searching the database
Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000708
Mp00204: Permutations —LLPS⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000708: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,1]
 => 1
[2,1] => [2]
 => 2
[1,2,3] => [1,1,1]
 => 1
[1,3,2] => [2,1]
 => 2
[2,1,3] => [2,1]
 => 2
[2,3,1] => [2,1]
 => 2
[3,1,2] => [2,1]
 => 2
[3,2,1] => [3]
 => 3
[1,2,3,4] => [1,1,1,1]
 => 1
[1,2,4,3] => [2,1,1]
 => 2
[1,3,2,4] => [2,1,1]
 => 2
[1,3,4,2] => [2,1,1]
 => 2
[1,4,2,3] => [2,1,1]
 => 2
[1,4,3,2] => [3,1]
 => 3
[2,1,3,4] => [2,1,1]
 => 2
[2,1,4,3] => [2,2]
 => 4
[2,3,1,4] => [2,1,1]
 => 2
[2,3,4,1] => [2,1,1]
 => 2
[2,4,1,3] => [2,1,1]
 => 2
[2,4,3,1] => [3,1]
 => 3
[3,1,2,4] => [2,1,1]
 => 2
[3,1,4,2] => [2,2]
 => 4
[3,2,1,4] => [3,1]
 => 3
[3,2,4,1] => [3,1]
 => 3
[3,4,1,2] => [2,1,1]
 => 2
[3,4,2,1] => [3,1]
 => 3
[4,1,2,3] => [2,1,1]
 => 2
[4,1,3,2] => [3,1]
 => 3
[4,2,1,3] => [3,1]
 => 3
[4,2,3,1] => [3,1]
 => 3
[4,3,1,2] => [3,1]
 => 3
[4,3,2,1] => [4]
 => 4
[1,2,3,4,5] => [1,1,1,1,1]
 => 1
[1,2,3,5,4] => [2,1,1,1]
 => 2
[1,2,4,3,5] => [2,1,1,1]
 => 2
[1,2,4,5,3] => [2,1,1,1]
 => 2
[1,2,5,3,4] => [2,1,1,1]
 => 2
[1,2,5,4,3] => [3,1,1]
 => 3
[1,3,2,4,5] => [2,1,1,1]
 => 2
[1,3,2,5,4] => [2,2,1]
 => 4
[1,3,4,2,5] => [2,1,1,1]
 => 2
[1,3,4,5,2] => [2,1,1,1]
 => 2
[1,3,5,2,4] => [2,1,1,1]
 => 2
[1,3,5,4,2] => [3,1,1]
 => 3
[1,4,2,3,5] => [2,1,1,1]
 => 2
[1,4,2,5,3] => [2,2,1]
 => 4
[1,4,3,2,5] => [3,1,1]
 => 3
[1,4,3,5,2] => [3,1,1]
 => 3
[1,4,5,2,3] => [2,1,1,1]
 => 2
[1,4,5,3,2] => [3,1,1]
 => 3
Description
The product of the parts of an integer partition.
Matching statistic: St001959
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001959: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 59%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001959: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 59%
Values
[1,2] => [1,1]
 => [1,1,0,0]
 => [1,0,1,0]
 => 1
[2,1] => [2]
 => [1,0,1,0]
 => [1,1,0,0]
 => 2
[1,2,3] => [1,1,1]
 => [1,1,0,1,0,0]
 => [1,0,1,0,1,0]
 => 1
[1,3,2] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 2
[2,1,3] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 2
[2,3,1] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 2
[3,1,2] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 2
[3,2,1] => [3]
 => [1,0,1,0,1,0]
 => [1,1,1,0,0,0]
 => 3
[1,2,3,4] => [1,1,1,1]
 => [1,1,0,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0]
 => 1
[1,2,4,3] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[1,3,2,4] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[1,3,4,2] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[1,4,2,3] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[1,4,3,2] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[2,1,3,4] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[2,1,4,3] => [2,2]
 => [1,1,1,0,0,0]
 => [1,1,0,1,0,0]
 => 4
[2,3,1,4] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[2,3,4,1] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[2,4,1,3] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[2,4,3,1] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[3,1,2,4] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[3,1,4,2] => [2,2]
 => [1,1,1,0,0,0]
 => [1,1,0,1,0,0]
 => 4
[3,2,1,4] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[3,2,4,1] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[3,4,1,2] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[3,4,2,1] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[4,1,2,3] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0]
 => 2
[4,1,3,2] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[4,2,1,3] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[4,2,3,1] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[4,3,1,2] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 3
[4,3,2,1] => [4]
 => [1,0,1,0,1,0,1,0]
 => [1,1,1,1,0,0,0,0]
 => 4
[1,2,3,4,5] => [1,1,1,1,1]
 => [1,1,0,1,0,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => 1
[1,2,3,5,4] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,2,4,3,5] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,2,4,5,3] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,2,5,3,4] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,2,5,4,3] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0]
 => 3
[1,3,2,4,5] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,3,2,5,4] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,1,0,1,0,0,1,0]
 => 4
[1,3,4,2,5] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,3,4,5,2] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,3,5,2,4] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,3,5,4,2] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0]
 => 3
[1,4,2,3,5] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,4,2,5,3] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,1,0,1,0,0,1,0]
 => 4
[1,4,3,2,5] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0]
 => 3
[1,4,3,5,2] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0]
 => 3
[1,4,5,2,3] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0]
 => 2
[1,4,5,3,2] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0]
 => 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
 => [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 1
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,4,6,7,5] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,4,7,5,6] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,4,7,6,5] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,5,6,4,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,5,6,7,4] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,5,7,4,6] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,5,7,6,4] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,6,4,5,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,6,5,4,7] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,6,5,7,4] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,6,7,4,5] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,6,7,5,4] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,7,4,5,6] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,3,7,4,6,5] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,7,5,6,4] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,7,6,4,5] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,3,7,6,5,4] => [4,1,1,1]
 => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
 => ? = 4
