Your data matches 38 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00081: Standard tableaux reading word permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 1
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [2,4,1,6,5,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [3,5,2,1,6,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [3,2,6,1,5,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> 2
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [4,6,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [3,6,5,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [2,4,1,7,3,5,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 1
[[1,3,6],[2,5],[4,7]]
=> [4,7,2,5,1,3,6] => [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 1
[[1,4,5],[2,7],[3],[6]]
=> [6,3,2,7,1,4,5] => [3,2,6,1,4,7,5] => ([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> 1
[[1,3,5],[2,7],[4],[6]]
=> [6,4,2,7,1,3,5] => [2,4,6,1,3,7,5] => ([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> 1
[[1,3,6],[2,5],[4],[7]]
=> [7,4,2,5,1,3,6] => [2,4,1,7,5,3,6] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> 1
[[1,3,5],[2,6],[4],[7]]
=> [7,4,2,6,1,3,5] => [2,4,1,7,3,6,5] => ([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> 1
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [4,3,7,2,1,5,6] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[1,4,6],[2],[3],[5],[7]]
=> [7,5,3,2,1,4,6] => [3,5,7,2,1,4,6] => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[1,3,6],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6] => [2,5,7,4,1,3,6] => ([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[1,4,5],[2],[3],[6],[7]]
=> [7,6,3,2,1,4,5] => [3,2,7,6,1,4,5] => ([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[1,3,5],[2],[4],[6],[7]]
=> [7,6,4,2,1,3,5] => [2,4,7,6,1,3,5] => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[1,4],[2,6],[3,7],[5]]
=> [5,3,7,2,6,1,4] => [3,5,2,1,7,6,4] => ([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 1
[[1,3],[2,6],[4,7],[5]]
=> [5,4,7,2,6,1,3] => [2,5,4,1,7,6,3] => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 1
[[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => [3,2,6,1,7,5,4] => ([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 1
[[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [2,4,6,1,7,5,3] => ([(0,5),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> 1
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [2,4,1,7,6,5,3] => ([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [4,6,3,2,1,7,5] => ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[[1,4],[2,7],[3],[5],[6]]
=> [6,5,3,2,7,1,4] => [3,6,5,2,1,7,4] => ([(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[1,3],[2,7],[4],[5],[6]]
=> [6,5,4,2,7,1,3] => [2,6,5,4,1,7,3] => ([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [4,3,7,2,1,6,5] => ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[1,4],[2,6],[3],[5],[7]]
=> [7,5,3,2,6,1,4] => [3,5,7,2,1,6,4] => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> 1
[[1,3],[2,6],[4],[5],[7]]
=> [7,5,4,2,6,1,3] => [2,5,7,4,1,6,3] => ([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 1
[[1,4],[2,5],[3],[6],[7]]
=> [7,6,3,2,5,1,4] => [3,2,7,6,1,5,4] => ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[1,3],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3] => [2,4,7,6,1,5,3] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 1
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [5,7,4,3,2,1,6] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [4,7,6,3,2,1,5] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[[1,4],[2],[3],[5],[6],[7]]
=> [7,6,5,3,2,1,4] => [3,7,6,5,2,1,4] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[[1,3],[2],[4],[5],[6],[7]]
=> [7,6,5,4,2,1,3] => [2,7,6,5,4,1,3] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001130
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001130: Permutations ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1,0]
=> [2,1] => 0 = 1 - 1
[[1],[2]]
=> [1,1] => [1,0,1,0]
=> [3,1,2] => 0 = 1 - 1
[[1],[2],[3]]
=> [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 2 - 1
[[1,3],[2],[4]]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0 = 1 - 1
[[1],[2],[3],[4]]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 2 = 3 - 1
[[1,3],[2,5],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 0 = 1 - 1
[[1,4],[2],[3],[5]]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0 = 1 - 1
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 0 = 1 - 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 3 = 4 - 1
[[1,4,5],[2],[3],[6]]
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 1 - 1
[[1,3,5],[2],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 1 - 1
[[1,3],[2,5],[4,6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 1 - 1
[[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 1 - 1
[[1,3],[2,6],[4],[5]]
=> [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 2 - 1
[[1,4],[2,5],[3],[6]]
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 2 - 1
[[1,3],[2,5],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 2 - 1
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 2 - 1
[[1,4],[2],[3],[5],[6]]
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 2 - 1
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 2 - 1
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 5 - 1
[[1,3,5,6],[2],[4],[7]]
=> [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [3,1,5,2,6,8,4,7] => ? = 1 - 1
[[1,3,6],[2,5],[4,7]]
=> [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [3,1,5,2,6,8,4,7] => ? = 1 - 1
[[1,4,5],[2,7],[3],[6]]
=> [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,1,2,5,7,3,8,6] => ? = 1 - 1
[[1,3,5],[2,7],[4],[6]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => ? = 1 - 1
[[1,3,6],[2,5],[4],[7]]
=> [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [3,1,5,2,6,8,4,7] => ? = 1 - 1
[[1,3,5],[2,6],[4],[7]]
=> [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,5,2,8,4,6,7] => ? = 1 - 1
[[1,5,6],[2],[3],[4],[7]]
=> [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,1,2,3,6,8,4,7] => ? = 1 - 1
[[1,4,6],[2],[3],[5],[7]]
=> [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [4,1,2,6,3,8,5,7] => ? = 1 - 1
[[1,3,6],[2],[4],[5],[7]]
=> [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,6,2,4,8,5,7] => ? = 1 - 1
[[1,4,5],[2],[3],[6],[7]]
=> [1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [4,1,2,5,8,3,6,7] => ? = 1 - 1
[[1,3,5],[2],[4],[6],[7]]
=> [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,5,2,8,4,6,7] => ? = 1 - 1
[[1,4],[2,6],[3,7],[5]]
=> [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [4,1,2,6,3,8,5,7] => ? = 1 - 1
[[1,3],[2,6],[4,7],[5]]
=> [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,6,2,4,8,5,7] => ? = 1 - 1
[[1,4],[2,5],[3,7],[6]]
=> [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,1,2,7,3,5,8,6] => ? = 1 - 1
[[1,3],[2,5],[4,7],[6]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => ? = 1 - 1
[[1,3],[2,5],[4,6],[7]]
=> [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,5,2,8,4,6,7] => ? = 2 - 1
[[1,5],[2,7],[3],[4],[6]]
=> [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,1,2,3,7,4,8,6] => ? = 2 - 1
[[1,4],[2,7],[3],[5],[6]]
=> [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,1,2,7,3,5,8,6] => ? = 1 - 1
[[1,3],[2,7],[4],[5],[6]]
=> [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,1,7,2,4,5,8,6] => ? = 3 - 1
[[1,5],[2,6],[3],[4],[7]]
=> [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,1,2,3,8,4,6,7] => ? = 1 - 1
[[1,4],[2,6],[3],[5],[7]]
=> [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [4,1,2,6,3,8,5,7] => ? = 1 - 1
[[1,3],[2,6],[4],[5],[7]]
=> [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,6,2,4,8,5,7] => ? = 1 - 1
[[1,4],[2,5],[3],[6],[7]]
=> [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [4,1,2,8,3,5,6,7] => ? = 1 - 1
[[1,3],[2,5],[4],[6],[7]]
=> [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,5,2,8,4,6,7] => ? = 1 - 1
[[1,6],[2],[3],[4],[5],[7]]
=> [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => ? = 3 - 1
[[1,5],[2],[3],[4],[6],[7]]
=> [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,1,2,3,8,4,6,7] => ? = 3 - 1
[[1,4],[2],[3],[5],[6],[7]]
=> [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [4,1,2,8,3,5,6,7] => ? = 3 - 1
[[1,3],[2],[4],[5],[6],[7]]
=> [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,8,2,4,5,6,7] => ? = 3 - 1
[[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? = 6 - 1
Description
The number of two successive successions in a permutation.
