searching the database
Your data matches 105 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000750
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00066: Permutations —inverse⟶ Permutations
St000750: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000750: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => 0
[2,1] => [2,1] => 0
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 0
[2,1,3] => [2,1,3] => 0
[2,3,1] => [3,1,2] => 0
[3,1,2] => [2,3,1] => 0
[3,2,1] => [3,2,1] => 0
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 0
[1,3,2,4] => [1,3,2,4] => 0
[1,3,4,2] => [1,4,2,3] => 0
[1,4,2,3] => [1,3,4,2] => 0
[1,4,3,2] => [1,4,3,2] => 0
[2,1,3,4] => [2,1,3,4] => 0
[2,1,4,3] => [2,1,4,3] => 0
[2,3,1,4] => [3,1,2,4] => 0
[2,3,4,1] => [4,1,2,3] => 0
[2,4,1,3] => [3,1,4,2] => 0
[2,4,3,1] => [4,1,3,2] => 0
[3,1,2,4] => [2,3,1,4] => 0
[3,1,4,2] => [2,4,1,3] => 0
[3,2,1,4] => [3,2,1,4] => 0
[3,2,4,1] => [4,2,1,3] => 1
[3,4,1,2] => [3,4,1,2] => 0
[3,4,2,1] => [4,3,1,2] => 0
[4,1,2,3] => [2,3,4,1] => 0
[4,1,3,2] => [2,4,3,1] => 0
[4,2,1,3] => [3,2,4,1] => 0
[4,2,3,1] => [4,2,3,1] => 0
[4,3,1,2] => [3,4,2,1] => 0
[4,3,2,1] => [4,3,2,1] => 0
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,4,3,5] => [1,2,4,3,5] => 0
[1,2,4,5,3] => [1,2,5,3,4] => 0
[1,2,5,3,4] => [1,2,4,5,3] => 0
[1,2,5,4,3] => [1,2,5,4,3] => 0
[1,3,2,4,5] => [1,3,2,4,5] => 0
[1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,4,2,5] => [1,4,2,3,5] => 0
[1,3,4,5,2] => [1,5,2,3,4] => 0
[1,3,5,2,4] => [1,4,2,5,3] => 0
[1,3,5,4,2] => [1,5,2,4,3] => 0
[1,4,2,3,5] => [1,3,4,2,5] => 0
[1,4,2,5,3] => [1,3,5,2,4] => 0
[1,4,3,2,5] => [1,4,3,2,5] => 0
[1,4,3,5,2] => [1,5,3,2,4] => 1
[1,4,5,2,3] => [1,4,5,2,3] => 0
[1,4,5,3,2] => [1,5,4,2,3] => 0
Description
The number of occurrences of the pattern 4213 in a permutation.
Matching statistic: St000406
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000406: Permutations ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 0
[3,2,4,1] => 1
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 1
[1,4,5,2,3] => 0
[1,4,5,3,2] => 0
[1,4,7,2,3,5,6] => ? = 0
[1,4,7,2,3,6,5] => ? = 0
[1,4,7,2,5,3,6] => ? = 0
[1,4,7,2,6,3,5] => ? = 0
[1,5,2,3,4,6,7] => ? = 0
[1,5,2,3,4,7,6] => ? = 0
[1,5,2,3,6,4,7] => ? = 0
[1,5,2,3,6,7,4] => ? = 0
[1,5,2,3,7,4,6] => ? = 0
[1,5,2,3,7,6,4] => ? = 0
[1,5,2,4,3,6,7] => ? = 0
[1,5,2,4,3,7,6] => ? = 0
[1,5,2,4,6,3,7] => ? = 1
[1,5,2,4,6,7,3] => ? = 2
[1,5,2,4,7,3,6] => ? = 1
[1,5,2,4,7,6,3] => ? = 2
[1,5,2,6,3,4,7] => ? = 0
[1,5,2,6,3,7,4] => ? = 0
[1,5,2,6,4,3,7] => ? = 0
[1,5,2,6,4,7,3] => ? = 2
[1,5,2,6,7,3,4] => ? = 0
[1,5,2,6,7,4,3] => ? = 0
[1,5,2,7,3,4,6] => ? = 0
[1,5,2,7,3,6,4] => ? = 0
[1,5,2,7,4,3,6] => ? = 0
[1,5,2,7,4,6,3] => ? = 1
[1,5,2,7,6,3,4] => ? = 0
[1,5,2,7,6,4,3] => ? = 0
[1,5,3,2,4,6,7] => ? = 0
[1,5,3,2,4,7,6] => ? = 0
[1,5,3,2,6,4,7] => ? = 0
[1,5,3,2,6,7,4] => ? = 0
[1,5,3,2,7,4,6] => ? = 0
[1,5,3,2,7,6,4] => ? = 0
[1,5,4,2,3,6,7] => ? = 0
[1,5,4,2,3,7,6] => ? = 0
[1,5,4,2,6,3,7] => ? = 1
[1,5,4,2,7,3,6] => ? = 1
[1,5,6,2,3,4,7] => ? = 0
[1,5,6,2,3,7,4] => ? = 0
[1,5,6,2,4,3,7] => ? = 0
[1,5,7,2,3,4,6] => ? = 0
[1,5,7,2,3,6,4] => ? = 0
[1,5,7,2,4,3,6] => ? = 0
[1,6,2,3,4,5,7] => ? = 0
[1,6,2,3,4,7,5] => ? = 0
[1,6,2,3,5,4,7] => ? = 0
[1,6,2,3,5,7,4] => ? = 1
[1,6,2,3,7,4,5] => ? = 0
[1,6,2,3,7,5,4] => ? = 0
Description
The number of occurrences of the pattern 3241 in a permutation.
Matching statistic: St000929
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 32%●distinct values known / distinct values provided: 14%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 32%●distinct values known / distinct values provided: 14%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> [1]
=> ? = 0
[2,1] => [2,1] => ([],2)
=> [2]
=> 0
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> [1]
=> ? = 0
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> [2]
=> 0
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> [2]
=> 0
[2,3,1] => [3,2,1] => ([],3)
=> [3,3]
=> 0
[3,1,2] => [2,3,1] => ([(1,2)],3)
=> [3]
=> 0
[3,2,1] => [3,1,2] => ([(1,2)],3)
=> [3]
=> 0
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? = 0
[1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> [2]
=> 0
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> 0
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> 0
[1,4,2,3] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 0
[1,4,3,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 0
[2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 0