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,5,3,6,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,5,6,3,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,5,6,7,3] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,5,7,3,6] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,5,7,6,3] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,6,3,5,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,6,5,3,7] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,6,5,7,3] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,6,7,3,5] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,6,7,5,3] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,7,3,5,6] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,4,7,3,6,5] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,7,5,3,6] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,7,5,6,3] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,7,6,3,5] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,4,7,6,5,3] => [4,1,1,1]
 => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
 => ? = 4
[1,2,5,3,4,6,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,5,4,3,6,7] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,5,4,6,3,7] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,5,4,6,7,3] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,5,4,7,3,6] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,5,6,3,4,7] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,5,6,4,3,7] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,5,6,4,7,3] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,5,6,7,3,4] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
[1,2,5,6,7,4,3] => [3,1,1,1,1]
 => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
 => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
 => ? = 3
[1,2,5,7,3,4,6] => [2,1,1,1,1,1]
 => [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
 => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
 => ? = 2
Description
The product of the heights of the peaks of a Dyck path.
Matching statistic: St001232
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 21%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 21%
Values
[1,2] => [2]
 => [1,0,1,0]
 => [1,1,0,0]
 => 0 = 1 - 1
[2,1] => [1,1]
 => [1,1,0,0]
 => [1,0,1,0]
 => 1 = 2 - 1
[1,2,3] => [3]
 => [1,0,1,0,1,0]
 => [1,1,1,0,0,0]
 => 0 = 1 - 1
[1,3,2] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 1 = 2 - 1
[2,1,3] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 1 = 2 - 1
[2,3,1] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 1 = 2 - 1
[3,1,2] => [2,1]
 => [1,0,1,1,0,0]
 => [1,1,0,0,1,0]
 => 1 = 2 - 1
[3,2,1] => [1,1,1]
 => [1,1,0,1,0,0]
 => [1,1,0,1,0,0]
 => 2 = 3 - 1
[1,2,3,4] => [4]
 => [1,0,1,0,1,0,1,0]
 => [1,1,1,1,0,0,0,0]
 => 0 = 1 - 1
[1,2,4,3] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[1,3,2,4] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[1,3,4,2] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[1,4,2,3] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[1,4,3,2] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[2,1,3,4] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[2,1,4,3] => [2,2]
 => [1,1,1,0,0,0]
 => [1,0,1,0,1,0]
 => ? = 4 - 1
[2,3,1,4] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[2,3,4,1] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[2,4,1,3] => [2,2]
 => [1,1,1,0,0,0]
 => [1,0,1,0,1,0]
 => ? = 2 - 1
[2,4,3,1] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[3,1,2,4] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[3,1,4,2] => [2,2]
 => [1,1,1,0,0,0]
 => [1,0,1,0,1,0]
 => ? = 4 - 1
[3,2,1,4] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[3,2,4,1] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[3,4,1,2] => [2,2]
 => [1,1,1,0,0,0]
 => [1,0,1,0,1,0]
 => ? = 2 - 1
[3,4,2,1] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[4,1,2,3] => [3,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,1,0,0,0,1,0]
 => 1 = 2 - 1
[4,1,3,2] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[4,2,1,3] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[4,2,3,1] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[4,3,1,2] => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2 = 3 - 1
[4,3,2,1] => [1,1,1,1]
 => [1,1,0,1,0,1,0,0]
 => [1,1,1,0,1,0,0,0]
 => 3 = 4 - 1
[1,2,3,4,5] => [5]
 => [1,0,1,0,1,0,1,0,1,0]
 => [1,1,1,1,1,0,0,0,0,0]
 => 0 = 1 - 1
[1,2,3,5,4] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,2,4,3,5] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,2,4,5,3] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,2,5,3,4] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,2,5,4,3] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,3,2,4,5] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,3,2,5,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[1,3,4,2,5] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,3,4,5,2] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,3,5,2,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[1,3,5,4,2] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,4,2,3,5] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,4,2,5,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[1,4,3,2,5] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,4,3,5,2] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,4,5,2,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[1,4,5,3,2] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,5,2,3,4] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[1,5,2,4,3] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,5,3,2,4] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,5,3,4,2] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,5,4,2,3] => [3,1,1]
 => [1,0,1,0,1,1,0,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2 = 3 - 1
[1,5,4,3,2] => [2,1,1,1]
 => [1,0,1,1,0,1,0,1,0,0]
 => [1,1,1,1,0,0,1,0,0,0]
 => 3 = 4 - 1
[2,1,3,4,5] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[2,1,3,5,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[2,1,4,3,5] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[2,1,4,5,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[2,1,5,3,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[2,1,5,4,3] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[2,3,1,4,5] => [4,1]
 => [1,0,1,0,1,0,1,1,0,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1 = 2 - 1