Matching statistic: St001431
Mp00081: Standard tableaux reading word permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
St001431: Dyck paths ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [.,.]
=> [1,0]
=> ? = 1
[[1],[2]]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 1
[[1],[2],[3]]
=> [3,2,1] => [[[.,.],.],.]
=> [1,1,0,1,0,0]
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [[[[.,.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [[[[.,.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [[[[.,.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [[[[.,.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [[[[.,.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [[[[.,.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [[[[[.,.],.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [[[[[.,.],.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [[[[[.,.],.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 1
[[1,3,6],[2,5],[4,7]]
=> [4,7,2,5,1,3,6] => [[[.,[.,.]],[.,.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1
[[1,4,5],[2,7],[3],[6]]
=> [6,3,2,7,1,4,5] => [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 1
[[1,3,5],[2,7],[4],[6]]
=> [6,4,2,7,1,3,5] => [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 1
[[1,3,6],[2,5],[4],[7]]
=> [7,4,2,5,1,3,6] => [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 1
[[1,3,5],[2,6],[4],[7]]
=> [7,4,2,6,1,3,5] => [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 1
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 1
[[1,4,6],[2],[3],[5],[7]]
=> [7,5,3,2,1,4,6] => [[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 1
[[1,3,6],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6] => [[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 1
[[1,4,5],[2],[3],[6],[7]]
=> [7,6,3,2,1,4,5] => [[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 1
[[1,3,5],[2],[4],[6],[7]]
=> [7,6,4,2,1,3,5] => [[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 1
[[1,4],[2,6],[3,7],[5]]
=> [5,3,7,2,6,1,4] => [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[[1,3],[2,6],[4,7],[5]]
=> [5,4,7,2,6,1,3] => [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 2
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 2
[[1,4],[2,7],[3],[5],[6]]
=> [6,5,3,2,7,1,4] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[[1,3],[2,7],[4],[5],[6]]
=> [6,5,4,2,7,1,3] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 3
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[[1,4],[2,6],[3],[5],[7]]
=> [7,5,3,2,6,1,4] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[[1,3],[2,6],[4],[5],[7]]
=> [7,5,4,2,6,1,3] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[[1,4],[2,5],[3],[6],[7]]
=> [7,6,3,2,5,1,4] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[[1,3],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3] => [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [[[[[[.,.],.],.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 3
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [[[[[[.,.],.],.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 3
[[1,4],[2],[3],[5],[6],[7]]
=> [7,6,5,3,2,1,4] => [[[[[[.,.],.],.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 3
[[1,3],[2],[4],[5],[6],[7]]
=> [7,6,5,4,2,1,3] => [[[[[[.,.],.],.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 3
[[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Mp00134: Standard tableaux descent wordBinary words
Mp00104: Binary words reverseBinary words
Mp00268: Binary words zeros to flag zerosBinary words
St001491: Binary words ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[[1]]
=> => => => ? = 1
[[1],[2]]
=> 1 => 1 => 1 => 1
[[1],[2],[3]]
=> 11 => 11 => 11 => 2
[[1,3],[2],[4]]
=> 101 => 101 => 001 => 1
[[1],[2],[3],[4]]
=> 111 => 111 => 111 => 3
[[1,3],[2,5],[4]]
=> 1010 => 0101 => 1100 => 1
[[1,4],[2],[3],[5]]
=> 1101 => 1011 => 0001 => 1
[[1,3],[2],[4],[5]]
=> 1011 => 1101 => 0011 => 1
[[1],[2],[3],[4],[5]]
=> 1111 => 1111 => 1111 => 4
[[1,4,5],[2],[3],[6]]
=> 11001 => 10011 => 11101 => ? = 1
[[1,3,5],[2],[4],[6]]
=> 10101 => 10101 => 11001 => ? = 1
[[1,3],[2,5],[4,6]]
=> 10101 => 10101 => 11001 => ? = 1
[[1,4],[2,6],[3],[5]]
=> 11010 => 01011 => 11100 => ? = 1
[[1,3],[2,6],[4],[5]]
=> 10110 => 01101 => 11000 => ? = 2
[[1,4],[2,5],[3],[6]]
=> 11011 => 11011 => 00011 => ? = 2
[[1,3],[2,5],[4],[6]]
=> 10101 => 10101 => 11001 => ? = 2
[[1,5],[2],[3],[4],[6]]
=> 11101 => 10111 => 00001 => ? = 2
[[1,4],[2],[3],[5],[6]]
=> 11011 => 11011 => 00011 => ? = 2
[[1,3],[2],[4],[5],[6]]
=> 10111 => 11101 => 00111 => ? = 2
[[1],[2],[3],[4],[5],[6]]
=> 11111 => 11111 => 11111 => ? = 5
[[1,3,5,6],[2],[4],[7]]
=> 101001 => 100101 => 001101 => ? = 1
[[1,3,6],[2,5],[4,7]]
=> 101001 => 100101 => 001101 => ? = 1
[[1,4,5],[2,7],[3],[6]]
=> 110010 => 010011 => 000100 => ? = 1
[[1,3,5],[2,7],[4],[6]]
=> 101010 => 010101 => 001100 => ? = 1
[[1,3,6],[2,5],[4],[7]]
=> 101001 => 100101 => 001101 => ? = 1
[[1,3,5],[2,6],[4],[7]]
=> 101011 => 110101 => 110011 => ? = 1
[[1,5,6],[2],[3],[4],[7]]
=> 111001 => 100111 => 111101 => ? = 1
[[1,4,6],[2],[3],[5],[7]]
=> 110101 => 101011 => 111001 => ? = 1
[[1,3,6],[2],[4],[5],[7]]
=> 101101 => 101101 => 110001 => ? = 1
[[1,4,5],[2],[3],[6],[7]]
=> 110011 => 110011 => 111011 => ? = 1
[[1,3,5],[2],[4],[6],[7]]
=> 101011 => 110101 => 110011 => ? = 1
[[1,4],[2,6],[3,7],[5]]
=> 110101 => 101011 => 111001 => ? = 1
[[1,3],[2,6],[4,7],[5]]
=> 101101 => 101101 => 110001 => ? = 1
[[1,4],[2,5],[3,7],[6]]
=> 110110 => 011011 => 111000 => ? = 1
[[1,3],[2,5],[4,7],[6]]
=> 101010 => 010101 => 001100 => ? = 1
[[1,3],[2,5],[4,6],[7]]
=> 101011 => 110101 => 110011 => ? = 2
[[1,5],[2,7],[3],[4],[6]]
=> 111010 => 010111 => 111100 => ? = 2
[[1,4],[2,7],[3],[5],[6]]
=> 110110 => 011011 => 111000 => ? = 1
[[1,3],[2,7],[4],[5],[6]]
=> 101110 => 011101 => 110000 => ? = 3
[[1,5],[2,6],[3],[4],[7]]
=> 111011 => 110111 => 000011 => ? = 1
[[1,4],[2,6],[3],[5],[7]]
=> 110101 => 101011 => 111001 => ? = 1
[[1,3],[2,6],[4],[5],[7]]
=> 101101 => 101101 => 110001 => ? = 1
[[1,4],[2,5],[3],[6],[7]]
=> 110111 => 111011 => 000111 => ? = 1
[[1,3],[2,5],[4],[6],[7]]
=> 101011 => 110101 => 110011 => ? = 1
[[1,6],[2],[3],[4],[5],[7]]
=> 111101 => 101111 => 000001 => ? = 3
[[1,5],[2],[3],[4],[6],[7]]
=> 111011 => 110111 => 000011 => ? = 3
[[1,4],[2],[3],[5],[6],[7]]
=> 110111 => 111011 => 000111 => ? = 3
[[1,3],[2],[4],[5],[6],[7]]
=> 101111 => 111101 => 001111 => ? = 3
[[1],[2],[3],[4],[5],[6],[7]]
=> 111111 => 111111 => 111111 => ? = 6
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00208: Permutations lattice of intervalsLattices
St001820: Lattices ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 33%
