edit this statistic or download as text // json
Identifier
Values
[] => 1
[1] => 1
[2] => 3
[1,1] => 1
[3] => 10
[2,1] => 8
[1,1,1] => 1
[4] => 35
[3,1] => 45
[2,2] => 20
[2,1,1] => 15
[1,1,1,1] => 1
[5] => 126
[4,1] => 224
[3,2] => 175
[3,1,1] => 126
[2,2,1] => 75
[2,1,1,1] => 24
[1,1,1,1,1] => 1
[6] => 462
[5,1] => 1050
[4,2] => 1134
[4,1,1] => 840
[3,3] => 490
[3,2,1] => 896
[3,1,1,1] => 280
[2,2,2] => 175
[2,2,1,1] => 189
[2,1,1,1,1] => 35
[1,1,1,1,1,1] => 1
[7] => 1716
[6,1] => 4752
[5,2] => 6468
[5,1,1] => 4950
[4,3] => 4704
[4,2,1] => 7350
[4,1,1,1] => 2400
[3,3,1] => 3528
[3,2,2] => 2646
[3,2,1,1] => 2940
[3,1,1,1,1] => 540
[2,2,2,1] => 784
[2,2,1,1,1] => 392
[2,1,1,1,1,1] => 48
[1,1,1,1,1,1,1] => 1
[8] => 6435
[7,1] => 21021
[6,2] => 34320
[6,1,1] => 27027
[5,3] => 33264
[5,2,1] => 50688
[5,1,1,1] => 17325
[4,4] => 13860
[4,3,1] => 41580
[4,2,2] => 25872
[4,2,1,1] => 29700
[4,1,1,1,1] => 5775
[3,3,2] => 15876
[3,3,1,1] => 15120
[3,2,2,1] => 14700
[3,2,1,1,1] => 7680
[3,1,1,1,1,1] => 945
[2,2,2,2] => 1764
[2,2,2,1,1] => 2352
[2,2,1,1,1,1] => 720
[2,1,1,1,1,1,1] => 63
[1,1,1,1,1,1,1,1] => 1
[9] => 24310
[8,1] => 91520
[7,2] => 173745
[7,1,1] => 140140
[6,3] => 205920
[6,2,1] => 315315
[6,1,1,1] => 112112
[5,4] => 141570
[5,3,1] => 347490
[5,2,2] => 205920
[5,2,1,1] => 243243
[5,1,1,1,1] => 50050
[4,4,1] => 152460
[4,3,2] => 221760
[4,3,1,1] => 213840
[4,2,2,1] => 171072
[4,2,1,1,1] => 93555
[4,1,1,1,1,1] => 12320
[3,3,3] => 41580
[3,3,2,1] => 110880
[3,3,1,1,1] => 49500
[3,2,2,2] => 38808
[3,2,2,1,1] => 53460
[3,2,1,1,1,1] => 17325
[3,1,1,1,1,1,1] => 1540
[2,2,2,2,1] => 8820
[2,2,2,1,1,1] => 5760
[2,2,1,1,1,1,1] => 1215
[2,1,1,1,1,1,1,1] => 80
[1,1,1,1,1,1,1,1,1] => 1
[10] => 92378
[9,1] => 393822
[8,2] => 850850
[8,1,1] => 700128
>>> Load all 367 entries. <<<
[7,3] => 1179750
[7,2,1] => 1830400
[7,1,1,1] => 672672
[6,4] => 1061775
[6,3,1] => 2477475
[6,2,2] => 1447875
[6,2,1,1] => 1751750
[6,1,1,1,1] => 378378
[5,5] => 429429
[5,4,1] => 1812096
[5,3,2] => 2123550
[5,3,1,1] => 2081079
[5,2,2,1] => 1576575
[5,2,1,1,1] => 896896
[5,1,1,1,1,1] => 126126
[4,4,2] => 1019304
[4,4,1,1] => 943800
[4,3,3] => 707850
[4,3,2,1] => 1812096
[4,3,1,1,1] => 825825
[4,2,2,2] => 514800
[4,2,2,1,1] => 729729
[4,2,1,1,1,1] => 250250
[4,1,1,1,1,1,1] => 24024
[3,3,3,1] => 381150
[3,3,2,2] => 365904