[2,3,1,5,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[2,3,5,1,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[2,4,1,3,5] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[2,4,1,5,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[2,4,5,1,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[2,5,1,3,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[2,5,1,4,3] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[2,5,4,1,3] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[3,1,2,5,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[3,1,4,2,5] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[3,1,4,5,2] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[3,1,5,2,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[3,1,5,4,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[3,2,1,5,4] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[3,2,5,1,4] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[3,2,5,4,1] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[3,4,1,2,5] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[3,4,1,5,2] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[3,4,5,1,2] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[3,5,1,2,4] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[3,5,1,4,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[3,5,2,1,4] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[3,5,2,4,1] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[3,5,4,1,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[4,1,2,5,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[4,1,5,2,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 4 - 1
[4,1,5,3,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[4,2,1,5,3] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[4,2,5,1,3] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[4,2,5,3,1] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[4,3,1,5,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 6 - 1
[4,3,5,1,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[4,5,1,2,3] => [3,2]
 => [1,0,1,1,1,0,0,0]
 => [1,1,0,0,1,0,1,0]
 => ? = 2 - 1
[4,5,1,3,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[4,5,2,1,3] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[4,5,2,3,1] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
[4,5,3,1,2] => [2,2,1]
 => [1,1,1,0,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? = 3 - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001330
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 24%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 24%
Values
[1,2] => [2] => ([],2)
 => ([],1)
 => 1
[2,1] => [1,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 2
[1,2,3] => [3] => ([],3)
 => ([],1)
 => 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 2
[2,1,3] => [1,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 2
[3,1,2] => [1,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,2,3,4] => [4] => ([],4)
 => ([],1)
 => 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 2
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[2,1,3,4] => [1,3] => ([(2,3)],4)
 => ([(1,2)],3)
 => 2
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 2
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,1,2,4] => [1,3] => ([(2,3)],4)
 => ([(1,2)],3)
 => 2
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 2
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[4,1,2,3] => [1,3] => ([(2,3)],4)
 => ([(1,2)],3)
 => 2
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[1,2,3,4,5] => [5] => ([],5)
 => ([],1)
 => 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
 => ([(1,2)],3)
 => 2
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 2
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4
[3,1,5,4,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3
[3,2,5,4,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4
[4,1,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[4,1,5,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4
[4,1,5,3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[4,2,3,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3
[4,2,5,3,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4
[4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3
[4,3,5,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4
[4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
[4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 21%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 21%
Values
[1,2] => [2] => ([],2)
 => ([],1)
 => 0 = 1 - 1
[2,1] => [1,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3] => [3] => ([],3)
 => ([],1)
 => 0 = 1 - 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3] => [1,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 1 = 2 - 1
[3,1,2] => [1,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 1 = 2 - 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[1,2,3,4] => [4] => ([],4)
 => ([],1)
 => 0 = 1 - 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
 => ([(1,2)],3)
 => 1 = 2 - 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,2,3,4,5] => [5] => ([],5)
 => ([],1)
 => 0 = 1 - 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4 - 1
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4 - 1
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4 - 1
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4 - 1
[3,1,5,4,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3 - 1
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3 - 1
[3,2,5,4,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
[4,1,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3 - 1
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[4,1,5,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4 - 1
[4,1,5,3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[4,2,3,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3 - 1
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3 - 1
[4,2,5,3,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 6 - 1
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4 - 1
[4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 3 - 1
[4,3,5,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? = 4 - 1
[4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
[4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 3 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$.  One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001651
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 6%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 6%
Values
[1,2] => [2] => ([],2)
 => ([],1)
 => ? = 1 - 2
[2,1] => [1,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 2 - 2
[1,2,3] => [3] => ([],3)
 => ([],1)
 => ? = 1 - 2
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[2,1,3] => [1,2] => ([(1,2)],3)
 => ([(0,1)],2)
 => 0 = 2 - 2
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[3,1,2] => [1,2] => ([(1,2)],3)
 => ([(0,1)],2)
 => 0 = 2 - 2
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
[1,2,3,4] => [4] => ([],4)
 => ([],1)
 => ? = 1 - 2
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[2,1,3,4] => [1,3] => ([(2,3)],4)
 => ([(0,1)],2)
 => 0 = 2 - 2
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 - 2
