searching the database
Your data matches 21 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000297
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> 10 => 1
([],2)
=> [1,1]
=> [2]
=> 100 => 1
([(0,1)],2)
=> [2]
=> [1,1]
=> 110 => 2
([],3)
=> [1,1,1]
=> [3]
=> 1000 => 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> 1010 => 1
([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 1100 => 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1110 => 3
([],4)
=> [1,1,1,1]
=> [4]
=> 10000 => 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 10100 => 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 11000 => 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 1100 => 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 11000 => 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 10110 => 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 110000 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 11110 => 4
([],5)
=> [1,1,1,1,1]
=> [5]
=> 100000 => 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 100100 => 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 101000 => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 110000 => 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 10100 => 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 101000 => 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> 11000 => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 110000 => 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> 101010 => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 110010 => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> 1010000 => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 1100000 => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> 101100 => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 110010 => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> 110100 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> 11000000 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> 111000 => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 110000 => 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 110010 => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 1100000 => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> 1100010 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> 111000 => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> 110100 => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 101110 => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> 111010 => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> 1100100 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> 111100 => 4
Description
The number of leading ones in a binary word.
Matching statistic: St000733
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [[1]]
=> [[1]]
=> 1
([],2)
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 2
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
([(0,2),(1,2)],3)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 4
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [[1,3,5,7,9],[2,4,6,8]]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [[1,4,7],[2,5,8],[3,6]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> [[1,3,5,7,9,11],[2,4,6,8,10,12]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9]]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [[1,4,6,8],[2,5,7,9],[3]]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9]]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [[1,4,7],[2,5,8],[3,6]]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> [[1,5],[2,6],[3,7],[4]]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> [[1,4,7,9],[2,5,8,10],[3,6]]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8]]
=> 4
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000745
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [[1]]
=> [[1]]
=> 1
([],2)
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 2
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
([(1,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> [[1,2],[3]]
=> 1
([(0,2),(1,2)],3)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 4
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7]]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7]]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> [[1,2,4,6,8],[3,5,7,9]]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7]]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [[1,3,6],[2,4,7],[5,8]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> [[1,3,5,7,9,11],[2,4,6,8,10,12]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9]]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9]]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9]]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [[1,3,6],[2,4,7],[5,8]]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7]]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6],[8,9]]
=> [[1,3,5,8],[2,4,6,9],[7,10]]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8]]
=> 4
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000326
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 10 => 01 => 2 = 1 + 1
([],2)
=> [1,1]
=> 110 => 011 => 2 = 1 + 1
([(0,1)],2)
=> [2]
=> 100 => 001 => 3 = 2 + 1
([],3)
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
([(1,2)],3)
=> [2,1]
=> 1010 => 0101 => 2 = 1 + 1
([(0,2),(1,2)],3)
=> [2,2]
=> 1100 => 0011 => 3 = 2 + 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 0001 => 4 = 3 + 1
([],4)
=> [1,1,1,1]
=> 11110 => 01111 => 2 = 1 + 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => 01101 => 2 = 1 + 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> 11010 => 01011 => 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 11100 => 00111 => 3 = 2 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 0011 => 3 = 2 + 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 11100 => 00111 => 3 = 2 + 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 01001 => 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 111100 => 001111 => 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 00001 => 5 = 4 + 1
([],5)
=> [1,1,1,1,1]
=> 111110 => 011111 => 2 = 1 + 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011101 => 2 = 1 + 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 010111 => 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 001111 => 3 = 2 + 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 01011 => 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 010111 => 2 = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 11100 => 00111 => 3 = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 001111 => 3 = 2 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 001101 => 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1111010 => 0101111 => 2 = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1111100 => 0011111 => 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 110010 => 010011 => 2 = 1 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 001101 => 3 = 2 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 001011 => 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 11111100 => 00111111 => 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 000111 => 4 = 3 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 111100 => 001111 => 3 = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 001101 => 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> 1111100 => 0011111 => 3 = 2 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 1011100 => 0011101 => 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 000111 => 4 = 3 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 001011 => 3 = 2 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 010001 => 2 = 1 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 101000 => 000101 => 4 = 3 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> 1101100 => 0011011 => 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> 110000 => 000011 => 5 = 4 + 1
Description
The position of the first one in a binary word after appending a 1 at the end.
Regarding the binary word as a subset of {1,…,n,n+1} that contains n+1, this is the minimal element of the set.
Matching statistic: St000993
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> ? = 1
([],2)
=> [1,1]
=> [2]
=> 1
([(0,1)],2)
=> [2]
=> [1,1]
=> 2
([],3)
=> [1,1,1]
=> [3]
=> 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> 1
([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 3
([],4)
=> [1,1,1,1]
=> [4]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4
([],5)
=> [1,1,1,1,1]
=> [5]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001038
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> ? = 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 2
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Matching statistic: St001322
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 3
([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 4
([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 4
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
Description
The size of a minimal independent dominating set in a graph.
Matching statistic: St001184
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001184: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 86%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001184: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
([(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(4,6),(5,6)],7)
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(3,6),(4,6),(5,6)],7)
=> [2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(3,6),(4,5),(5,6)],7)
=> [2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,6),(3,5),(4,5),(4,6)],7)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 1
Description
Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra.
Matching statistic: St001481
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001481: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 86%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001481: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
([(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(4,6),(5,6)],7)
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(3,6),(4,6),(5,6)],7)
=> [2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(3,6),(4,5),(5,6)],7)
=> [2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,6),(3,5),(4,5),(4,6)],7)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ? = 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 1
Description
The minimal height of a peak of a Dyck path.
Matching statistic: St001803
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001803: Standard tableaux ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001803: Standard tableaux ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> [[1]]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> [1,1]
=> [[1],[2]]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 3 - 1
([],4)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 0 = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 4 - 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 0 = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 0 = 1 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 3 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4 = 5 - 1
([],6)
=> [1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 0 = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> [2,2,2,1,1]
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 0 = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> [2,2,2,1,1]
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 0 = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> [2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,1,1]
=> [6,4]
=> [[1,2,3,4,9,10],[5,6,7,8]]
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> ? = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [5,4,1]
=> [[1,3,4,5,10],[2,7,8,9],[6]]
=> ? = 1 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 2 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 1 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> ? = 1 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 2 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8]]
=> ? = 3 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 2 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,1]
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? = 1 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> ? = 2 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,2]
=> [3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6],[8,9]]
=> ? = 2 - 1
Description
The maximal overlap of the cylindrical tableau associated with a tableau.
A cylindrical tableau associated with a standard Young tableau T is the skew row-strict tableau obtained by gluing two copies of T such that the inner shape is a rectangle.
The overlap, recorded in this statistic, equals max, where \ell denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.
In particular, the statistic equals 0, if and only if the last entry of the first row is larger than or equal to the first entry of the last row. Moreover, the statistic attains its maximal value, the number of rows of the tableau minus 1, if and only if the tableau consists of a single column.
The following 11 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000667The greatest common divisor of the parts of the partition. St001571The Cartan determinant of the integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001316The domatic number of a graph. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000478Another weight of a partition according to Alladi. St000934The 2-degree of an integer partition. St001330The hat guessing number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!