Values
[[1]]
=> [1] => [1] => ([(0,1)],2)
=> 1
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [4,3,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [4,1,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [4,3,1,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,8),(3,8),(4,9),(5,9),(6,7),(6,10),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ? = 1
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [1,3,6,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [1,5,4,6,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ? = 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [1,5,6,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ? = 2
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [1,5,3,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,9),(3,9),(4,9),(5,9),(6,7),(7,8),(9,7)],10)
=> ? = 2
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [1,5,6,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ? = 2
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [5,4,3,1,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,8),(5,7),(6,7),(6,8),(7,9),(8,9),(9,10)],11)
=> ? = 2
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [5,4,1,6,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ? = 2
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [5,1,6,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,8),(5,7),(6,7),(6,8),(7,9),(8,9),(9,10)],11)
=> ? = 2
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [4,1,5,2,3,7,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,11),(3,11),(4,8),(5,8),(6,9),(7,9),(8,10),(9,11),(11,10)],12)
=> ? = 1
[[1,3,6],[2,5],[4,7]]
=> [4,7,2,5,1,3,6] => [1,3,6,4,2,7,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,8),(9,8)],10)
=> ? = 1
[[1,4,5],[2,7],[3],[6]]
=> [6,3,2,7,1,4,5] => [1,5,4,2,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,10),(3,10),(4,10),(5,8),(6,8),(7,9),(8,10),(10,9)],11)
=> ? = 1
[[1,3,5],[2,7],[4],[6]]
=> [6,4,2,7,1,3,5] => [1,5,2,6,7,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,11),(3,9),(4,9),(5,8),(6,8),(7,10),(8,11),(9,11),(11,10)],12)
=> ? = 1
[[1,3,6],[2,5],[4],[7]]
=> [7,4,2,5,1,3,6] => [1,5,6,2,3,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,11),(3,9),(4,9),(5,8),(6,8),(7,10),(8,11),(9,11),(11,10)],12)
=> ? = 1
[[1,3,5],[2,6],[4],[7]]
=> [7,4,2,6,1,3,5] => [1,5,2,4,7,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,10),(3,10),(4,10),(5,8),(6,8),(7,9),(8,10),(10,9)],11)
=> ? = 1
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [5,4,3,1,2,7,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,15),(3,14),(4,14),(5,13),(6,12),(6,16),(7,13),(7,16),(9,11),(10,11),(11,8),(12,9),(13,10),(14,12),(15,8),(16,9),(16,10)],17)
=> ? = 1
[[1,4,6],[2],[3],[5],[7]]
=> [7,5,3,2,1,4,6] => [5,4,1,6,2,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,9),(4,9),(5,9),(6,8),(7,8),(8,9)],10)
=> ? = 1
[[1,3,6],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6] => [5,1,6,4,2,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1
[[1,4,5],[2],[3],[6],[7]]
=> [7,6,3,2,1,4,5] => [5,4,1,2,7,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,10),(3,10),(4,9),(5,9),(6,8),(7,8),(8,11),(9,11),(10,11)],12)
=> ? = 1
[[1,3,5],[2],[4],[6],[7]]
=> [7,6,4,2,1,3,5] => [5,1,6,2,7,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,9),(4,9),(5,9),(6,8),(7,8),(8,9)],10)
=> ? = 1
[[1,4],[2,6],[3,7],[5]]
=> [5,3,7,2,6,1,4] => [1,3,6,7,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,8),(5,11),(6,12),(7,10),(8,13),(9,13),(11,10),(12,11),(13,12)],14)
=> ? = 1
[[1,3],[2,6],[4,7],[5]]
=> [5,4,7,2,6,1,3] => [1,3,7,5,4,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,10),(4,11),(5,12),(6,13),(7,9),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 1
[[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => [1,3,6,7,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,10),(10,11),(11,9)],12)
=> ? = 1
[[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [1,3,7,5,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,10),(10,11),(11,9)],12)
=> ? = 1
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [1,3,7,4,6,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,10),(4,11),(5,12),(6,13),(7,9),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 2
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [1,6,5,4,7,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,12),(3,10),(4,9),(5,8),(6,8),(7,9),(7,10),(8,14),(9,13),(10,13),(12,14),(13,12),(14,11)],15)
=> ? = 2
[[1,4],[2,7],[3],[5],[6]]
=> [6,5,3,2,7,1,4] => [1,6,5,7,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,9),(4,9),(5,12),(6,11),(7,10),(8,11),(9,12),(11,13),(12,13),(13,10)],14)
=> ? = 1
[[1,3],[2,7],[4],[5],[6]]
=> [6,5,4,2,7,1,3] => [1,6,7,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,12),(3,10),(4,9),(5,8),(6,8),(7,9),(7,10),(8,14),(9,13),(10,13),(12,14),(13,12),(14,11)],15)
=> ? = 3
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [1,6,5,3,7,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,11),(9,10),(11,9)],12)
=> ? = 1
[[1,4],[2,6],[3],[5],[7]]
=> [7,5,3,2,6,1,4] => [1,6,5,7,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,9),(4,9),(5,12),(6,11),(7,10),(8,11),(9,12),(11,13),(12,13),(13,10)],14)
=> ? = 1
[[1,3],[2,6],[4],[5],[7]]
=> [7,5,4,2,6,1,3] => [1,6,7,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,11),(4,11),(5,11),(6,11),(7,9),(8,10),(10,9),(11,10)],12)
=> ? = 1
[[1,4],[2,5],[3],[6],[7]]
=> [7,6,3,2,5,1,4] => [1,6,3,7,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,11),(9,10),(11,9)],12)
=> ? = 1
[[1,3],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3] => [1,6,7,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,12),(3,10),(4,9),(5,8),(6,8),(7,9),(7,10),(8,14),(9,13),(10,13),(12,14),(13,12),(14,11)],15)
=> ? = 1
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [6,5,4,3,1,7,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,14),(3,14),(4,9),(5,8),(6,8),(6,10),(7,9),(7,10),(8,11),(9,12),(10,11),(10,12),(11,13),(12,13),(13,14)],15)
=> ? = 3
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [6,5,4,1,7,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,12),(2,12),(3,9),(4,8),(5,10),(6,10),(7,8),(7,9),(8,11),(9,11),(10,12),(11,12)],13)
=> ? = 3
[[1,4],[2],[3],[5],[6],[7]]
=> [7,6,5,3,2,1,4] => [6,5,1,7,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,12),(2,12),(3,9),(4,8),(5,10),(6,10),(7,8),(7,9),(8,11),(9,11),(10,12),(11,12)],13)
=> ? = 3
[[1,3],[2],[4],[5],[6],[7]]
=> [7,6,5,4,2,1,3] => [6,1,7,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,14),(3,14),(4,9),(5,8),(6,8),(6,10),(7,9),(7,10),(8,11),(9,12),(10,11),(10,12),(11,13),(12,13),(13,14)],15)
=> ? = 3
[[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ?
