1 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 2 = 1 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 2 = 1 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 2 = 1 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 2 = 1 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 3 = 2 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 2 = 1 + 1
{{1,2,3,4,5,6,7}}
=> [2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,5,6},{7}}
=> [2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,5,7},{6}}
=> [2,3,4,5,7,6,1] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3,4,5},{6,7}}
=> [2,3,4,5,1,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,5},{6},{7}}
=> [2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,6,7},{5}}
=> [2,3,4,6,5,7,1] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1 + 1
{{1,2,3,4,6},{5,7}}
=> [2,3,4,6,7,1,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,4,6},{5},{7}}
=> [2,3,4,6,5,1,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,4,7},{5,6}}
=> [2,3,4,7,6,5,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3,4},{5,6,7}}
=> [2,3,4,1,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4},{5,6},{7}}
=> [2,3,4,1,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,7},{5},{6}}
=> [2,3,4,7,5,6,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3,4},{5,7},{6}}
=> [2,3,4,1,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3,4},{5},{6,7}}
=> [2,3,4,1,5,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4},{5},{6},{7}}
=> [2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,5,6,7},{4}}
=> [2,3,5,4,6,7,1] => [1,2,3,5,6,7,4] => [4,5,7,1,2,3,6] => ? = 1 + 1
{{1,2,3,5,6},{4,7}}
=> [2,3,5,7,6,1,4] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1 + 1
{{1,2,3,5,6},{4},{7}}
=> [2,3,5,4,6,1,7] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1 + 1
{{1,2,3,5,7},{4,6}}
=> [2,3,5,6,7,4,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1 + 1
{{1,2,3,5},{4,6,7}}
=> [2,3,5,6,1,7,4] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5},{4,6},{7}}
=> [2,3,5,6,1,4,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5,7},{4},{6}}
=> [2,3,5,4,7,6,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1 + 1
{{1,2,3,5},{4,7},{6}}
=> [2,3,5,7,1,6,4] => [1,2,3,5,4,7,6] => [4,7,1,2,3,5,6] => ? = 1 + 1
{{1,2,3,5},{4},{6,7}}
=> [2,3,5,4,1,7,6] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5},{4},{6},{7}}
=> [2,3,5,4,1,6,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,6,7},{4,5}}
=> [2,3,6,5,4,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2 + 1
{{1,2,3,6},{4,5,7}}
=> [2,3,6,5,7,1,4] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,6},{4,5},{7}}
=> [2,3,6,5,4,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,7},{4,5,6}}
=> [2,3,7,5,6,4,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,5,6,7}}
=> [2,3,1,5,6,7,4] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3},{4,5,6},{7}}
=> [2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,7},{4,5},{6}}
=> [2,3,7,5,4,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,5,7},{6}}
=> [2,3,1,5,7,6,4] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3},{4,5},{6,7}}
=> [2,3,1,5,4,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3},{4,5},{6},{7}}
=> [2,3,1,5,4,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,6,7},{4},{5}}
=> [2,3,6,4,5,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2 + 1
{{1,2,3,6},{4,7},{5}}
=> [2,3,6,7,5,1,4] => [1,2,3,6,4,7,5] => [7,5,1,2,3,4,6] => ? = 2 + 1
{{1,2,3,6},{4},{5,7}}
=> [2,3,6,4,7,1,5] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,6},{4},{5},{7}}
=> [2,3,6,4,5,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,7},{4,6},{5}}
=> [2,3,7,6,5,4,1] => [1,2,3,7,4,6,5] => [7,5,6,1,2,3,4] => ? = 2 + 1
{{1,2,3},{4,6,7},{5}}
=> [2,3,1,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1 + 1
{{1,2,3},{4,6},{5,7}}
=> [2,3,1,6,7,4,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3},{4,6},{5},{7}}
=> [2,3,1,6,5,4,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,7},{4},{5,6}}
=> [2,3,7,4,6,5,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,7},{5,6}}
=> [2,3,1,7,6,5,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3},{4},{5,6,7}}
=> [2,3,1,4,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3},{4},{5,6},{7}}
=> [2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,7},{4},{5},{6}}
=> [2,3,7,4,5,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,7},{5},{6}}
=> [2,3,1,7,5,6,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3},{4},{5,7},{6}}
=> [2,3,1,4,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
Description
The width of the tree associated to a permutation. A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1]. The width of the tree is given by the number of leaves of this tree. Note that, due to the construction of this tree, the width of the tree is always one more than the number of descents [[St000021]]. This also matches the number of runs in a permutation [[St000470]]. See also [[St000308]] for the height of this tree.