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[3,1,2,4] => [1,3] => ([(2,3)],4)
 => ([(0,1)],2)
 => 0 = 2 - 2
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 - 2
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 - 2
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[4,1,2,3] => [1,3] => ([(2,3)],4)
 => ([(0,1)],2)
 => 0 = 2 - 2
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 - 2
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 - 2
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
 => ? = 4 - 2
[1,2,3,4,5] => [5] => ([],5)
 => ([],1)
 => ? = 1 - 2
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => 0 = 2 - 2
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => 0 = 2 - 2
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 - 2
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 4 - 2
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => 0 = 2 - 2
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 - 2
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 4 - 2
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 - 2
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 - 2
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 - 2
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 - 2
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
 => ? = 4 - 2
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
 => ([(0,1)],2)
 => 0 = 2 - 2
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
 => ? = 4 - 2
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 - 2
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
 => ? = 4 - 2
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 - 2
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
 => ? = 6 - 2
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 4 - 2
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => 0 = 2 - 2
[2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[2,3,5,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 - 2
[2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 4 - 2
[2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 - 2
[2,4,5,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[2,4,5,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 - 2
[2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 - 2
[2,5,3,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 - 2
[2,5,4,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 - 2
[2,5,4,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
 => ? = 4 - 2
[3,1,2,4,5] => [1,4] => ([(3,4)],5)
 => ([(0,1)],2)
 => 0 = 2 - 2
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
 => ? = 4 - 2
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 - 2
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
 => ? = 4 - 2
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 - 2
[3,1,5,4,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
 => ? = 6 - 2
[3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
 => ? = 6 - 2
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 - 2
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
 => ? = 3 - 2
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 - 2
[3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => 0 = 2 - 2
[3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[4,1,2,3,5] => [1,4] => ([(3,4)],5)
 => ([(0,1)],2)
 => 0 = 2 - 2
[4,2,1,3,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
[4,3,1,2,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
[4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
[5,1,2,3,4] => [1,4] => ([(3,4)],5)
 => ([(0,1)],2)
 => 0 = 2 - 2
[5,2,1,3,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element.  Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
Matching statistic: St001875
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Values
[1,2] => [2] => ([],2)
 => ([],1)
 => ? = 1 + 1
[2,1] => [1,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => ? = 2 + 1
[1,2,3] => [3] => ([],3)
 => ([],1)
 => ? = 1 + 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,1,3] => [1,2] => ([(1,2)],3)
 => ([(0,1)],2)
 => ? = 2 + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[3,1,2] => [1,2] => ([(1,2)],3)
 => ([(0,1)],2)
 => ? = 2 + 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[1,2,3,4] => [4] => ([],4)
 => ([],1)
 => ? = 1 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 + 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
 => ([(0,1)],2)
 => ? = 2 + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 + 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 + 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
 => ([(0,1)],2)
 => ? = 2 + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 + 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 + 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 + 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
 => ([(0,1)],2)
 => ? = 2 + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 + 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 3 + 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
 => ? = 4 + 1
[1,2,3,4,5] => [5] => ([],5)
 => ([],1)
 => ? = 1 + 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? = 2 + 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? = 2 + 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 + 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 4 + 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? = 2 + 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 + 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 4 + 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 + 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 + 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
 => ? = 3 + 1
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 + 1
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 + 1
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 3 + 1
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
 => ? = 3 + 1
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
 => ? = 4 + 1
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
 => ([(0,1)],2)
 => ? = 2 + 1
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
 => ? = 4 + 1
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 + 1
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
 => ? = 4 + 1
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
 => ? = 4 + 1
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
 => ? = 6 + 1
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
 => ? = 4 + 1
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 2 + 1