=> ? = 6
Description
The size of the image of the pop stack sorting operator. The pop stack sorting operator is defined by $Pop_L^\downarrow(x) = x\wedge\bigwedge\{y\in L\mid y\lessdot x\}$. This statistic returns the size of $Pop_L^\downarrow(L)\}$.
Matching statistic: St001557
Mp00081: Standard tableaux reading word permutationPermutations
Mp00064: Permutations reversePermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St001557: Permutations ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1] => [1] => ? = 1 - 1
[[1],[2]]
=> [2,1] => [1,2] => [1,2] => 0 = 1 - 1
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => [1,3,2] => 1 = 2 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,2,4] => [3,1,4,2] => 0 = 1 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => [1,4,3,2] => 2 = 3 - 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [3,1,5,2,4] => [3,1,5,4,2] => 0 = 1 - 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [4,1,2,3,5] => [4,1,5,3,2] => 0 = 1 - 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [3,1,2,4,5] => [3,1,5,4,2] => 0 = 1 - 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,5,4,3,2] => 3 = 4 - 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [5,4,1,2,3,6] => [5,4,1,6,3,2] => ? = 1 - 1
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [5,3,1,2,4,6] => [5,3,1,6,4,2] => ? = 1 - 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [3,1,5,2,6,4] => [3,1,6,5,4,2] => ? = 1 - 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [4,1,6,2,3,5] => [4,1,6,5,3,2] => ? = 1 - 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [3,1,6,2,4,5] => [3,1,6,5,4,2] => ? = 2 - 1
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [4,1,5,2,3,6] => [4,1,6,5,3,2] => ? = 2 - 1
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [3,1,5,2,4,6] => [3,1,6,5,4,2] => ? = 2 - 1
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [5,1,2,3,4,6] => [5,1,6,4,3,2] => ? = 2 - 1
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [4,1,2,3,5,6] => [4,1,6,5,3,2] => ? = 2 - 1
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [3,1,2,4,5,6] => [3,1,6,5,4,2] => ? = 2 - 1
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => [1,6,5,4,3,2] => ? = 5 - 1
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [6,5,3,1,2,4,7] => [6,5,3,1,7,4,2] => ? = 1 - 1
[[1,3,6],[2,5],[4,7]]
=> [4,7,2,5,1,3,6] => [6,3,1,5,2,7,4] => [6,3,1,7,5,4,2] => ? = 1 - 1
[[1,4,5],[2,7],[3],[6]]
=> [6,3,2,7,1,4,5] => [5,4,1,7,2,3,6] => [5,4,1,7,6,3,2] => ? = 1 - 1
[[1,3,5],[2,7],[4],[6]]
=> [6,4,2,7,1,3,5] => [5,3,1,7,2,4,6] => [5,3,1,7,6,4,2] => ? = 1 - 1
[[1,3,6],[2,5],[4],[7]]
=> [7,4,2,5,1,3,6] => [6,3,1,5,2,4,7] => [6,3,1,7,5,4,2] => ? = 1 - 1
[[1,3,5],[2,6],[4],[7]]
=> [7,4,2,6,1,3,5] => [5,3,1,6,2,4,7] => [5,3,1,7,6,4,2] => ? = 1 - 1
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [6,5,1,2,3,4,7] => [6,5,1,7,4,3,2] => ? = 1 - 1
[[1,4,6],[2],[3],[5],[7]]
=> [7,5,3,2,1,4,6] => [6,4,1,2,3,5,7] => [6,4,1,7,5,3,2] => ? = 1 - 1
[[1,3,6],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6] => [6,3,1,2,4,5,7] => [6,3,1,7,5,4,2] => ? = 1 - 1
[[1,4,5],[2],[3],[6],[7]]
=> [7,6,3,2,1,4,5] => [5,4,1,2,3,6,7] => [5,4,1,7,6,3,2] => ? = 1 - 1
[[1,3,5],[2],[4],[6],[7]]
=> [7,6,4,2,1,3,5] => [5,3,1,2,4,6,7] => [5,3,1,7,6,4,2] => ? = 1 - 1
[[1,4],[2,6],[3,7],[5]]
=> [5,3,7,2,6,1,4] => [4,1,6,2,7,3,5] => [4,1,7,6,5,3,2] => ? = 1 - 1
[[1,3],[2,6],[4,7],[5]]
=> [5,4,7,2,6,1,3] => [3,1,6,2,7,4,5] => [3,1,7,6,5,4,2] => ? = 1 - 1
[[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => [4,1,5,2,7,3,6] => [4,1,7,6,5,3,2] => ? = 1 - 1
[[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [3,1,5,2,7,4,6] => [3,1,7,6,5,4,2] => ? = 1 - 1
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [3,1,5,2,6,4,7] => [3,1,7,6,5,4,2] => ? = 2 - 1
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [5,1,7,2,3,4,6] => [5,1,7,6,4,3,2] => ? = 2 - 1
[[1,4],[2,7],[3],[5],[6]]
=> [6,5,3,2,7,1,4] => [4,1,7,2,3,5,6] => [4,1,7,6,5,3,2] => ? = 1 - 1
[[1,3],[2,7],[4],[5],[6]]
=> [6,5,4,2,7,1,3] => [3,1,7,2,4,5,6] => [3,1,7,6,5,4,2] => ? = 3 - 1
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [5,1,6,2,3,4,7] => [5,1,7,6,4,3,2] => ? = 1 - 1
[[1,4],[2,6],[3],[5],[7]]
=> [7,5,3,2,6,1,4] => [4,1,6,2,3,5,7] => [4,1,7,6,5,3,2] => ? = 1 - 1
[[1,3],[2,6],[4],[5],[7]]
=> [7,5,4,2,6,1,3] => [3,1,6,2,4,5,7] => [3,1,7,6,5,4,2] => ? = 1 - 1
[[1,4],[2,5],[3],[6],[7]]
=> [7,6,3,2,5,1,4] => [4,1,5,2,3,6,7] => [4,1,7,6,5,3,2] => ? = 1 - 1
[[1,3],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3] => [3,1,5,2,4,6,7] => [3,1,7,6,5,4,2] => ? = 1 - 1
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [6,1,2,3,4,5,7] => [6,1,7,5,4,3,2] => ? = 3 - 1
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [5,1,2,3,4,6,7] => [5,1,7,6,4,3,2] => ? = 3 - 1
[[1,4],[2],[3],[5],[6],[7]]
=> [7,6,5,3,2,1,4] => [4,1,2,3,5,6,7] => [4,1,7,6,5,3,2] => ? = 3 - 1
[[1,3],[2],[4],[5],[6],[7]]
=> [7,6,5,4,2,1,3] => [3,1,2,4,5,6,7] => [3,1,7,6,5,4,2] => ? = 3 - 1
[[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => [1,7,6,5,4,3,2] => ? = 6 - 1
Description
The number of inversions of the second entry of a permutation. This is, for a permutation $\pi$ of length $n$, $$\# \{2 < k \leq n \mid \pi(2) > \pi(k)\}.$$ The number of inversions of the first entry is [[St000054]] and the number of inversions of the third entry is [[St001556]]. The sequence of inversions of all the entries define the [[http://www.findstat.org/Permutations#The_Lehmer_code_and_the_major_code_of_a_permutation|Lehmer code]] of a permutation.