[3,3,2,1,1] => 490050
[3,3,1,1,1,1] => 136125
[3,2,2,2,1] => 228096
[3,2,2,1,1,1] => 155925
[3,2,1,1,1,1,1] => 35200
[3,1,1,1,1,1,1,1] => 2376
[2,2,2,2,2] => 19404
[2,2,2,2,1,1] => 29700
[2,2,2,1,1,1,1] => 12375
[2,2,1,1,1,1,1,1] => 1925
[2,1,1,1,1,1,1,1,1] => 99
[1,1,1,1,1,1,1,1,1,1] => 1
[11] => 352716
[10,1] => 1679600
[9,2] => 4064632
[9,1,1] => 3401190
[8,3] => 6417840
[8,2,1] => 10108098
[8,1,1,1] => 3818880
[7,4] => 6952660
[7,3,1] => 16044600
[7,2,2] => 9359350
[7,2,1,1] => 11552112
[7,1,1,1,1] => 2598960
[6,5] => 4580576
[6,4,1] => 15459444
[6,3,2] => 16988400
[6,3,1,1] => 16912896
[6,2,2,1] => 12584000
[6,2,1,1,1] => 7399392
[6,1,1,1,1,1] => 1100736
[5,5,1] => 6441435
[5,4,2] => 13803075
[5,4,1,1] => 12882870
[5,3,3] => 7786350
[5,3,2,1] => 19819800
[5,3,1,1,1] => 9249240
[5,2,2,2] => 5308875
[5,2,2,1,1] => 7707700
[5,2,1,1,1,1] => 2774772
[5,1,1,1,1,1,1] => 286650
[4,4,3] => 4723719
[4,4,2,1] => 9815520
[4,4,1,1,1] => 4294290
[4,3,3,1] => 7474896
[4,3,2,2] => 6795360
[4,3,2,1,1] => 9249240
[4,3,1,1,1,1] => 2642640
[4,2,2,2,1] => 3468465
[4,2,2,1,1,1] => 2466464
[4,2,1,1,1,1,1] => 594594
[4,1,1,1,1,1,1,1] => 43680
[3,3,3,2] => 1868724
[3,3,3,1,1] => 2076360
[3,3,2,2,1] => 2548260
[3,3,2,1,1,1] => 1698840
[3,3,1,1,1,1,1] => 330330
[3,2,2,2,2] => 566280
[3,2,2,2,1,1] => 891891
[3,2,2,1,1,1,1] => 393250
[3,2,1,1,1,1,1,1] => 66066
[3,1,1,1,1,1,1,1,1] => 3510
[2,2,2,2,2,1] => 104544
[2,2,2,2,1,1,1] => 81675
[2,2,2,1,1,1,1,1] => 24200
[2,2,1,1,1,1,1,1,1] => 2904
[2,1,1,1,1,1,1,1,1,1] => 120
[1,1,1,1,1,1,1,1,1,1,1] => 1
[12] => 1352078
[11,1] => 7113106
[10,2] => 19046664
[10,1,1] => 16166150
[9,3] => 33625592
[9,2,1] => 53747200
[9,1,1,1] => 20785050
[8,4] => 42031990
[8,3,1] => 97274034
[8,2,2] => 56904848
[8,2,1,1] => 71424990
[8,1,1,1,1] => 16628040
[7,5] => 35837802
[7,4,1] => 113265152
[7,3,2] => 121671550
[7,3,1,1] => 122872464
[7,2,2,1] => 90972882
[7,2,1,1,1] => 54991872
[7,1,1,1,1,1] => 8576568
[6,6] => 14158144
[6,5,1] => 77427350
[6,4,2] => 131405274
[6,4,1,1] => 123883760
[6,3,3] => 69526600
[6,3,2,1] => 177988096
[6,3,1,1,1] => 84948864
[6,2,2,2] => 46796750
[6,2,2,1,1] => 69312672
[6,2,1,1,1,1] => 25989600
[6,1,1,1,1,1,1] => 2858856
[5,5,2] => 57257200
[5,5,1,1] => 52702650
[5,4,3] => 73289216
[5,4,2,1] => 150300150
[5,4,1,1,1] => 66626560
[5,3,3,1] => 92756664