[2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[4,2,1,3,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[4,3,1,2,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[5,2,1,3,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[5,3,1,2,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[5,4,1,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[1,3,2,4,5,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,4,2,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,5,2,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[1,6,2,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,3,1,4,5,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,4,1,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,5,1,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[2,6,1,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[3,2,1,4,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[3,4,1,2,5,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[3,5,1,2,4,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[3,6,1,2,4,5] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[4,2,1,3,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[4,3,1,2,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[4,5,1,2,3,6] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[4,6,1,2,3,5] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[5,2,1,3,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[5,3,1,2,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[5,4,1,2,3,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[5,6,1,2,3,4] => [2,4] => ([(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 2 + 1
[6,2,1,3,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[6,3,1,2,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[6,4,1,2,3,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
[6,5,1,2,3,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4 = 3 + 1
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000524
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000524: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000524: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Values
[1,2] => [[1,0],[0,1]]
 => [[1,1],[2]]
 => ([],1)
 => ? = 1 - 1
[2,1] => [[0,1],[1,0]]
 => [[1,2],[2]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
 => [[1,1,1],[2,2],[3]]
 => ([],1)
 => ? = 1 - 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
 => [[1,1,1],[2,3],[3]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
 => [[1,1,2],[2,2],[3]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
 => [[1,1,3],[2,3],[3]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
 => [[1,2,2],[2,3],[3]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
 => [[1,2,3],[2,3],[3]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
 => [[1,1,1,1],[2,2,2],[3,3],[4]]
 => ([],1)
 => ? = 1 - 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
 => [[1,1,1,1],[2,2,2],[3,4],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
 => [[1,1,1,1],[2,2,3],[3,3],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
 => [[1,1,1,1],[2,2,4],[3,4],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
 => [[1,1,1,1],[2,3,3],[3,4],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
 => [[1,1,1,1],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
 => [[1,1,1,2],[2,2,2],[3,3],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
 => [[1,1,1,2],[2,2,2],[3,4],[4]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
 => [[1,1,1,3],[2,2,3],[3,3],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
 => [[1,1,1,4],[2,2,4],[3,4],[4]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
 => [[1,1,1,3],[2,3,3],[3,4],[4]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
 => [[1,1,1,4],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
 => [[1,1,2,2],[2,2,3],[3,3],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
 => [[1,1,2,2],[2,2,4],[3,4],[4]]
 => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
 => ? = 4 - 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
 => [[1,1,2,3],[2,2,3],[3,3],[4]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
 => [[1,1,2,4],[2,2,4],[3,4],[4]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
 => [[1,1,3,3],[2,3,4],[3,4],[4]]
 => ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
 => ? = 2 - 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
 => [[1,1,3,4],[2,3,4],[3,4],[4]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
 => [[1,2,2,2],[2,3,3],[3,4],[4]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
 => [[1,2,2,2],[2,3,4],[3,4],[4]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
 => [[1,2,2,3],[2,3,3],[3,4],[4]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
 => [[1,2,2,4],[2,3,4],[3,4],[4]]
 => ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
 => ? = 3 - 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
 => [[1,2,3,3],[2,3,4],[3,4],[4]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
 => [[1,2,3,4],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
 => ? = 4 - 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
 => ([],1)
 => ? = 1 - 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
 => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
 => ? = 4 - 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
 => ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
 => ? = 2 - 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
 => ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
 => ? = 3 - 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
 => ? = 4 - 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
 => ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
 => ? = 6 - 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
 => ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
 => ? = 2 - 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
 => ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
 => ? = 2 - 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
 => ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
 => ? = 3 - 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
 => ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
 => ? = 4 - 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
 => ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
 => ? = 3 - 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
 => ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
 => ? = 2 - 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
 => ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
 => ? = 3 - 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
 => ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
 => ? = 2 - 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
Description
The number of posets with the same order polynomial.