Matching statistic: St001811
Mp00081: Standard tableaux reading word permutationPermutations
Mp00088: Permutations Kreweras complementPermutations
Mp00159: Permutations Demazure product with inversePermutations
St001811: Permutations ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1] => [1] => ? = 1 - 1
[[1],[2]]
=> [2,1] => [1,2] => [1,2] => 0 = 1 - 1
[[1],[2],[3]]
=> [3,2,1] => [1,3,2] => [1,3,2] => 1 = 2 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [4,3,1,2] => [4,3,2,1] => 0 = 1 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,4,3,2] => [1,4,3,2] => 2 = 3 - 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [5,3,1,2,4] => [5,4,3,2,1] => 0 = 1 - 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [5,4,3,1,2] => [5,4,3,2,1] => 0 = 1 - 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5,4,1,3,2] => [5,4,3,2,1] => 0 = 1 - 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,5,4,3,2] => [1,5,4,3,2] => 3 = 4 - 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [5,4,3,6,1,2] => [6,5,3,4,2,1] => ? = 1 - 1
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [5,4,6,3,1,2] => [6,5,4,3,2,1] => ? = 1 - 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [6,4,1,2,5,3] => [6,5,3,4,2,1] => ? = 1 - 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [6,4,3,1,2,5] => [6,5,4,3,2,1] => ? = 1 - 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [6,4,1,3,2,5] => [6,5,3,4,2,1] => ? = 2 - 1
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [6,4,3,1,5,2] => [6,5,4,3,2,1] => ? = 2 - 1
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [6,4,1,3,5,2] => [6,5,3,4,2,1] => ? = 2 - 1
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [6,5,4,3,1,2] => [6,5,4,3,2,1] => ? = 2 - 1
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [6,5,4,1,3,2] => [6,5,4,3,2,1] => ? = 2 - 1
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [6,5,1,4,3,2] => [6,5,3,4,2,1] => ? = 2 - 1
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,6,5,4,3,2] => [1,6,5,4,3,2] => ? = 5 - 1
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [5,4,6,3,7,1,2] => [7,6,4,3,5,2,1] => ? = 1 - 1
[[1,3,6],[2,5],[4,7]]
=> [4,7,2,5,1,3,6] => [6,4,7,2,5,1,3] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,4,5],[2,7],[3],[6]]
=> [6,3,2,7,1,4,5] => [6,4,3,7,1,2,5] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3,5],[2,7],[4],[6]]
=> [6,4,2,7,1,3,5] => [6,4,7,3,1,2,5] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3,6],[2,5],[4],[7]]
=> [7,4,2,5,1,3,6] => [6,4,7,3,5,1,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3,5],[2,6],[4],[7]]
=> [7,4,2,6,1,3,5] => [6,4,7,3,1,5,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [6,5,4,3,7,1,2] => [7,6,4,3,5,2,1] => ? = 1 - 1
[[1,4,6],[2],[3],[5],[7]]
=> [7,5,3,2,1,4,6] => [6,5,4,7,3,1,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3,6],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6] => [6,5,7,4,3,1,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,4,5],[2],[3],[6],[7]]
=> [7,6,3,2,1,4,5] => [6,5,4,7,1,3,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3,5],[2],[4],[6],[7]]
=> [7,6,4,2,1,3,5] => [6,5,7,4,1,3,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,4],[2,6],[3,7],[5]]
=> [5,3,7,2,6,1,4] => [7,5,3,1,2,6,4] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3],[2,6],[4,7],[5]]
=> [5,4,7,2,6,1,3] => [7,5,1,3,2,6,4] => [7,6,3,5,4,2,1] => ? = 1 - 1
[[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => [7,5,3,1,6,2,4] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [7,5,1,3,6,2,4] => [7,6,3,5,4,2,1] => ? = 1 - 1
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [7,5,1,3,6,4,2] => [7,6,3,5,4,2,1] => ? = 2 - 1
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [7,5,4,3,1,2,6] => [7,6,5,4,3,2,1] => ? = 2 - 1
[[1,4],[2,7],[3],[5],[6]]
=> [6,5,3,2,7,1,4] => [7,5,4,1,3,2,6] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3],[2,7],[4],[5],[6]]
=> [6,5,4,2,7,1,3] => [7,5,1,4,3,2,6] => [7,6,3,5,4,2,1] => ? = 3 - 1
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [7,5,4,3,1,6,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,4],[2,6],[3],[5],[7]]
=> [7,5,3,2,6,1,4] => [7,5,4,1,3,6,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3],[2,6],[4],[5],[7]]
=> [7,5,4,2,6,1,3] => [7,5,1,4,3,6,2] => [7,6,3,5,4,2,1] => ? = 1 - 1
[[1,4],[2,5],[3],[6],[7]]
=> [7,6,3,2,5,1,4] => [7,5,4,1,6,3,2] => [7,6,5,4,3,2,1] => ? = 1 - 1
[[1,3],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3] => [7,5,1,4,6,3,2] => [7,6,3,5,4,2,1] => ? = 1 - 1
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [7,6,5,4,3,1,2] => [7,6,5,4,3,2,1] => ? = 3 - 1
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [7,6,5,4,1,3,2] => [7,6,5,4,3,2,1] => ? = 3 - 1
[[1,4],[2],[3],[5],[6],[7]]
=> [7,6,5,3,2,1,4] => [7,6,5,1,4,3,2] => [7,6,5,4,3,2,1] => ? = 3 - 1
[[1,3],[2],[4],[5],[6],[7]]
=> [7,6,5,4,2,1,3] => [7,6,1,5,4,3,2] => [7,6,3,5,4,2,1] => ? = 3 - 1
[[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ? = 6 - 1
Description
The Castelnuovo-Mumford regularity of a permutation. The ''Castelnuovo-Mumford regularity'' of a permutation $\sigma$ is the ''Castelnuovo-Mumford regularity'' of the ''matrix Schubert variety'' $X_\sigma$. Equivalently, it is the difference between the degrees of the ''Grothendieck polynomial'' and the ''Schubert polynomial'' for $\sigma$. It can be computed by subtracting the ''Coxeter length'' [[St000018]] from the ''Rajchgot index'' [[St001759]].