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 0
[2,3,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> 0
[2,3,4,1] => [4,2,3,1] => ([(2,3)],4)
=> [4,4,4]
=> 0
[2,4,1,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> [8]
=> 0
[2,4,3,1] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> [8]
=> 0
[3,1,2,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
[3,1,4,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> [4,2]
=> 0
[3,2,1,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
[3,2,4,1] => [4,3,2,1] => ([],4)
=> [4,4,4,4,4,4]
=> ? = 1
[3,4,1,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> [8]
=> 0
[3,4,2,1] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> [8]
=> 0
[4,1,2,3] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> [4]
=> 0
[4,1,3,2] => [3,4,2,1] => ([(2,3)],4)
=> [4,4,4]
=> 0
[4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 0
[4,2,3,1] => [4,3,1,2] => ([(2,3)],4)
=> [4,4,4]
=> 0
[4,3,1,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 0
[4,3,2,1] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> [4]
=> 0
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? = 0
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> 0
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> 0
[1,2,4,5,3] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> 0
[1,2,5,3,4] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 0
[1,2,5,4,3] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 0
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> 0
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> 0
[1,3,4,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 0
[1,3,4,5,2] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> 0
[1,3,5,2,4] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> 0
[1,3,5,4,2] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> 0
[1,4,2,3,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 0
[1,4,2,5,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> 0
[1,4,3,2,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 0
[1,4,3,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> ? = 1
[1,4,5,2,3] => [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> 0
[1,4,5,3,2] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> 0
[1,5,2,3,4] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 0
[1,5,2,4,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> 0
[1,5,3,2,4] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 0
[1,5,3,4,2] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> 0
[1,5,4,2,3] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 0
[1,5,4,3,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 0
[2,3,4,5,1] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? = 0
[2,3,5,1,4] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? = 0
[2,3,5,4,1] => [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? = 0
[2,4,1,5,3] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> ? = 0
[2,4,3,5,1] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> [10,10,10,10]
=> ? = 1
[2,4,5,1,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> ? = 0
[2,4,5,3,1] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> ? = 0
[2,5,1,4,3] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? = 0
[2,5,3,1,4] => [4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> ? = 0
[2,5,3,4,1] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? = 0
[2,5,4,1,3] => [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> ? = 0
[3,1,4,5,2] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> ? = 0
[3,2,4,1,5] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,4,4,4,4,4]
=> ? = 1
[3,2,4,5,1] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> [10,10,10,10]
=> ? = 2
[3,2,5,1,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> ? = 1
[3,2,5,4,1] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> ? = 2
[3,4,1,5,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> ? = 0
[3,4,2,5,1] => [5,4,3,2,1] => ([],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 2
[3,4,5,1,2] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? = 0
[3,4,5,2,1] => [5,1,3,4,2] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? = 0
[3,5,1,4,2] => [4,5,3,2,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 0
[3,5,2,4,1] => [5,4,3,1,2] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 1
[4,1,3,5,2] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> ? = 1
[4,1,5,2,3] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> ? = 0
[4,1,5,3,2] => [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> ? = 0