Matching statistic: St001390
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St001390: Permutations ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 1 = 0 + 1
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 2 = 1 + 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 2 = 1 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 2 = 1 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 2 = 1 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 2 = 1 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 2 = 1 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 2 = 1 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 2 = 1 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 2 = 1 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 2 = 1 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2 = 1 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2 = 1 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 2 = 1 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 2 = 1 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 2 = 1 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 2 = 1 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 2 = 1 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 2 = 1 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 2 = 1 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 3 = 2 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 2 = 1 + 1
{{1,2,3,4,5,6,7}}
=> [2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,5,6},{7}}
=> [2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,5,7},{6}}
=> [2,3,4,5,7,6,1] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3,4,5},{6,7}}
=> [2,3,4,5,1,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,5},{6},{7}}
=> [2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,6,7},{5}}
=> [2,3,4,6,5,7,1] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1 + 1
{{1,2,3,4,6},{5,7}}
=> [2,3,4,6,7,1,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,4,6},{5},{7}}
=> [2,3,4,6,5,1,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,4,7},{5,6}}
=> [2,3,4,7,6,5,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3,4},{5,6,7}}
=> [2,3,4,1,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4},{5,6},{7}}
=> [2,3,4,1,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4,7},{5},{6}}
=> [2,3,4,7,5,6,1] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3,4},{5,7},{6}}
=> [2,3,4,1,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3,4},{5},{6,7}}
=> [2,3,4,1,5,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,4},{5},{6},{7}}
=> [2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,5,6,7},{4}}
=> [2,3,5,4,6,7,1] => [1,2,3,5,6,7,4] => [4,5,7,1,2,3,6] => ? = 1 + 1
{{1,2,3,5,6},{4,7}}
=> [2,3,5,7,6,1,4] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1 + 1
{{1,2,3,5,6},{4},{7}}
=> [2,3,5,4,6,1,7] => [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1 + 1
{{1,2,3,5,7},{4,6}}
=> [2,3,5,6,7,4,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1 + 1
{{1,2,3,5},{4,6,7}}
=> [2,3,5,6,1,7,4] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5},{4,6},{7}}
=> [2,3,5,6,1,4,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5,7},{4},{6}}
=> [2,3,5,4,7,6,1] => [1,2,3,5,7,4,6] => [4,6,7,1,2,3,5] => ? = 1 + 1
{{1,2,3,5},{4,7},{6}}
=> [2,3,5,7,1,6,4] => [1,2,3,5,4,7,6] => [4,7,1,2,3,5,6] => ? = 1 + 1
{{1,2,3,5},{4},{6,7}}
=> [2,3,5,4,1,7,6] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,5},{4},{6},{7}}
=> [2,3,5,4,1,6,7] => [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
{{1,2,3,6,7},{4,5}}
=> [2,3,6,5,4,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2 + 1
{{1,2,3,6},{4,5,7}}
=> [2,3,6,5,7,1,4] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,6},{4,5},{7}}
=> [2,3,6,5,4,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,7},{4,5,6}}
=> [2,3,7,5,6,4,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,5,6,7}}
=> [2,3,1,5,6,7,4] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3},{4,5,6},{7}}
=> [2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,7},{4,5},{6}}
=> [2,3,7,5,4,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,5,7},{6}}
=> [2,3,1,5,7,6,4] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
{{1,2,3},{4,5},{6,7}}
=> [2,3,1,5,4,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3},{4,5},{6},{7}}
=> [2,3,1,5,4,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,6,7},{4},{5}}
=> [2,3,6,4,5,7,1] => [1,2,3,6,7,4,5] => [6,4,7,1,2,3,5] => ? = 2 + 1
{{1,2,3,6},{4,7},{5}}
=> [2,3,6,7,5,1,4] => [1,2,3,6,4,7,5] => [7,5,1,2,3,4,6] => ? = 2 + 1
{{1,2,3,6},{4},{5,7}}
=> [2,3,6,4,7,1,5] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,6},{4},{5},{7}}
=> [2,3,6,4,5,1,7] => [1,2,3,6,4,5,7] => [5,6,1,2,3,4,7] => ? = 1 + 1
{{1,2,3,7},{4,6},{5}}
=> [2,3,7,6,5,4,1] => [1,2,3,7,4,6,5] => [7,5,6,1,2,3,4] => ? = 2 + 1
{{1,2,3},{4,6,7},{5}}
=> [2,3,1,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1 + 1
{{1,2,3},{4,6},{5,7}}
=> [2,3,1,6,7,4,5] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3},{4,6},{5},{7}}
=> [2,3,1,6,5,4,7] => [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
{{1,2,3,7},{4},{5,6}}
=> [2,3,7,4,6,5,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,7},{5,6}}
=> [2,3,1,7,6,5,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3},{4},{5,6,7}}
=> [2,3,1,4,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3},{4},{5,6},{7}}
=> [2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0 + 1
{{1,2,3,7},{4},{5},{6}}
=> [2,3,7,4,5,6,1] => [1,2,3,7,4,5,6] => [5,6,7,1,2,3,4] => ? = 1 + 1
{{1,2,3},{4,7},{5},{6}}
=> [2,3,1,7,5,6,4] => [1,2,3,4,7,5,6] => [6,7,1,2,3,4,5] => ? = 1 + 1
{{1,2,3},{4},{5,7},{6}}
=> [2,3,1,4,7,6,5] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 1 + 1
Description
The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. For a given permutation $\pi$, this is the index of the row containing $\pi^{-1}(1)$ of the recording tableau of $\pi$ (obtained by [[Mp00070]]).