Mp00081: Standard tableaux reading word permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00208: Permutations lattice of intervalsLattices
St001846: Lattices ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 33%
Values
[[1]]
=> [1] => [1] => ([(0,1)],2)
=> 0 = 1 - 1
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3 - 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 1 - 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [4,3,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 0 = 1 - 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [4,1,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 0 = 1 - 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4 - 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [4,3,1,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,8),(3,8),(4,9),(5,9),(6,7),(6,10),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ? = 1 - 1
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 0 = 1 - 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [1,3,6,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,10),(5,11),(6,8),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1 - 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [1,5,4,6,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ? = 1 - 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [1,5,6,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ? = 2 - 1
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [1,5,3,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,9),(3,9),(4,9),(5,9),(6,7),(7,8),(9,7)],10)
=> ? = 2 - 1
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [1,5,6,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,11),(8,9),(9,11),(11,10)],12)
=> ? = 2 - 1
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [5,4,3,1,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,8),(5,7),(6,7),(6,8),(7,9),(8,9),(9,10)],11)
=> ? = 2 - 1
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [5,4,1,6,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ? = 2 - 1
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [5,1,6,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,8),(5,7),(6,7),(6,8),(7,9),(8,9),(9,10)],11)
=> ? = 2 - 1
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5 - 1
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [4,1,5,2,3,7,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,11),(3,11),(4,8),(5,8),(6,9),(7,9),(8,10),(9,11),(11,10)],12)
=> ? = 1 - 1
[[1,3,6],[2,5],[4,7]]
=> [4,7,2,5,1,3,6] => [1,3,6,4,2,7,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,8),(9,8)],10)
=> ? = 1 - 1
[[1,4,5],[2,7],[3],[6]]
=> [6,3,2,7,1,4,5] => [1,5,4,2,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,10),(3,10),(4,10),(5,8),(6,8),(7,9),(8,10),(10,9)],11)
=> ? = 1 - 1
[[1,3,5],[2,7],[4],[6]]
=> [6,4,2,7,1,3,5] => [1,5,2,6,7,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,11),(3,9),(4,9),(5,8),(6,8),(7,10),(8,11),(9,11),(11,10)],12)
=> ? = 1 - 1
[[1,3,6],[2,5],[4],[7]]
=> [7,4,2,5,1,3,6] => [1,5,6,2,3,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,11),(3,9),(4,9),(5,8),(6,8),(7,10),(8,11),(9,11),(11,10)],12)
=> ? = 1 - 1
[[1,3,5],[2,6],[4],[7]]
=> [7,4,2,6,1,3,5] => [1,5,2,4,7,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,10),(3,10),(4,10),(5,8),(6,8),(7,9),(8,10),(10,9)],11)
=> ? = 1 - 1
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [5,4,3,1,2,7,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,15),(2,15),(3,14),(4,14),(5,13),(6,12),(6,16),(7,13),(7,16),(9,11),(10,11),(11,8),(12,9),(13,10),(14,12),(15,8),(16,9),(16,10)],17)
=> ? = 1 - 1
[[1,4,6],[2],[3],[5],[7]]
=> [7,5,3,2,1,4,6] => [5,4,1,6,2,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,9),(4,9),(5,9),(6,8),(7,8),(8,9)],10)
=> ? = 1 - 1
[[1,3,6],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6] => [5,1,6,4,2,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 1 - 1
[[1,4,5],[2],[3],[6],[7]]
=> [7,6,3,2,1,4,5] => [5,4,1,2,7,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,10),(3,10),(4,9),(5,9),(6,8),(7,8),(8,11),(9,11),(10,11)],12)
=> ? = 1 - 1
[[1,3,5],[2],[4],[6],[7]]
=> [7,6,4,2,1,3,5] => [5,1,6,2,7,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,9),(4,9),(5,9),(6,8),(7,8),(8,9)],10)
=> ? = 1 - 1
[[1,4],[2,6],[3,7],[5]]
=> [5,3,7,2,6,1,4] => [1,3,6,7,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(2,9),(3,8),(4,8),(5,11),(6,12),(7,10),(8,13),(9,13),(11,10),(12,11),(13,12)],14)
=> ? = 1 - 1
[[1,3],[2,6],[4,7],[5]]
=> [5,4,7,2,6,1,3] => [1,3,7,5,4,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,10),(4,11),(5,12),(6,13),(7,9),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 1 - 1
[[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => [1,3,6,7,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,10),(10,11),(11,9)],12)
=> ? = 1 - 1
[[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [1,3,7,5,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,10),(10,11),(11,9)],12)
=> ? = 1 - 1
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [1,3,7,4,6,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,10),(4,11),(5,12),(6,13),(7,9),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 2 - 1
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [1,6,5,4,7,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,12),(3,10),(4,9),(5,8),(6,8),(7,9),(7,10),(8,14),(9,13),(10,13),(12,14),(13,12),(14,11)],15)
=> ? = 2 - 1
[[1,4],[2,7],[3],[5],[6]]
=> [6,5,3,2,7,1,4] => [1,6,5,7,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,9),(4,9),(5,12),(6,11),(7,10),(8,11),(9,12),(11,13),(12,13),(13,10)],14)
=> ? = 1 - 1
[[1,3],[2,7],[4],[5],[6]]
=> [6,5,4,2,7,1,3] => [1,6,7,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,12),(3,10),(4,9),(5,8),(6,8),(7,9),(7,10),(8,14),(9,13),(10,13),(12,14),(13,12),(14,11)],15)
=> ? = 3 - 1
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [1,6,5,3,7,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,11),(9,10),(11,9)],12)
=> ? = 1 - 1
[[1,4],[2,6],[3],[5],[7]]
=> [7,5,3,2,6,1,4] => [1,6,5,7,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,9),(4,9),(5,12),(6,11),(7,10),(8,11),(9,12),(11,13),(12,13),(13,10)],14)
=> ? = 1 - 1
[[1,3],[2,6],[4],[5],[7]]
