searching the database
Your data matches 38 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000771
Mp00107: Semistandard tableaux —catabolism⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,1,1,3],[2]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2,3],[2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2,3],[2]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,3],[2,2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,1],[2],[3]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2],[2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2],[2],[3]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1],[2,2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,6],[2]]
=> [[1,2],[6]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,6],[3]]
=> [[1,3],[6]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001820
Mp00107: Semistandard tableaux —catabolism⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001820: Lattices ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 40%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001820: Lattices ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 40%
Values
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2
[[1,1,1,3],[2]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,2,3],[2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,2,3],[2]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,3],[2,2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,1],[2],[3]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,2],[2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,2],[2],[3]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1],[2,2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,6],[2]]
=> [[1,2],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,6],[3]]
=> [[1,3],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,6],[4]]
=> [[1,4],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,6],[5]]
=> [[1,5],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,6],[3]]
=> [[2,3],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,6],[4]]
=> [[2,4],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,6],[5]]
=> [[2,5],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[3,6],[4]]
=> [[3,4],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[3,6],[5]]
=> [[3,5],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[4,6],[5]]
=> [[4,5],[6]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,1,1,4],[2]]
=> [[1,1,1,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,1,4],[3]]
=> [[1,1,1,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,2,4],[2]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,2,4],[3]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,3,4],[3]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,2,4],[2]]
=> [[1,2,2,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,2,4],[3]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,3,4],[3]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,3,3,4],[3]]
=> [[1,3,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,2,2,4],[3]]
=> [[2,2,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,2,3,4],[3]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,3,3,4],[3]]
=> [[2,3,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,4],[2,2]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,4],[2,3]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,4],[3,3]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,4],[2,3]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,4],[3,3]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,2,4],[3,3]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,1],[2],[4]]
=> [[1,1,1,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,1],[3],[4]]
=> [[1,1,1,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,2],[2],[4]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,2],[3],[4]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1,4],[2],[3]]
=> [[1,1,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,1,3],[3],[4]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,2],[2],[4]]
=> [[1,2,2,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,2],[3],[4]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2,4],[2],[3]]
=> [[1,2,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,2,3],[3],[4]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,3,4],[2],[3]]
=> [[1,2,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 1
[[1,3,3],[3],[4]]
=> [[1,3,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,2,2],[3],[4]]
=> [[2,2,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,2,3],[3],[4]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,3,3],[3],[4]]
=> [[2,3,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1],[2,2],[4]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1],[2,3],[4]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1],[3,3],[4]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2],[2,3],[4]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,2],[3,3],[4]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[2,2],[3,3],[4]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 3
[[1,1],[2],[3],[4]]
=> [[1,1,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,2],[2],[3],[4]]
=> [[1,2,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,3],[2],[3],[4]]
=> [[1,2,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 1
Description
The size of the image of the pop stack sorting operator.
The pop stack sorting operator is defined by $Pop_L^\downarrow(x) = x\wedge\bigwedge\{y\in L\mid y\lessdot x\}$. This statistic returns the size of $Pop_L^\downarrow(L)\}$.
Matching statistic: St000906
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000906: Posets ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 80%
Mp00209: Permutations —pattern poset⟶ Posets
St000906: Posets ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 80%
Values
[[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1],[2],[3]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[1,4],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1],[2],[4]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[1],[3],[4]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[2],[3],[4]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[1,1,3],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[1,2,3],[2]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,1],[2],[3]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,2],[2],[3]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[1,5],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[2,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[2,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[3,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1],[2],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[1],[3],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[1],[4],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[2],[3],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[2],[4],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[3],[4],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[1,1,4],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[1,1,4],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[1,2,4],[2]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,2,4],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[1,3,4],[3]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[2,2,4],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[2,3,4],[3]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,1],[2],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,1],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,2],[2],[4]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[1,3],[3],[4]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[2,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[2,3],[3],[4]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 4 = 2 + 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[[1,1,1,3],[2]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,1,2,3],[2]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,2,2,3],[2]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 2
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 2
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 2
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 2
[[1,6],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1,6],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1,6],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[2,6],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[2,6],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[2,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[3,6],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[3,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[4,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[1,1,1,4],[2]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,1,1,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,1,2,4],[2]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,1,2,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,1,3,4],[3]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,2,2,4],[2]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 2
[[1,2,2,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,2,3,4],[3]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[1,3,3,4],[3]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 2
[[2,2,2,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[2,2,3,4],[3]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 2
[[2,3,3,4],[3]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 2
[[1,1,4],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 2
[[1,1,4],[2,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 2
[[1,1,4],[3,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 2
[[1,2,4],[2,3]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 + 2
[[1,2,4],[3,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 2
[[2,2,4],[3,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 2
[[1,1,1],[2],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 2
[[1,1,1],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 2
[[1,1,2],[2],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 2
[[1,1,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 2
[[1,1,4],[2],[3]]
=> [4,3,1,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 2
[[1,1,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 2
[[1,2,2],[2],[4]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 2
[[1,2,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 2
[[1,2,4],[2],[3]]
=> [4,2,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 2 + 2
[[1,2,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 2
[[1,3,4],[2],[3]]
=> [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 2
[[1,3,3],[3],[4]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 2
[[2,2,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 2
[[2,2,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 2
[[2,3,3],[3],[4]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 2
[[1,1],[2,2],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 2
[[1,1],[2,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 2
[[1,1],[3,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 2
[[1,2],[2,3],[4]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 + 2
[[1,2],[3,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 2
[[2,2],[3,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 2
[[1,1],[2],[3],[4]]
=> [5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 2
[[1,2],[2],[3],[4]]
=> [5,4,2,1,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 2
[[1,3],[2],[3],[4]]
=> [5,3,2,1,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 2
Description
The length of the shortest maximal chain in a poset.