Matching statistic: St001823
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001823: Signed permutations ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [1,3,4,2] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [1,4,2,3] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [1,4,2,3] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [1,3,4,5,2] => ? = 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [1,3,4,2,5] => ? = 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [1,3,4,2,5] => ? = 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [1,3,5,2,4] => ? = 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [1,3,5,2,4] => ? = 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [1,3,2,5,4] => ? = 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [1,4,2,5,3] => [1,4,2,5,3] => ? = 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,5,2,4,3] => [1,5,2,4,3] => ? = 2
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
Description
The Stasinski-Voll length of a signed permutation. The Stasinski-Voll length of a signed permutation $\sigma$ is $$ L(\sigma) = \frac{1}{2} \#\{(i,j) ~\mid -n \leq i < j \leq n,~ i \not\equiv j \operatorname{mod} 2,~ \sigma(i) > \sigma(j)\}, $$ where $n$ is the size of $\sigma$.
Matching statistic: St001946
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00305: Permutations parking functionParking functions
St001946: Parking functions ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [1,3,4,2] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [1,4,2,3] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [1,4,2,3] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [1,3,4,5,2] => ? = 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [1,3,4,2,5] => ? = 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [1,3,4,2,5] => ? = 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [1,3,5,2,4] => ? = 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [1,3,5,2,4] => ? = 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [1,3,2,5,4] => ? = 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [1,4,2,5,3] => [1,4,2,5,3] => ? = 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,5,2,4,3] => [1,5,2,4,3] => ? = 2
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
Description
The number of descents in a parking function. This is the number of indices $i$ such that $p_i > p_{i+1}$.
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00064: Permutations reversePermutations
St001582: Permutations ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => [1] => [1] => ? = 0
{{1,2}}
=> [2,1] => [1,2] => [2,1] => 0
{{1},{2}}
=> [1,2] => [1,2] => [2,1] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [3,2,1] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [3,2,1] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [2,3,1] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [3,2,1] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [3,4,2,1] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,3,1] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [4,2,3,1] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,2,4,1] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,2,4,1] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [3,4,2,1] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [4,5,3,2,1] => ? = 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,4,2,1] => ? = 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [5,3,4,2,1] => ? = 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [5,3,4,2,1] => ? = 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,3,5,2,1] => ? = 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,3,5,2,1] => ? = 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => ? = 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,5,4,3,1] => ? = 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [5,2,4,3,1] => ? = 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [5,2,4,3,1] => ? = 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [4,2,5,3,1] => ? = 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [5,4,2,3,1] => ? = 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [5,4,2,3,1] => ? = 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [4,2,5,3,1] => ? = 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [4,5,2,3,1] => ? = 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [5,4,2,3,1] => ? = 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => ? = 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [3,2,5,4,1] => ? = 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [5,3,2,4,1] => ? = 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [5,3,2,4,1] => ? = 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,5,2,3,4] => [4,3,2,5,1] => ? = 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,5,2,3,4] => [4,3,2,5,1] => ? = 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,2,3,5,4] => [4,5,3,2,1] => ? = 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [1,4,5,2,3] => [3,2,5,4,1] => ? = 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [1,4,2,5,3] => [3,5,2,4,1] => ? = 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [1,4,2,3,5] => [5,3,2,4,1] => ? = 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [1,4,2,3,5] => [5,3,2,4,1] => ? = 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,5,2,4,3] => [3,4,2,5,1] => ? = 2
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,2,4,5,3] => [3,5,4,2,1] => ? = 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,2,4,3,5] => [5,3,4,2,1] => ? = 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => ? = 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,5,2,3,4] => [4,3,2,5,1] => ? = 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,2,5,3,4] => [4,3,5,2,1] => ? = 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => ? = 0
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,5,2,3,4] => [4,3,2,5,1] => ? = 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,2,5,3,4] => [4,3,5,2,1] => ? = 1
Description
The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.