Identifier
Values
[] => 1
[1] => 1
[2] => 3
[1,1] => 1
[3] => 10
[2,1] => 8
[1,1,1] => 1
[4] => 35
[3,1] => 45
[2,2] => 20
[2,1,1] => 15
[1,1,1,1] => 1
[5] => 126
[4,1] => 224
[3,2] => 175
[3,1,1] => 126
[2,2,1] => 75
[2,1,1,1] => 24
[1,1,1,1,1] => 1
[6] => 462
[5,1] => 1050
[4,2] => 1134
[4,1,1] => 840
[3,3] => 490
[3,2,1] => 896
[3,1,1,1] => 280
[2,2,2] => 175
[2,2,1,1] => 189
[2,1,1,1,1] => 35
[1,1,1,1,1,1] => 1
[7] => 1716
[6,1] => 4752
[5,2] => 6468
[5,1,1] => 4950
[4,3] => 4704
[4,2,1] => 7350
[4,1,1,1] => 2400
[3,3,1] => 3528
[3,2,2] => 2646
[3,2,1,1] => 2940
[3,1,1,1,1] => 540
[2,2,2,1] => 784
[2,2,1,1,1] => 392
[2,1,1,1,1,1] => 48
[1,1,1,1,1,1,1] => 1
[8] => 6435
[7,1] => 21021
[6,2] => 34320
[6,1,1] => 27027
[5,3] => 33264
[5,2,1] => 50688
[5,1,1,1] => 17325
[4,4] => 13860
[4,3,1] => 41580
[4,2,2] => 25872
[4,2,1,1] => 29700
[4,1,1,1,1] => 5775
[3,3,2] => 15876
[3,3,1,1] => 15120
[3,2,2,1] => 14700
[3,2,1,1,1] => 7680
[3,1,1,1,1,1] => 945
[2,2,2,2] => 1764
[2,2,2,1,1] => 2352
[2,2,1,1,1,1] => 720
[2,1,1,1,1,1,1] => 63
[1,1,1,1,1,1,1,1] => 1
[9] => 24310
[8,1] => 91520
[7,2] => 173745
[7,1,1] => 140140
[6,3] => 205920
[6,2,1] => 315315
[6,1,1,1] => 112112
[5,4] => 141570
[5,3,1] => 347490
[5,2,2] => 205920
[5,2,1,1] => 243243
[5,1,1,1,1] => 50050
[4,4,1] => 152460
[4,3,2] => 221760
[4,3,1,1] => 213840
[4,2,2,1] => 171072
[4,2,1,1,1] => 93555
[4,1,1,1,1,1] => 12320
[3,3,3] => 41580
[3,3,2,1] => 110880
[3,3,1,1,1] => 49500
[3,2,2,2] => 38808
[3,2,2,1,1] => 53460
[3,2,1,1,1,1] => 17325
[3,1,1,1,1,1,1] => 1540
[2,2,2,2,1] => 8820
[2,2,2,1,1,1] => 5760
[2,2,1,1,1,1,1] => 1215
[2,1,1,1,1,1,1,1] => 80
[1,1,1,1,1,1,1,1,1] => 1
[10] => 92378
[9,1] => 393822
[8,2] => 850850
[8,1,1] => 700128
>>> Load all 367 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of semistandard tableaux on a given integer partition of n with maximal entry n.
This is, for an integer partition $\lambda = ( \lambda_1 \geq \cdots \geq \lambda_k \geq 0) \vdash n$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $n$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $n$ variables, or, explicitly,
$$\prod_{(i,j) \in \lambda} \frac{n+j-i}{\operatorname{hook}(i,j)}$$
where the product is over all cells $(i,j) \in \lambda$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
This is, for an integer partition $\lambda = ( \lambda_1 \geq \cdots \geq \lambda_k \geq 0) \vdash n$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $n$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $n$ variables, or, explicitly,
$$\prod_{(i,j) \in \lambda} \frac{n+j-i}{\operatorname{hook}(i,j)}$$
where the product is over all cells $(i,j) \in \lambda$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
References
[1] Fulton, W., Harris, J. Representation theory MathSciNet:1153249
Code
def statistic(L):
if L:
return SemistandardTableaux(shape=L, max_entry=sum(L)).cardinality()
return 1
def statistic_alternative_1(L):
return prod(QQ(sum(L)+j-i)/L.hook_length(i,j) for i,j in L.cells())
def statistic_alternative_2(L):
return SymmetricFunctions(QQ).schur()(L).expand(sum(L))([1]*sum(L))
Created
Mar 07, 2017 at 09:21 by Christian Stump
Updated
Dec 29, 2023 at 14:37 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!