=> [7,5,4,2,6,1,3] => [1,6,7,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,11),(4,11),(5,11),(6,11),(7,9),(8,10),(10,9),(11,10)],12)
=> ? = 1 - 1
[[1,4],[2,5],[3],[6],[7]]
=> [7,6,3,2,5,1,4] => [1,6,3,7,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(2,11),(3,11),(4,11),(5,8),(6,8),(7,9),(8,11),(9,10),(11,9)],12)
=> ? = 1 - 1
[[1,3],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3] => [1,6,7,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,11),(2,12),(3,10),(4,9),(5,8),(6,8),(7,9),(7,10),(8,14),(9,13),(10,13),(12,14),(13,12),(14,11)],15)
=> ? = 1 - 1
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [6,5,4,3,1,7,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,14),(3,14),(4,9),(5,8),(6,8),(6,10),(7,9),(7,10),(8,11),(9,12),(10,11),(10,12),(11,13),(12,13),(13,14)],15)
=> ? = 3 - 1
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [6,5,4,1,7,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,12),(2,12),(3,9),(4,8),(5,10),(6,10),(7,8),(7,9),(8,11),(9,11),(10,12),(11,12)],13)
=> ? = 3 - 1
[[1,4],[2],[3],[5],[6],[7]]
=> [7,6,5,3,2,1,4] => [6,5,1,7,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,12),(2,12),(3,9),(4,8),(5,10),(6,10),(7,8),(7,9),(8,11),(9,11),(10,12),(11,12)],13)
=> ? = 3 - 1
[[1,3],[2],[4],[5],[6],[7]]
=> [7,6,5,4,2,1,3] => [6,1,7,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,14),(2,14),(3,14),(4,9),(5,8),(6,8),(6,10),(7,9),(7,10),(8,11),(9,12),(10,11),(10,12),(11,13),(12,13),(13,14)],15)
=> ? = 3 - 1
[[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ?
=> ? = 6 - 1
Description
The number of elements which do not have a complement in the lattice. A complement of an element $x$ in a lattice is an element $y$ such that the meet of $x$ and $y$ is the bottom element and their join is the top element.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00238: Permutations Clarke-Steingrimsson-ZengPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
St001948: Permutations ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1] => [1] => ? = 1 - 1
[[1],[2]]
=> [2,1] => [2,1] => [2,1] => 0 = 1 - 1
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => [2,3,1] => 1 = 2 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => [4,2,1,3] => 0 = 1 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [2,3,4,1] => [2,3,4,1] => 2 = 3 - 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [5,4,2,1,3] => [2,1,5,4,3] => 0 = 1 - 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [2,3,5,1,4] => [5,2,3,1,4] => 0 = 1 - 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [2,4,1,5,3] => [4,2,5,1,3] => 0 = 1 - 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [2,3,6,1,4,5] => [2,6,3,1,4,5] => ? = 1 - 1
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [2,4,1,6,3,5] => [4,6,2,1,3,5] => ? = 1 - 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [5,6,2,4,1,3] => [2,5,1,6,4,3] => ? = 1 - 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [6,3,5,2,1,4] => [6,3,2,1,5,4] => ? = 1 - 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [6,4,2,5,1,3] => [2,4,1,6,5,3] => ? = 2 - 1
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [5,3,6,2,1,4] => [3,5,2,1,6,4] => ? = 2 - 1
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [5,4,2,6,1,3] => [2,5,4,1,6,3] => ? = 2 - 1
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [2,3,4,6,1,5] => [6,2,3,4,1,5] => ? = 2 - 1
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [2,3,5,1,6,4] => [5,2,3,6,1,4] => ? = 2 - 1
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [2,4,1,5,6,3] => [4,2,5,6,1,3] => ? = 2 - 1
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [2,3,4,5,6,1] => [2,3,4,5,6,1] => ? = 5 - 1
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [2,4,1,7,3,5,6] => [7,4,2,1,3,5,6] => ? = 1 - 1
[[1,3,6],[2,5],[4,7]]
=> [4,7,2,5,1,3,6] => [5,7,2,4,1,3,6] => [7,2,1,5,4,3,6] => ? = 1 - 1
[[1,4,5],[2,7],[3],[6]]
=> [6,3,2,7,1,4,5] => [7,3,6,2,1,4,5] => [3,2,1,7,4,6,5] => ? = 1 - 1
[[1,3,5],[2,7],[4],[6]]
=> [6,4,2,7,1,3,5] => [7,4,2,6,1,3,5] => [4,2,1,7,3,6,5] => ? = 1 - 1
[[1,3,6],[2,5],[4],[7]]
=> [7,4,2,5,1,3,6] => [5,4,2,7,1,3,6] => [5,4,2,1,7,3,6] => ? = 1 - 1
[[1,3,5],[2,6],[4],[7]]
=> [7,4,2,6,1,3,5] => [6,4,2,7,1,3,5] => [2,4,1,6,3,7,5] => ? = 1 - 1
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [2,3,4,7,1,5,6] => [2,7,3,4,1,5,6] => ? = 1 - 1
[[1,4,6],[2],[3],[5],[7]]
=> [7,5,3,2,1,4,6] => [2,3,5,1,7,4,6] => [5,7,2,3,1,4,6] => ? = 1 - 1
[[1,3,6],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6] => [2,4,1,5,7,3,6] => [4,7,2,5,1,3,6] => ? = 1 - 1
[[1,4,5],[2],[3],[6],[7]]
=> [7,6,3,2,1,4,5] => [2,3,6,1,4,7,5] => [2,6,3,7,1,4,5] => ? = 1 - 1
[[1,3,5],[2],[4],[6],[7]]
=> [7,6,4,2,1,3,5] => [2,4,1,6,3,7,5] => [4,6,2,7,1,3,5] => ? = 1 - 1
[[1,4],[2,6],[3,7],[5]]
=> [5,3,7,2,6,1,4] => [6,7,5,3,2,1,4] => [6,3,2,1,7,5,4] => ? = 1 - 1
[[1,3],[2,6],[4,7],[5]]
=> [5,4,7,2,6,1,3] => [6,7,2,5,4,1,3] => [6,7,2,1,5,4,3] => ? = 1 - 1
[[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => [5,7,6,3,2,1,4] => [7,5,3,2,1,6,4] => ? = 1 - 1
[[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [5,7,2,6,4,1,3] => [7,2,5,1,6,4,3] => ? = 1 - 1
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [5,6,2,7,4,1,3] => [2,5,6,1,7,4,3] => ? = 2 - 1
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [7,3,4,6,2,1,5] => [7,3,4,2,1,6,5] => ? = 2 - 1
[[1,4],[2,7],[3],[5],[6]]
=> [6,5,3,2,7,1,4] => [7,3,5,2,6,1,4] => [3,2,7,5,1,6,4] => ? = 1 - 1
[[1,3],[2,7],[4],[5],[6]]
=> [6,5,4,2,7,1,3] => [7,4,2,5,6,1,3] => [2,4,5,1,7,6,3] => ? = 3 - 1
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [6,3,4,7,2,1,5] => [3,4,6,2,1,7,5] => ? = 1 - 1
[[1,4],[2,6],[3],[5],[7]]
=> [7,5,3,2,6,1,4] => [6,3,5,2,7,1,4] => [6,3,2,5,1,7,4] => ? = 1 - 1
[[1,3],[2,6],[4],[5],[7]]
=> [7,5,4,2,6,1,3] => [6,4,2,5,7,1,3] => [2,4,6,5,1,7,3] => ? = 1 - 1
[[1,4],[2,5],[3],[6],[7]]
=> [7,6,3,2,5,1,4] => [5,3,6,2,1,7,4] => [3,5,2,1,6,7,4] => ? = 1 - 1
[[1,3],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3] => [5,4,2,6,1,7,3] => [2,5,4,1,6,7,3] => ? = 1 - 1
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [2,3,4,5,7,1,6] => [7,2,3,4,5,1,6] => ? = 3 - 1