[4,2,3,5,1] => [5,3,4,2,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 2
[4,2,5,1,3] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? = 1
[4,2,5,3,1] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? = 1
[4,3,1,5,2] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> ? = 1
[4,3,2,5,1] => [5,4,2,3,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 3
[4,3,5,1,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> ? = 2
[4,3,5,2,1] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> ? = 2
[4,5,1,3,2] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? = 0
[4,5,2,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> ? = 0
[4,5,2,3,1] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? = 0
[4,5,3,1,2] => [2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> ? = 0
[5,1,2,4,3] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? = 0
[5,1,3,2,4] => [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? = 0
[5,1,3,4,2] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> [10,10,10,10]
=> ? = 0
[5,1,4,2,3] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> [10,10,10,10]
=> ? = 0
[5,1,4,3,2] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> ? = 0
[5,2,1,4,3] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> ? = 0
[5,2,3,1,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> ? = 0
[5,2,3,4,1] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> ? = 0
Description
The constant term of the character polynomial of an integer partition.
The definition of the character polynomial can be found in [1]. Indeed, this constant term is 0 for partitions λ≠1n and 1 for λ=1n.
Matching statistic: St001568
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 26%●distinct values known / distinct values provided: 14%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 26%●distinct values known / distinct values provided: 14%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> [1]
=> ? = 0 + 1
[2,1] => [2,1] => ([],2)
=> [2]
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> [1]
=> ? = 0 + 1
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> [2]
=> 1 = 0 + 1
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> [2]
=> 1 = 0 + 1
[2,3,1] => [3,2,1] => ([],3)
=> [3,3]
=> 1 = 0 + 1
[3,1,2] => [2,3,1] => ([(1,2)],3)
=> [3]
=> 1 = 0 + 1
[3,2,1] => [3,1,2] => ([(1,2)],3)
=> [3]
=> 1 = 0 + 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? = 0 + 1
[1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> [2]
=> 1 = 0 + 1
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> 1 = 0 + 1
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> 1 = 0 + 1
[1,4,2,3] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 1 = 0 + 1
[1,4,3,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 1 = 0 + 1
[2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1 = 0 + 1
[2,3,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> 1 = 0 + 1
[2,3,4,1] => [4,2,3,1] => ([(2,3)],4)
=> [4,4,4]
=> ? = 0 + 1
[2,4,1,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> [8]
=> 1 = 0 + 1
[2,4,3,1] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> [8]
=> 1 = 0 + 1
[3,1,2,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1 = 0 + 1
[3,1,4,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> [4,2]
=> 1 = 0 + 1
[3,2,1,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1 = 0 + 1
[3,2,4,1] => [4,3,2,1] => ([],4)
=> [4,4,4,4,4,4]
=> ? = 1 + 1
[3,4,1,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> [8]
=> 1 = 0 + 1
[3,4,2,1] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> [8]
=> 1 = 0 + 1
[4,1,2,3] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> [4]
=> 1 = 0 + 1
[4,1,3,2] => [3,4,2,1] => ([(2,3)],4)
=> [4,4,4]
=> ? = 0 + 1
[4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 1 = 0 + 1
[4,2,3,1] => [4,3,1,2] => ([(2,3)],4)
=> [4,4,4]
=> ? = 0 + 1
[4,3,1,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 1 = 0 + 1
[4,3,2,1] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> [4]
=> 1 = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 1 = 0 + 1
[1,2,5,4,3] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 1 = 0 + 1
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> 1 = 0 + 1
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> 1 = 0 + 1
[1,3,4,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 1 = 0 + 1
[1,3,4,5,2] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? = 0 + 1
[1,3,5,2,4] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> 1 = 0 + 1
[1,3,5,4,2] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> 1 = 0 + 1
[1,4,2,3,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 1 = 0 + 1
[1,4,2,5,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> 1 = 0 + 1
[1,4,3,2,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 1 = 0 + 1
[1,4,3,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> ? = 1 + 1
[1,4,5,2,3] => [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> 1 = 0 + 1
[1,4,5,3,2] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> 1 = 0 + 1
[1,5,2,3,4] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 1 = 0 + 1
[1,5,2,4,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? = 0 + 1
[1,5,3,2,4] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 1 = 0 + 1
[1,5,3,4,2] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? = 0 + 1
[1,5,4,2,3] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 1 = 0 + 1
[1,5,4,3,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 1 = 0 + 1
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1 = 0 + 1
[2,1,3,5,4] => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> 1 = 0 + 1
[2,1,4,3,5] => [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> 1 = 0 + 1
[2,1,4,5,3] => [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> ? = 0 + 1
[2,1,5,3,4] => [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> 1 = 0 + 1
[2,1,5,4,3] => [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> 1 = 0 + 1
[2,3,1,4,5] => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> 1 = 0 + 1
[2,3,1,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> ? = 0 + 1
[2,3,4,1,5] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? = 0 + 1
[2,3,4,5,1] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? = 0 + 1
[2,3,5,1,4] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? = 0 + 1
[2,3,5,4,1] => [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? = 0 + 1
[2,4,1,5,3] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> ? = 0 + 1
[2,4,3,5,1] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> [10,10,10,10]
=> ? = 1 + 1
[2,4,5,1,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> ? = 0 + 1
[2,4,5,3,1] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> ? = 0 + 1
[2,5,1,4,3] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? = 0 + 1
[2,5,3,1,4] => [4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> ? = 0 + 1
[2,5,3,4,1] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? = 0 + 1
[2,5,4,1,3] => [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> ? = 0 + 1
[3,1,4,5,2] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> ? = 0 + 1
[3,2,4,1,5] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,4,4,4,4,4]
=> ? = 1 + 1
[3,2,4,5,1] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> [10,10,10,10]
=> ? = 2 + 1
[3,2,5,1,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> ? = 1 + 1
[3,2,5,4,1] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> ? = 2 + 1
[3,4,1,5,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> ? = 0 + 1
[3,4,2,5,1] => [5,4,3,2,1] => ([],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 2 + 1
[3,4,5,1,2] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? = 0 + 1
[3,4,5,2,1] => [5,1,3,4,2] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? = 0 + 1
[3,5,1,4,2] => [4,5,3,2,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 0 + 1
[3,5,2,1,4] => [4,1,3,5,2] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> ? = 0 + 1
[3,5,2,4,1] => [5,4,3,1,2] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 1 + 1
[3,5,4,1,2] => [2,5,3,1,4] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> ? = 0 + 1
[4,1,3,2,5] => [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? = 0 + 1
[4,1,3,5,2] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> ? = 1 + 1
[4,1,5,2,3] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> ? = 0 + 1
[4,1,5,3,2] => [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> ? = 0 + 1
[4,2,3,1,5] => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? = 0 + 1
[4,2,3,5,1] => [5,3,4,2,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 2 + 1
[4,2,5,1,3] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? = 1 + 1
[4,2,5,3,1] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? = 1 + 1
[4,3,1,5,2] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> ? = 1 + 1
[4,3,2,5,1] => [5,4,2,3,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? = 3 + 1
[4,3,5,1,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> ? = 2 + 1
Description
The smallest positive integer that does not appear twice in the partition.
Matching statistic: St000475
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 25%●distinct values known / distinct values provided: 14%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 25%●distinct values known / distinct values provided: 14%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> [3]
=> 0
[2,1] => [2,1] => ([],2)
=> [2,2]
=> 0
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> [4]
=> 0
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> [3,2]
=> 0
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> [3,2]
=> 0
[2,3,1] => [3,2,1] => ([],3)
=> [2,2,2,2]
=> 0
[3,1,2] => [2,3,1] => ([(1,2)],3)
=> [6]
=> 0
[3,2,1] => [3,1,2] => ([(1,2)],3)
=> [6]
=> 0
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 0
[1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 0
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 0
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 0
[1,4,2,3] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> [7]
=> 0
[1,4,3,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> [7]
=> 0
[2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 0
[2,3,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 0
[2,3,4,1] => [4,2,3,1] => ([(2,3)],4)
=> [6,6]
=> 0
[2,4,1,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> [6,2,2]
=> 0
[2,4,3,1] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> [6,2,2]
=> 0
[3,1,2,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> [7]
=> 0
[3,1,4,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> [3,3,3]
=> 0
[3,2,1,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> [7]
=> 0
[3,2,4,1] => [4,3,2,1] => ([],4)
=> [2,2,2,2,2,2,2,2]
=> ? = 1
[3,4,1,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> [6,2,2]
=> 0
[3,4,2,1] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> [6,2,2]
=> 0
[4,1,2,3] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> [4,4]
=> 0
[4,1,3,2] => [3,4,2,1] => ([(2,3)],4)
=> [6,6]
=> 0
[4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 0
[4,2,3,1] => [4,3,1,2] => ([(2,3)],4)
=> [6,6]
=> 0
[4,3,1,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 0
[4,3,2,1] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> [4,4]
=> 0
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 0
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 0
[1,2,4,5,3] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 0
[1,2,5,3,4] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> 0
[1,2,5,4,3] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> 0
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 0
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 0
[1,3,4,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 0
[1,3,4,5,2] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> ? = 0
[1,3,5,2,4] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> 0
[1,3,5,4,2] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> 0
[1,4,2,3,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 0
[1,4,2,5,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 0
[1,4,3,2,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 0
[1,4,3,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> ? = 1
[1,4,5,2,3] => [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> 0
[1,4,5,3,2] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> 0
[1,5,2,3,4] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 0
[1,5,2,4,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> ? = 0
[1,5,3,2,4] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 0
[1,5,3,4,2] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> ? = 0
[1,5,4,2,3] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 0
[2,3,4,1,5] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> ? = 0
[2,3,4,5,1] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> [4,4,4,4]
=> ? = 0
[2,3,5,1,4] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [14]
=> ? = 0
[2,3,5,4,1] => [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> [14]
=> ? = 0
[2,4,1,5,3] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> ? = 0
[2,4,3,5,1] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> ? = 1
[2,4,5,1,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> ? = 0
[2,4,5,3,1] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> ? = 0
[2,5,1,4,3] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> ? = 0
[2,5,3,4,1] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> ? = 0
[3,1,4,5,2] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> ? = 0
[3,2,4,1,5] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> ? = 1
[3,2,4,5,1] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> ? = 2
[3,2,5,1,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> ? = 1
[3,2,5,4,1] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> ? = 2
[3,4,1,5,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> [6,6,6]
=> ? = 0
[3,4,2,5,1] => [5,4,3,2,1] => ([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ? = 2
[3,4,5,1,2] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> [14]
=> ? = 0
[3,4,5,2,1] => [5,1,3,4,2] => ([(1,3),(1,4),(4,2)],5)
=> [14]
=> ? = 0
[3,5,1,4,2] => [4,5,3,2,1] => ([(3,4)],5)
=> [6,6,6,6]
=> ? = 0
[3,5,2,4,1] => [5,4,3,1,2] => ([(3,4)],5)
=> [6,6,6,6]
=> ? = 1
[4,1,3,2,5] => [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> ? = 0
[4,1,3,5,2] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> ? = 1
[4,1,5,2,3] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> ? = 0
[4,1,5,3,2] => [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> ? = 0
[4,2,3,1,5] => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> ? = 0
[4,2,3,5,1] => [5,3,4,2,1] => ([(3,4)],5)
=> [6,6,6,6]
=> ? = 2
[4,2,5,1,3] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> [4,4,4,4]
=> ? = 1
[4,2,5,3,1] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> [4,4,4,4]
=> ? = 1
[4,3,1,5,2] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> ? = 1
[4,3,2,5,1] => [5,4,2,3,1] => ([(3,4)],5)
=> [6,6,6,6]
=> ? = 3
[4,3,5,1,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> ? = 2
[4,3,5,2,1] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> ? = 2
[4,5,1,3,2] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> ? = 0
[4,5,2,3,1] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> ? = 0
[5,1,2,4,3] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> [14]
=> ? = 0
[5,1,3,2,4] => [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [14]
=> ? = 0
[5,1,3,4,2] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> ? = 0
[5,1,4,2,3] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> ? = 0
[5,1,4,3,2] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> [6,6,6]
=> ? = 0
[5,2,1,4,3] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> ? = 0
[5,2,3,1,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> ? = 0
[5,2,3,4,1] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> [6,6,6]
=> ? = 0
[5,2,4,3,1] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> ? = 0
[5,3,2,4,1] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> ? = 1
Description
The number of parts equal to 1 in a partition.