[5,3,2,2] => 82818450
[5,3,2,1,1] => 114514400
[5,3,1,1,1,1] => 33729696
[5,2,2,2,1] => 40268800
[5,2,2,1,1,1] => 29597568
[5,2,1,1,1,1,1] => 7547904
[5,1,1,1,1,1,1,1] => 600600
[4,4,4] => 13026013
[4,4,3,1] => 57972915
[4,4,2,2] => 42942900
[4,4,2,1,1] => 57972915
[4,4,1,1,1,1] => 15940925
[4,3,3,2] => 41409225
[4,3,3,1,1] => 46378332
[4,3,2,2,1] => 53678625
[4,3,2,1,1,1] => 36644608
[4,3,1,1,1,1,1] => 7378371
[4,2,2,2,2] => 9555975
[4,2,2,2,1,1] => 15415400
[4,2,2,1,1,1,1] => 7135128
[4,2,1,1,1,1,1,1] => 1289925
[4,1,1,1,1,1,1,1,1] => 75075
[3,3,3,3] => 4723719
[3,3,3,2,1] => 15704832
[3,3,3,1,1,1] => 8588580
[3,3,2,2,2] => 7361640
[3,3,2,2,1,1] => 11594583
[3,3,2,1,1,1,1] => 5010005
[3,3,1,1,1,1,1,1] => 728728
[3,2,2,2,2,1] => 3468465
[3,2,2,2,1,1,1] => 2818816
[3,2,2,1,1,1,1,1] => 891891
[3,2,1,1,1,1,1,1,1] => 116480
[3,1,1,1,1,1,1,1,1,1] => 5005
[2,2,2,2,2,2] => 226512
[2,2,2,2,2,1,1] => 382239
[2,2,2,2,1,1,1,1] => 196625
[2,2,2,1,1,1,1,1,1] => 44044
[2,2,1,1,1,1,1,1,1,1] => 4212
[2,1,1,1,1,1,1,1,1,1,1] => 143
[1,1,1,1,1,1,1,1,1,1,1,1] => 1
[13] => 5200300
[12,1] => 29953728
[10,3] => 171184832
[9,2,2] => 330142176
[8,5] => 244549760
[8,4,1] => 756575820
[8,3,2] => 807014208
[8,3,1,1] => 825355440
[7,6] => 155900472
[7,5,1] => 672511840
[7,4,2] => 1059206148
[7,3,3] => 546415870
[6,6,1] => 270774504
[6,5,2] => 764539776
[6,5,1,1] => 707907200
[6,4,3] => 776485710
[6,4,2,1] => 1592791200
[6,3,2,2] => 817632816
[6,3,1,1,1,1] => 347518080
[6,2,2,1,1,1] => 297872640
[6,1,1,1,1,1,1,1] => 6785856
[5,5,3] => 368111744
[5,4,4] => 241573332
[5,4,3,1] => 1006555550
[5,4,2,2] => 730029300
[5,4,2,1,1] => 995494500
[5,4,1,1,1,1] => 278738460
[5,3,3,2] => 569422854
[5,3,3,1,1] => 644195552
[5,3,2,2,1] => 730029300
[5,3,2,1,1,1] => 509693184
[5,3,1,1,1,1,1] => 106427412
[5,2,2,2,1,1] => 200236608
[5,2,2,1,1,1,1] => 96532800
[5,2,1,1,1,1,1,1] => 18582564
[4,4,4,1] => 189469280
[4,4,3,2] => 372171800
[4,4,3,1,1] => 411080670
[4,4,2,2,1] => 386486100
[4,3,3,3] => 119094976
[4,3,3,2,1] => 390780390
[3,3,3,3,1] => 50243193
[3,3,3,2,2] => 55825770
[3,3,2,2,2,1] => 51531480
[3,3,2,1,1,1,1,1] => 13117104
[3,2,2,2,2,2] => 8281845
[3,2,2,2,2,1,1] => 14314300
[3,1,1,1,1,1,1,1,1,1,1] => 6930
[2,2,2,2,2,2,1] => 1288287
[2,2,2,2,1,1,1,1,1] => 429429
[1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[14] => 20058300