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 3 - 1
[[1,4],[2],[3],[5],[6],[7]]
=> [7,6,5,3,2,1,4] => [2,3,5,1,6,7,4] => [5,2,3,6,7,1,4] => ? = 3 - 1
[[1,3],[2],[4],[5],[6],[7]]
=> [7,6,5,4,2,1,3] => [2,4,1,5,6,7,3] => [4,2,5,6,7,1,3] => ? = 3 - 1
[[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [2,3,4,5,6,7,1] => [2,3,4,5,6,7,1] => ? = 6 - 1
Description
The number of augmented double ascents of a permutation. An augmented double ascent of a permutation $\pi$ is a double ascent of the augmented permutation $\tilde\pi$ obtained from $\pi$ by adding an initial $0$. A double ascent of $\tilde\pi$ then is a position $i$ such that $\tilde\pi(i) < \tilde\pi(i+1) < \tilde\pi(i+2)$.
Mp00134: Standard tableaux descent wordBinary words
Mp00262: Binary words poset of factorsPosets
St000907: Posets ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 100%
Values
[[1]]
=> => ?
=> ? = 1 + 1
[[1],[2]]
=> 1 => ([(0,1)],2)
=> 2 = 1 + 1
[[1],[2],[3]]
=> 11 => ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[1,3],[2],[4]]
=> 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
[[1],[2],[3],[4]]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[1,3],[2,5],[4]]
=> 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1 + 1
[[1,4],[2],[3],[5]]
=> 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 + 1
[[1,3],[2],[4],[5]]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 + 1
[[1],[2],[3],[4],[5]]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[1,4,5],[2],[3],[6]]
=> 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1 + 1
[[1,3,5],[2],[4],[6]]
=> 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 1 + 1
[[1,3],[2,5],[4,6]]
=> 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 1 + 1
[[1,4],[2,6],[3],[5]]
=> 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 + 1
[[1,3],[2,6],[4],[5]]
=> 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 2 + 1
[[1,4],[2,5],[3],[6]]
=> 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 2 + 1
[[1,3],[2,5],[4],[6]]
=> 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 2 + 1
[[1,5],[2],[3],[4],[6]]
=> 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[[1,4],[2],[3],[5],[6]]
=> 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 2 + 1
[[1,3],[2],[4],[5],[6]]
=> 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[[1],[2],[3],[4],[5],[6]]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[1,3,5,6],[2],[4],[7]]
=> 101001 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 1 + 1
[[1,3,6],[2,5],[4,7]]
=> 101001 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 1 + 1
[[1,4,5],[2,7],[3],[6]]
=> 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 1 + 1
[[1,3,5],[2,7],[4],[6]]
=> 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 1 + 1
[[1,3,6],[2,5],[4],[7]]
=> 101001 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 1 + 1
[[1,3,5],[2,6],[4],[7]]
=> 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 + 1
[[1,5,6],[2],[3],[4],[7]]
=> 111001 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 1 + 1
[[1,4,6],[2],[3],[5],[7]]
=> 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 + 1
[[1,3,6],[2],[4],[5],[7]]
=> 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 1 + 1
[[1,4,5],[2],[3],[6],[7]]
=> 110011 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> ? = 1 + 1
[[1,3,5],[2],[4],[6],[7]]
=> 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 + 1
[[1,4],[2,6],[3,7],[5]]
=> 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 + 1
[[1,3],[2,6],[4,7],[5]]
=> 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 1 + 1
[[1,4],[2,5],[3,7],[6]]
=> 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 1 + 1
[[1,3],[2,5],[4,7],[6]]
=> 101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 1 + 1
[[1,3],[2,5],[4,6],[7]]
=> 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 2 + 1
[[1,5],[2,7],[3],[4],[6]]
=> 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 2 + 1
[[1,4],[2,7],[3],[5],[6]]
=> 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 1 + 1
[[1,3],[2,7],[4],[5],[6]]
=> 101110 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3 + 1
[[1,5],[2,6],[3],[4],[7]]
=> 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 1 + 1
[[1,4],[2,6],[3],[5],[7]]
=> 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 + 1
[[1,3],[2,6],[4],[5],[7]]
=> 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 1 + 1
[[1,4],[2,5],[3],[6],[7]]
=> 110111 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 1 + 1
[[1,3],[2,5],[4],[6],[7]]
=> 101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 + 1
[[1,6],[2],[3],[4],[5],[7]]
=> 111101 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 3 + 1
[[1,5],[2],[3],[4],[6],[7]]
=> 111011 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3 + 1
[[1,4],[2],[3],[5],[6],[7]]
=> 110111 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 3 + 1
[[1,3],[2],[4],[5],[6],[7]]
=> 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 3 + 1
[[1],[2],[3],[4],[5],[6],[7]]
=> 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
Description
The number of maximal antichains of minimal length in a poset.
The following 28 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000911The number of maximal antichains of maximal size in a poset. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001866The nesting alignments of a signed permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000656The number of cuts of a poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001423The number of distinct cubes in a binary word. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000643The size of the largest orbit of antichains under Panyushev complementation. St000327The number of cover relations in a poset. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001408The number of maximal entries in a semistandard tableau. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001407The number of minimal entries in a semistandard tableau. St001510The number of self-evacuating linear extensions of a finite poset. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001927Sparre Andersen's number of positives of a signed permutation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset.