Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000715
St000715: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 3
[2]
=> 6
[1,1]
=> 3
[3]
=> 10
[2,1]
=> 8
[1,1,1]
=> 1
[4]
=> 15
[3,1]
=> 15
[2,2]
=> 6
[2,1,1]
=> 3
[1,1,1,1]
=> 0
[5]
=> 21
[4,1]
=> 24
[3,2]
=> 15
[3,1,1]
=> 6
[2,2,1]
=> 3
[2,1,1,1]
=> 0
[1,1,1,1,1]
=> 0
[6]
=> 28
[5,1]
=> 35
[4,2]
=> 27
[4,1,1]
=> 10
[3,3]
=> 10
[3,2,1]
=> 8
[3,1,1,1]
=> 0
[2,2,2]
=> 1
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 0
[1,1,1,1,1,1]
=> 0
[7]
=> 36
[6,1]
=> 48
[5,2]
=> 42
[5,1,1]
=> 15
[4,3]
=> 24
[4,2,1]
=> 15
[4,1,1,1]
=> 0
[3,3,1]
=> 6
[3,2,2]
=> 3
[3,2,1,1]
=> 0
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 0
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> 0
[8]
=> 45
[7,1]
=> 63
[6,2]
=> 60
[6,1,1]
=> 21
[5,3]
=> 42
[5,2,1]
=> 24
Description
The number of semistandard Young tableaux of given shape and entries at most 3. This is also the dimension of the corresponding irreducible representation of $GL_3$.
Matching statistic: St000781
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 65%distinct values known / distinct values provided: 3%
Values
[1]
=> []
=> ?
=> ?
=> ? = 3 + 1
[2]
=> []
=> ?
=> ?
=> ? = 6 + 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 3 + 1
[3]
=> []
=> ?
=> ?
=> ? = 10 + 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 8 + 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 + 1
[4]
=> []
=> ?
=> ?
=> ? = 15 + 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 15 + 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 6 + 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 3 + 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5]
=> []
=> ?
=> ?
=> ? = 21 + 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 24 + 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 15 + 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 6 + 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 3 + 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[6]
=> []
=> ?
=> ?
=> ? = 28 + 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 35 + 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 27 + 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 10 + 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 10 + 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 8 + 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1 + 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[7]
=> []
=> ?
=> ?
=> ? = 36 + 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 48 + 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 42 + 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 15 + 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 24 + 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 15 + 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 6 + 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 3 + 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[8]
=> []
=> ?
=> ?
=> ? = 45 + 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 63 + 1
[6,2]
=> [2]
=> []
=> ?
=> ? = 60 + 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 21 + 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 42 + 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 24 + 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 15 + 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 15 + 1
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 6 + 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 3 + 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[9]
=> []
=> ?
=> ?
=> ? = 55 + 1
[8,1]
=> [1]
=> []
=> ?
=> ? = 80 + 1
[7,2]
=> [2]
=> []
=> ?
=> ? = 81 + 1
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 28 + 1
[6,3]
=> [3]
=> []
=> ?
=> ? = 64 + 1
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 35 + 1
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,4]
=> [4]
=> []
=> ?
=> ? = 35 + 1
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 27 + 1
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 10 + 1
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? = 10 + 1
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[7,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[5,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St001901
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001901: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 65%distinct values known / distinct values provided: 3%
Values
[1]
=> []
=> ?
=> ?
=> ? = 3 + 1
[2]
=> []
=> ?
=> ?
=> ? = 6 + 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 3 + 1
[3]
=> []
=> ?
=> ?
=> ? = 10 + 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 8 + 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 + 1
[4]
=> []
=> ?
=> ?
=> ? = 15 + 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 15 + 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 6 + 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 3 + 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5]
=> []
=> ?
=> ?
=> ? = 21 + 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 24 + 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 15 + 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 6 + 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 3 + 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[6]
=> []
=> ?
=> ?
=> ? = 28 + 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 35 + 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 27 + 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 10 + 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 10 + 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 8 + 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1 + 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[7]
=> []
=> ?
=> ?
=> ? = 36 + 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 48 + 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 42 + 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 15 + 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 24 + 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 15 + 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 6 + 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 3 + 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[8]
=> []
=> ?
=> ?
=> ? = 45 + 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 63 + 1
[6,2]
=> [2]
=> []
=> ?
=> ? = 60 + 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 21 + 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 42 + 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 24 + 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 15 + 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 15 + 1
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 6 + 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 3 + 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[9]
=> []
=> ?
=> ?
=> ? = 55 + 1
[8,1]
=> [1]
=> []
=> ?
=> ? = 80 + 1
[7,2]
=> [2]
=> []
=> ?
=> ? = 81 + 1
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 28 + 1
[6,3]
=> [3]
=> []
=> ?
=> ? = 64 + 1
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 35 + 1
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,4]
=> [4]
=> []
=> ?
=> ? = 35 + 1
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 27 + 1
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 10 + 1
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? = 10 + 1
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[7,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[5,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.