[13,1] => 125550100
[12,2] => 400423100
[12,1,1] => 347677200
[9,5] => 1539017480
[8,6] => 1259196120
[7,7] => 488259720
[6,2,2,2,2] => 1294585292
[6,1,1,1,1,1,1,1,1] => 14965236
[5,5,4] => 1723110480
[5,5,1,1,1,1] => 1458016560
[5,4,1,1,1,1,1] => 998000640
[5,3,3,3] => 1811799990
[5,3,2,1,1,1,1] => 1900489500
[5,3,1,1,1,1,1,1] => 300179880
[5,2,2,2,2,1] => 919836918
[5,2,2,1,1,1,1,1] => 278738460
[4,4,4,2] => 1486605120
[4,4,4,1,1] => 1548547000
[4,4,3,3] => 1288391104
[4,3,2,2,2,1] => 1334910720
[3,3,3,3,2] => 260520260
[3,3,3,3,1,1] => 319729410
[3,3,3,2,2,1] => 450900450
[3,3,2,2,2,2] => 138030750
[3,3,1,1,1,1,1,1,1,1] => 2866500
[3,2,2,2,2,1,1,1] => 48096048
[2,2,2,2,2,2,2] => 2760615
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[15] => 77558760
[14,1] => 524190240
[5,3,1,1,1,1,1,1,1] => 773587584
[3,3,3,3,3] => 644195552
[3,3,3,2,2,2] => 1390532000
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[16] => 300540195
[2,2,2,2,2,2,2,2] => 34763300
[2,2,2,2,2,2,1,1,1,1] => 45048640
[2,2,2,2,1,1,1,1,1,1,1,1] => 2998800
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[17] => 1166803110
[3,2,2,2,2,2,2,2] => 1796567344
[3,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 20520
[2,2,2,2,2,2,2,2,2] => 449141836
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of semistandard tableaux on a given integer partition of n with maximal entry n.
This is, for an integer partition $\lambda = ( \lambda_1 \geq \cdots \geq \lambda_k \geq 0) \vdash n$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $n$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $n$ variables, or, explicitly,
$$\prod_{(i,j) \in \lambda} \frac{n+j-i}{\operatorname{hook}(i,j)}$$
where the product is over all cells $(i,j) \in \lambda$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
References
[1] Fulton, W., Harris, J. Representation theory MathSciNet:1153249
Code
def statistic(L):
    if L:
        return SemistandardTableaux(shape=L, max_entry=sum(L)).cardinality()
    return 1

def statistic_alternative_1(L):
    return prod(QQ(sum(L)+j-i)/L.hook_length(i,j) for i,j in L.cells())

def statistic_alternative_2(L):
    return SymmetricFunctions(QQ).schur()(L).expand(sum(L))([1]*sum(L))

Created
Mar 07, 2017 at 09:21 by Christian Stump
Updated
Dec 29, 2023 at 14:37 by Martin Rubey