Matching statistic: St000455
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00259: Graphs —vertex addition⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 22%●distinct values known / distinct values provided: 14%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00259: Graphs —vertex addition⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 22%●distinct values known / distinct values provided: 14%
Values
[1,2] => [2] => ([],2)
=> ([],3)
=> ? = 0
[2,1] => [1,1] => ([(0,1)],2)
=> ([(1,2)],3)
=> 0
[1,2,3] => [3] => ([],3)
=> ([],4)
=> ? = 0
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 0
[2,1,3] => [1,2] => ([(1,2)],3)
=> ([(2,3)],4)
=> 0
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 0
[3,1,2] => [1,2] => ([(1,2)],3)
=> ([(2,3)],4)
=> 0
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[1,2,3,4] => [4] => ([],4)
=> ([],5)
=> ? = 0
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 0
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 0
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> ([(3,4)],5)
=> 0
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 0
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 0
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> ([(3,4)],5)
=> 0
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 0
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> ([(3,4)],5)
=> 0
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,2,3,4,5] => [5] => ([],5)
=> ([],6)
=> ? = 0
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 0
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 0
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 0
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> ([(4,5)],6)
=> 0
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 0
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[2,3,5,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 0
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,1,5,4,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[3,2,5,4,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,1,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,1,5,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,1,5,3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,2,3,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,2,5,3,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001934
Mp00065: Permutations —permutation poset⟶ Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001934: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 16%●distinct values known / distinct values provided: 14%
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001934: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 16%●distinct values known / distinct values provided: 14%
Values
[1,2] => ([(0,1)],2)
=> [1]
=> [1]
=> 1 = 0 + 1
[2,1] => ([],2)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [1]
=> [1]
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2)],3)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[2,1,3] => ([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[2,3,1] => ([(1,2)],3)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[3,1,2] => ([(1,2)],3)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[3,2,1] => ([],3)
=> [3,3]
=> [2,2,2]
=> 1 = 0 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1]
=> 1 = 0 + 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [2,2,2]
=> 1 = 0 + 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> 1 = 0 + 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [2,2,1]
=> 1 = 0 + 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [2,2,1]
=> 1 = 0 + 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> 1 = 0 + 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 1 = 0 + 1
[3,4,2,1] => ([(2,3)],4)
=> [4,4,4]
=> [3,3,3,3]
=> ? = 0 + 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2,3,1] => ([(2,3)],4)
=> [4,4,4]
=> [3,3,3,3]
=> ? = 0 + 1
[4,3,1,2] => ([(2,3)],4)
=> [4,4,4]
=> [3,3,3,3]
=> ? = 0 + 1
[4,3,2,1] => ([],4)
=> [4,4,4,4,4,4]
=> [6,6,6,6]
=> ? = 0 + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> [1]
=> 1 = 0 + 1
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [2,2,2]
=> 1 = 0 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [2,2]
=> 1 = 0 + 1
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 1 = 0 + 1
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 1 = 0 + 1
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> 1 = 0 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [2,2,1,1]
=> 1 = 0 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? = 0 + 1
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? = 0 + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? = 0 + 1
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> [6,6,6,6]
=> ? = 0 + 1
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [2,2]
=> 1 = 0 + 1
[2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [2,2]
=> 1 = 0 + 1
[2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [2,2,2,2,2,2]
=> ? = 0 + 1
[2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [2,2,2,2,2]
=> ? = 0 + 1
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [2,2,2,1,1]
=> ? = 0 + 1
[2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [2,2,2,2,2]
=> ? = 1 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [2,2,2,2,1]
=> ? = 0 + 1
[2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,5,3,1,4] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [3,3,3,2]
=> ? = 0 + 1
[2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [3,3,3,3,1,1,1,1,1,1]
=> ? = 0 + 1
[2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ? = 0 + 1
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [2,2,2,1,1]
=> ? = 0 + 1
[3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [2,2,2,2,2,2]
=> ? = 0 + 1
[3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [2,2,2,2,2]
=> ? = 2 + 1
[3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [4,4,4,4,4]
=> ? = 2 + 1
[3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> ? = 0 + 1