Matching statistic: St000643
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000643: Posets ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 80%
Mp00209: Permutations —pattern poset⟶ Posets
St000643: Posets ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 80%
Values
[[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1],[2],[3]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[1,4],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1],[2],[4]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[1],[3],[4]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[2],[3],[4]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[1,1,3],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[1,2,3],[2]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,1],[2],[3]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,2],[2],[3]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[1,5],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[2,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[2,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[3,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1],[2],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[1],[3],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[1],[4],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[2],[3],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[2],[4],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[3],[4],[5]]
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 4 = 1 + 3
[[1,1,4],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[1,1,4],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[1,2,4],[2]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,2,4],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[1,3,4],[3]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[2,2,4],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[2,3,4],[3]]
=> [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,1],[2],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,1],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,2],[2],[4]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[1,3],[3],[4]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[2,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 2 + 3
[[2,3],[3],[4]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 5 = 2 + 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 5 = 2 + 3
[[1,1,1,3],[2]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,1,2,3],[2]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,2,2,3],[2]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 3
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 3
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 3
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 3
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 3
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 3
[[1,6],[2]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1,6],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1,6],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[2,6],[3]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[2,6],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[2,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[3,6],[4]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[3,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[4,6],[5]]
=> [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
[[1,1,1,4],[2]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,1,1,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,1,2,4],[2]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,1,2,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,1,3,4],[3]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,2,2,4],[2]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 3
[[1,2,2,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,2,3,4],[3]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[1,3,3,4],[3]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 3
[[2,2,2,4],[3]]
=> [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[2,2,3,4],[3]]
=> [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 3
[[2,3,3,4],[3]]
=> [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 3
[[1,1,4],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 3
[[1,1,4],[2,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 3
[[1,1,4],[3,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 3
[[1,2,4],[2,3]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 + 3
[[1,2,4],[3,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 3
[[2,2,4],[3,3]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 3 + 3
[[1,1,1],[2],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 3
[[1,1,1],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 3
[[1,1,2],[2],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 3
[[1,1,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 3
[[1,1,4],[2],[3]]
=> [4,3,1,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 3
[[1,1,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 3
[[1,2,2],[2],[4]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 3
[[1,2,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 3
[[1,2,4],[2],[3]]
=> [4,2,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 2 + 3
[[1,2,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 3
[[1,3,4],[2],[3]]
=> [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 3
[[1,3,3],[3],[4]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 3
[[2,2,2],[3],[4]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 + 3
[[2,2,3],[3],[4]]
=> [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 3
[[2,3,3],[3],[4]]
=> [5,2,1,3,4] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 3
[[1,1],[2,2],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 3
[[1,1],[2,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 3
[[1,1],[3,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 3
[[1,2],[2,3],[4]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 + 3
[[1,2],[3,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 3
[[2,2],[3,3],[4]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 3
[[1,1],[2],[3],[4]]
=> [5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 3
[[1,2],[2],[3],[4]]
=> [5,4,2,1,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 3
[[1,3],[2],[3],[4]]
=> [5,3,2,1,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 3
Description
The size of the largest orbit of antichains under Panyushev complementation.
