searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000716
St000716: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 21
[1,1]
=> 14
[3]
=> 56
[2,1]
=> 64
[1,1,1]
=> 14
[4]
=> 126
[3,1]
=> 189
[2,2]
=> 90
[2,1,1]
=> 70
[1,1,1,1]
=> 0
[5]
=> 252
[4,1]
=> 448
[3,2]
=> 350
[3,1,1]
=> 216
[2,2,1]
=> 126
[2,1,1,1]
=> 0
[1,1,1,1,1]
=> 0
[6]
=> 462
[5,1]
=> 924
[4,2]
=> 924
[4,1,1]
=> 525
[3,3]
=> 385
[3,2,1]
=> 512
[3,1,1,1]
=> 0
[2,2,2]
=> 84
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 0
[1,1,1,1,1,1]
=> 0
[7]
=> 792
[6,1]
=> 1728
[5,2]
=> 2016
[5,1,1]
=> 1100
[4,3]
=> 1344
[4,2,1]
=> 1386
[4,1,1,1]
=> 0
[3,3,1]
=> 616
[3,2,2]
=> 378
[3,2,1,1]
=> 0
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 0
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> 0
[8]
=> 1287
[7,1]
=> 3003
[6,2]
=> 3900
[6,1,1]
=> 2079
[5,3]
=> 3276
[5,2,1]
=> 3072
[5,1,1,1]
=> 0
Description
The dimension of the irreducible representation of Sp(6) labelled by an integer partition.
Consider the symplectic group $Sp(2n)$. Then the integer partition $(\mu_1,\dots,\mu_k)$ of length at most $n$ corresponds to the weight vector $(\mu_1-\mu_2,\dots,\mu_{k-2}-\mu_{k-1},\mu_n,0,\dots,0)$.
For example, the integer partition $(2)$ labels the symmetric square of the vector representation, whereas the integer partition $(1,1)$ labels the second fundamental representation.
Matching statistic: St000781
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 1% ●values known / values provided: 63%●distinct values known / distinct values provided: 1%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 1% ●values known / values provided: 63%●distinct values known / distinct values provided: 1%
Values
[2]
=> []
=> ?
=> ?
=> ? = 21 + 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 14 + 1
[3]
=> []
=> ?
=> ?
=> ? = 56 + 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 64 + 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 14 + 1
[4]
=> []
=> ?
=> ?
=> ? = 126 + 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 189 + 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 90 + 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 70 + 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5]
=> []
=> ?
=> ?
=> ? = 252 + 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 448 + 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 350 + 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 216 + 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 126 + 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[6]
=> []
=> ?
=> ?
=> ? = 462 + 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 924 + 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 924 + 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 525 + 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 385 + 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 512 + 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 84 + 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[7]
=> []
=> ?
=> ?
=> ? = 792 + 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 1728 + 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 2016 + 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1100 + 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1344 + 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1386 + 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 616 + 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 378 + 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[8]
=> []
=> ?
=> ?
=> ? = 1287 + 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 3003 + 1
[6,2]
=> [2]
=> []
=> ?
=> ? = 3900 + 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 2079 + 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 3276 + 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 3072 + 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 1274 + 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 2205 + 1
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1078 + 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 594 + 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[9]
=> []
=> ?
=> ?
=> ? = 2002 + 1
[8,1]
=> [1]
=> []
=> ?
=> ? = 4928 + 1
[7,2]
=> [2]
=> []
=> ?
=> ? = 6930 + 1
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 3640 + 1
[6,3]
=> [3]
=> []
=> ?
=> ? = 6720 + 1
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 6006 + 1
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,4]
=> [4]
=> []
=> ?
=> ? = 4116 + 1
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 5460 + 1
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2464 + 1
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? = 2184 + 1
[4,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 2240 + 1
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[7,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[5,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St001901
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001901: Integer partitions ⟶ ℤResult quality: 1% ●values known / values provided: 63%●distinct values known / distinct values provided: 1%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001901: Integer partitions ⟶ ℤResult quality: 1% ●values known / values provided: 63%●distinct values known / distinct values provided: 1%
Values
[2]
=> []
=> ?
=> ?
=> ? = 21 + 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 14 + 1
[3]
=> []
=> ?
=> ?
=> ? = 56 + 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 64 + 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 14 + 1
[4]
=> []
=> ?
=> ?
=> ? = 126 + 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 189 + 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 90 + 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 70 + 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5]
=> []
=> ?
=> ?
=> ? = 252 + 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 448 + 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 350 + 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 216 + 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 126 + 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[6]
=> []
=> ?
=> ?
=> ? = 462 + 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 924 + 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 924 + 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 525 + 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 385 + 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 512 + 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 84 + 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[7]
=> []
=> ?
=> ?
=> ? = 792 + 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 1728 + 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 2016 + 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1100 + 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1344 + 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1386 + 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 616 + 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 378 + 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[8]
=> []
=> ?
=> ?
=> ? = 1287 + 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 3003 + 1
[6,2]
=> [2]
=> []
=> ?
=> ? = 3900 + 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 2079 + 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 3276 + 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 3072 + 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 1274 + 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 2205 + 1
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1078 + 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 594 + 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[9]
=> []
=> ?
=> ?
=> ? = 2002 + 1
[8,1]
=> [1]
=> []
=> ?
=> ? = 4928 + 1
[7,2]
=> [2]
=> []
=> ?
=> ? = 6930 + 1
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 3640 + 1
[6,3]
=> [3]
=> []
=> ?
=> ? = 6720 + 1
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 6006 + 1
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,4]
=> [4]
=> []
=> ?
=> ? = 4116 + 1
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 5460 + 1
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2464 + 1
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? = 2184 + 1
[4,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 2240 + 1
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 0 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1 = 0 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 0 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[7,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
[5,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 0 + 1
[5,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 0 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!