[3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? = 0 + 1
[3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 2 + 1
[3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [2,2,2,2,2]
=> ? = 0 + 1
[3,4,5,2,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [4,4,4,4,4]
=> ? = 0 + 1
[3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> ? = 0 + 1
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [2,2,2,2,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,5,2,1,4] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [3,3,3,3,1,1,1,1,1,1]
=> ? = 0 + 1
[3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [3,3,3,3,3,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [2,2,2,2,2,2,2,2,2,2]
=> ? = 0 + 1
[3,5,4,2,1] => ([(2,3),(2,4)],5)
=> [10,10,10,10]
=> [4,4,4,4,4,4,4,4,4,4]
=> ? = 0 + 1
[4,1,3,2,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,1,3,5,2] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [3,3,3,2]
=> ? = 1 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [2,2,2,2,1]
=> ? = 0 + 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [3,3,3,3,1,1,1,1,1,1]
=> ? = 0 + 1
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type.
A monotone factorisation of genus zero of a permutation π∈Sn with ℓ cycles, including fixed points, is a tuple of r=n−ℓ transpositions
(a1,b1),…,(ar,br)
with b1≤⋯≤br and ai<bi for all i, whose product, in this order, is π.
For example, the cycle (2,3,1) has the two factorizations (2,3)(1,3) and (1,2)(2,3).
Matching statistic: St000068
(load all 23 compositions to match this statistic)
(load all 23 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 14%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 14%
Values
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,2,1] => [1,3,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,4,3,2] => [1,2,4,3] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,1,2,4] => [1,3,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[3,1,4,2] => [1,3,4,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 0 + 1
[3,2,1,4] => [1,3,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[3,2,4,1] => [1,3,4,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1 + 1
[3,4,1,2] => [1,3,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[3,4,2,1] => [1,3,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,1,2,3] => [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,1,3,2] => [1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,2,1,3] => [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,2,3,1] => [1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,3,1,2] => [1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,3,2,1] => [1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,2,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,3,5,4,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,4,2,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,2,5,3] => [1,2,4,5,3] => [4,1,2,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 0 + 1
[1,4,3,2,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,3,5,2] => [1,2,4,5,3] => [4,1,2,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 + 1
[1,4,5,2,3] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,5,3,2] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,2,3,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,5,2,4,3] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,3,2,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,5,3,4,2] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,4,2,3] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,4,3,2] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[2,4,1,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,4,1,5,3] => [1,2,4,5,3] => [4,1,2,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 0 + 1
[2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,4,3,5,1] => [1,2,4,5,3] => [4,1,2,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 + 1
[2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,4,5,3,1] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,5,1,4,3] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,5,3,4,1] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,5,4,1,3] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,5,4,3,1] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,2,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,4,2,5] => [1,3,4,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[3,1,4,5,2] => [1,3,4,5,2] => [3,1,4,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 0 + 1
[3,1,5,2,4] => [1,3,5,4,2] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[3,1,5,4,2] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,2,4,1,5] => [1,3,4,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[3,2,4,5,1] => [1,3,4,5,2] => [3,1,4,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 2 + 1
[3,2,5,1,4] => [1,3,5,4,2] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[3,2,5,4,1] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,4,2,1,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,4,2,5,1] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[3,4,5,1,2] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,4,5,2,1] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,5,1,2,4] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[3,5,1,4,2] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[3,5,2,1,4] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[3,5,2,4,1] => [1,3,2,5,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 1 + 1
[3,5,4,1,2] => [1,3,4,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[3,5,4,2,1] => [1,3,4,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[4,1,2,3,5] => [1,4,3,2,5] => [4,3,1,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[4,1,2,5,3] => [1,4,5,3,2] => [4,5,1,3,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[4,1,3,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,1,3,5,2] => [1,4,5,2,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
Description
The number of minimal elements in a poset.
