Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000705
St000705: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 3
[1,1]
=> 1
[3]
=> 10
[2,1]
=> 8
[1,1,1]
=> 1
[4]
=> 35
[3,1]
=> 45
[2,2]
=> 20
[2,1,1]
=> 15
[1,1,1,1]
=> 1
[5]
=> 126
[4,1]
=> 224
[3,2]
=> 175
[3,1,1]
=> 126
[2,2,1]
=> 75
[2,1,1,1]
=> 24
[1,1,1,1,1]
=> 1
[6]
=> 462
[5,1]
=> 1050
[4,2]
=> 1134
[4,1,1]
=> 840
[3,3]
=> 490
[3,2,1]
=> 896
[3,1,1,1]
=> 280
[2,2,2]
=> 175
[2,2,1,1]
=> 189
[2,1,1,1,1]
=> 35
[1,1,1,1,1,1]
=> 1
[7]
=> 1716
[6,1]
=> 4752
[5,2]
=> 6468
[5,1,1]
=> 4950
[4,3]
=> 4704
[4,2,1]
=> 7350
[4,1,1,1]
=> 2400
[3,3,1]
=> 3528
[3,2,2]
=> 2646
[3,2,1,1]
=> 2940
[3,1,1,1,1]
=> 540
[2,2,2,1]
=> 784
[2,2,1,1,1]
=> 392
[2,1,1,1,1,1]
=> 48
[1,1,1,1,1,1,1]
=> 1
[8]
=> 6435
[7,1]
=> 21021
[6,2]
=> 34320
[6,1,1]
=> 27027
[5,3]
=> 33264
[5,2,1]
=> 50688
Description
The number of semistandard tableaux on a given integer partition of n with maximal entry n. This is, for an integer partition $\lambda = ( \lambda_1 \geq \cdots \geq \lambda_k \geq 0) \vdash n$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $n$. Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $n$ variables, or, explicitly, $$\prod_{(i,j) \in \lambda} \frac{n+j-i}{\operatorname{hook}(i,j)}$$ where the product is over all cells $(i,j) \in \lambda$ and $\operatorname{hook}(i,j)$ is the hook length of a cell. See [Theorem 6.3, 1] for details.