The order polynomial of a poset $P$ is the polynomial $S$ such that $S(m)$ is the number of order-preserving maps from $P$ to $\{1,\dots,m\}$.
See sections 3.12 and 3.15 of [1].
Matching statistic: St000525
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000525: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000525: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Values
[1,2] => [[1,0],[0,1]]
 => [[1,1],[2]]
 => ([],1)
 => ? = 1 - 1
[2,1] => [[0,1],[1,0]]
 => [[1,2],[2]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
 => [[1,1,1],[2,2],[3]]
 => ([],1)
 => ? = 1 - 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
 => [[1,1,1],[2,3],[3]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
 => [[1,1,2],[2,2],[3]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
 => [[1,1,3],[2,3],[3]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
 => [[1,2,2],[2,3],[3]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
 => [[1,2,3],[2,3],[3]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
 => [[1,1,1,1],[2,2,2],[3,3],[4]]
 => ([],1)
 => ? = 1 - 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
 => [[1,1,1,1],[2,2,2],[3,4],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
 => [[1,1,1,1],[2,2,3],[3,3],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
 => [[1,1,1,1],[2,2,4],[3,4],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
 => [[1,1,1,1],[2,3,3],[3,4],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
 => [[1,1,1,1],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
 => [[1,1,1,2],[2,2,2],[3,3],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
 => [[1,1,1,2],[2,2,2],[3,4],[4]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
 => [[1,1,1,3],[2,2,3],[3,3],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
 => [[1,1,1,4],[2,2,4],[3,4],[4]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
 => [[1,1,1,3],[2,3,3],[3,4],[4]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
 => [[1,1,1,4],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
 => [[1,1,2,2],[2,2,3],[3,3],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
 => [[1,1,2,2],[2,2,4],[3,4],[4]]
 => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
 => ? = 4 - 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
 => [[1,1,2,3],[2,2,3],[3,3],[4]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
 => [[1,1,2,4],[2,2,4],[3,4],[4]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
 => [[1,1,3,3],[2,3,4],[3,4],[4]]
 => ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
 => ? = 2 - 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
 => [[1,1,3,4],[2,3,4],[3,4],[4]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
 => [[1,2,2,2],[2,3,3],[3,4],[4]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
 => [[1,2,2,2],[2,3,4],[3,4],[4]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
 => [[1,2,2,3],[2,3,3],[3,4],[4]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
 => [[1,2,2,4],[2,3,4],[3,4],[4]]
 => ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
 => ? = 3 - 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
 => [[1,2,3,3],[2,3,4],[3,4],[4]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
 => [[1,2,3,4],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
 => ? = 4 - 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
 => ([],1)
 => ? = 1 - 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
 => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
 => ? = 4 - 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
 => ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
 => ? = 2 - 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
 => ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
 => ? = 3 - 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
 => ? = 4 - 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
 => ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
 => ? = 6 - 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
 => ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
 => ? = 2 - 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
 => ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
 => ? = 2 - 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
 => ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
 => ? = 3 - 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
 => ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
 => ? = 4 - 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
 => ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
 => ? = 3 - 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
 => ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
 => ? = 2 - 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
 => ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
 => ? = 3 - 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
 => ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
 => ? = 2 - 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
Description
The number of posets with the same zeta polynomial.