Matching statistic: St001846
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Values
[1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 0
[2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> 0
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
[1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 0
[1,3,2,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> 0
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
[2,1,3,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> 0
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0
[1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 0
[1,2,4,3,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> 0
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
[1,3,2,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> 0
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0
[2,1,3,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> 0
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 0
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ? = 2
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
[3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 2
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 0
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,25),(2,13),(2,14),(2,15),(2,25),(3,10),(3,11),(3,12),(3,25),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,21),(7,24),(7,29),(8,19),(8,22),(8,29),(9,20),(9,23),(9,29),(10,26),(10,29),(11,27),(11,29),(12,28),(12,29),(13,19),(13,21),(13,26),(14,20),(14,21),(14,27),(15,19),(15,20),(15,28),(16,22),(16,24),(16,26),(17,23),(17,24),(17,27),(18,22),(18,23),(18,28),(19,30),(20,30),(21,30),(22,30),(23,30),(24,30),(25,26),(25,27),(25,28),(26,30),(27,30),(28,30),(29,30)],31)
=> ? = 0
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0
Description
The number of elements which do not have a complement in the lattice.
A complement of an element x in a lattice is an element y such that the meet of x and y is the bottom element and their join is the top element.
Matching statistic: St001719
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Values
[1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,1,3,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0 + 1
[1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0 + 1
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 1
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 1
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0 + 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 0 + 1
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ? = 2 + 1
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 0 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0 + 1
[3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 2 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 0 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 0 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 0 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,25),(2,13),(2,14),(2,15),(2,25),(3,10),(3,11),(3,12),(3,25),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,21),(7,24),(7,29),(8,19),(8,22),(8,29),(9,20),(9,23),(9,29),(10,26),(10,29),(11,27),(11,29),(12,28),(12,29),(13,19),(13,21),(13,26),(14,20),(14,21),(14,27),(15,19),(15,20),(15,28),(16,22),(16,24),(16,26),(17,23),(17,24),(17,27),(18,22),(18,23),(18,28),(19,30),(20,30),(21,30),(22,30),(23,30),(24,30),(25,26),(25,27),(25,28),(26,30),(27,30),(28,30),(29,30)],31)
=> ? = 0 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 0 + 1
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval [a,b] in a lattice is small if b is a join of elements covering a.
The following 95 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001820The size of the image of the pop stack sorting operator. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001301The first Betti number of the order complex associated with the poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001845The number of join irreducibles minus the rank of a lattice. St001396Number of triples of incomparable elements in a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001964The interval resolution global dimension of a poset. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000181The number of connected components of the Hasse diagram for the poset. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001490The number of connected components of a skew partition. St001095The number of non-isomorphic posets with precisely one further covering relation. St001890The maximum magnitude of the Möbius function of a poset. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000403The Szeged index minus the Wiener index of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000699The toughness times the least common multiple of 1,. St000948The chromatic discriminant of a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001281The normalized isoperimetric number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001395The number of strictly unfriendly partitions of a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001316The domatic number of a graph. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St000636The hull number of a graph. St001029The size of the core of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001654The monophonic hull number of a graph. St000093The cardinality of a maximal independent set of vertices of a graph. St000322The skewness of a graph. St000095The number of triangles of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by 4. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000449The number of pairs of vertices of a graph with distance 4. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001765The number of connected components of the friends and strangers graph. St000264The girth of a graph, which is not a tree. St001624The breadth of a lattice. St001570The minimal number of edges to add to make a graph Hamiltonian.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!