The zeta polynomial $Z$ is the polynomial such that $Z(m)$ is the number of weakly increasing sequences $x_1\leq x_2\leq\dots\leq x_{m−1}$ of elements of the poset.
See section 3.12 of [1].
Since 
$$
Z(q) = \sum_{k\geq 1} \binom{q-2}{k-1} c_k,
$$
where $c_k$ is the number of chains of length $k$, this statistic is the same as the number of posets with the same chain polynomial.
Matching statistic: St000526
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000526: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000526: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 6%
Values
[1,2] => [[1,0],[0,1]]
 => [[1,1],[2]]
 => ([],1)
 => ? = 1 - 1
[2,1] => [[0,1],[1,0]]
 => [[1,2],[2]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
 => [[1,1,1],[2,2],[3]]
 => ([],1)
 => ? = 1 - 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
 => [[1,1,1],[2,3],[3]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
 => [[1,1,2],[2,2],[3]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
 => [[1,1,3],[2,3],[3]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
 => [[1,2,2],[2,3],[3]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
 => [[1,2,3],[2,3],[3]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
 => [[1,1,1,1],[2,2,2],[3,3],[4]]
 => ([],1)
 => ? = 1 - 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
 => [[1,1,1,1],[2,2,2],[3,4],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
 => [[1,1,1,1],[2,2,3],[3,3],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
 => [[1,1,1,1],[2,2,4],[3,4],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
 => [[1,1,1,1],[2,3,3],[3,4],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
 => [[1,1,1,1],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
 => [[1,1,1,2],[2,2,2],[3,3],[4]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
 => [[1,1,1,2],[2,2,2],[3,4],[4]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
 => [[1,1,1,3],[2,2,3],[3,3],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
 => [[1,1,1,4],[2,2,4],[3,4],[4]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
 => [[1,1,1,3],[2,3,3],[3,4],[4]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
 => [[1,1,1,4],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
 => [[1,1,2,2],[2,2,3],[3,3],[4]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
 => [[1,1,2,2],[2,2,4],[3,4],[4]]
 => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
 => ? = 4 - 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
 => [[1,1,2,3],[2,2,3],[3,3],[4]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
 => [[1,1,2,4],[2,2,4],[3,4],[4]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
 => [[1,1,3,3],[2,3,4],[3,4],[4]]
 => ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
 => ? = 2 - 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
 => [[1,1,3,4],[2,3,4],[3,4],[4]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
 => [[1,2,2,2],[2,3,3],[3,4],[4]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
 => [[1,2,2,2],[2,3,4],[3,4],[4]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
 => [[1,2,2,3],[2,3,3],[3,4],[4]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
 => [[1,2,2,4],[2,3,4],[3,4],[4]]
 => ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
 => ? = 3 - 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
 => [[1,2,3,3],[2,3,4],[3,4],[4]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
 => [[1,2,3,4],[2,3,4],[3,4],[4]]
 => ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
 => ? = 4 - 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
 => ([],1)
 => ? = 1 - 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
 => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
 => ? = 4 - 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
 => ? = 3 - 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
 => ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
 => ? = 2 - 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
 => ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
 => ? = 3 - 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
 => ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
 => ? = 3 - 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
 => ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
 => ? = 3 - 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
 => [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
 => ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
 => ? = 4 - 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
 => ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
 => ? = 6 - 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
 => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? = 4 - 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
 => ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
 => ? = 2 - 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
 => [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
 => ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
 => ? = 2 - 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
 => [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
 => ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
 => ? = 3 - 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2 - 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
 => ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
 => ? = 4 - 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
 => [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
 => ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
 => ? = 3 - 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
 => [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
 => ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
 => ? = 3 - 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
 => ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
 => ? = 2 - 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
 => [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
 => ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
 => ? = 3 - 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
 => [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
 => ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
 => ? = 2 - 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
 => [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,1)],2)
 => 1 = 2 - 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
 => [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
 => ([(0,3),(2,1),(3,2)],4)
 => 1 = 2 - 1
Description
The number of posets with combinatorially isomorphic order polytopes.
The following 1 statistic also match your data. Click on any of them to see the details.
St001624The breadth of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!