Matching statistic: St001207
(load all 23 compositions to match this statistic)
(load all 23 compositions to match this statistic)
Mp00107: Semistandard tableaux —catabolism⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Values
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => 2 = 1 + 1
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => 2 = 1 + 1
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => 2 = 1 + 1
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => 2 = 1 + 1
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => 2 = 1 + 1
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => 2 = 1 + 1
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => 2 = 1 + 1
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => 2 = 1 + 1
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => 2 = 1 + 1
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => 2 = 1 + 1
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => 2 = 1 + 1
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => 2 = 1 + 1
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => 2 = 1 + 1
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => 2 = 1 + 1
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => 2 = 1 + 1
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => 2 = 1 + 1
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => 2 = 1 + 1
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => 2 = 1 + 1
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => 2 = 1 + 1
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => 2 = 1 + 1
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 3 = 2 + 1
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => 3 = 2 + 1
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 3 = 2 + 1
[[1,1,1,3],[2]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,2,3],[2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,2,3],[2]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,3],[2,2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,1],[2],[3]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,2],[2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,2],[2],[3]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1],[2,2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,6],[2]]
=> [[1,2],[6]]
=> [3,1,2] => 2 = 1 + 1
[[1,6],[3]]
=> [[1,3],[6]]
=> [3,1,2] => 2 = 1 + 1
[[1,6],[4]]
=> [[1,4],[6]]
=> [3,1,2] => 2 = 1 + 1
[[1,6],[5]]
=> [[1,5],[6]]
=> [3,1,2] => 2 = 1 + 1
[[2,6],[3]]
=> [[2,3],[6]]
=> [3,1,2] => 2 = 1 + 1
[[2,6],[4]]
=> [[2,4],[6]]
=> [3,1,2] => 2 = 1 + 1
[[2,6],[5]]
=> [[2,5],[6]]
=> [3,1,2] => 2 = 1 + 1
[[3,6],[4]]
=> [[3,4],[6]]
=> [3,1,2] => 2 = 1 + 1
[[3,6],[5]]
=> [[3,5],[6]]
=> [3,1,2] => 2 = 1 + 1
[[4,6],[5]]
=> [[4,5],[6]]
=> [3,1,2] => 2 = 1 + 1
[[1,1,1,4],[2]]
=> [[1,1,1,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,1,4],[3]]
=> [[1,1,1,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,2,4],[2]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,2,4],[3]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,3,4],[3]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,2,4],[2]]
=> [[1,2,2,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,2,4],[3]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,3,4],[3]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,3,3,4],[3]]
=> [[1,3,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,2,2,4],[3]]
=> [[2,2,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,2,3,4],[3]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,3,3,4],[3]]
=> [[2,3,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,4],[2,2]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,4],[2,3]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,4],[3,3]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,4],[2,3]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,4],[3,3]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,2,4],[3,3]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,1],[2],[4]]
=> [[1,1,1,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,1],[3],[4]]
=> [[1,1,1,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,2],[2],[4]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,2],[3],[4]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1,4],[2],[3]]
=> [[1,1,2],[3],[4]]
=> [5,4,1,2,3] => ? = 2 + 1
[[1,1,3],[3],[4]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,2],[2],[4]]
=> [[1,2,2,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,2],[3],[4]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2,4],[2],[3]]
=> [[1,2,2],[3],[4]]
=> [5,4,1,2,3] => ? = 2 + 1
[[1,2,3],[3],[4]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,3,4],[2],[3]]
=> [[1,2,3],[3],[4]]
=> [5,3,1,2,4] => ? = 1 + 1
[[1,3,3],[3],[4]]
=> [[1,3,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,2,2],[3],[4]]
=> [[2,2,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,2,3],[3],[4]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,3,3],[3],[4]]
=> [[2,3,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1],[2,2],[4]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1],[2,3],[4]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1],[3,3],[4]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2],[2,3],[4]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,2],[3,3],[4]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[2,2],[3,3],[4]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => ? = 3 + 1
[[1,1],[2],[3],[4]]
=> [[1,1,2],[3],[4]]
=> [5,4,1,2,3] => ? = 2 + 1
[[1,2],[2],[3],[4]]
=> [[1,2,2],[3],[4]]
=> [5,4,1,2,3] => ? = 2 + 1
[[1,3],[2],[3],[4]]
=> [[1,2,3],[3],[4]]
=> [5,3,1,2,4] => ? = 1 + 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St001927
(load all 33 compositions to match this statistic)
(load all 33 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001927: Signed permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001927: Signed permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Values
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[1,4],[2]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1,4],[3]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[2,4],[3]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[1,1,3],[2]]
=> [3,1,2,4] => [3,1,2,4] => 4 = 2 + 2
[[1,2,3],[2]]
=> [2,1,3,4] => [2,1,3,4] => 4 = 2 + 2
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,3,1,2] => 4 = 2 + 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [4,2,1,3] => 4 = 2 + 2
[[1,5],[2]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1,5],[3]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1,5],[4]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[2,5],[3]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[2,5],[4]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[3,5],[4]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => 3 = 1 + 2
[[1,1,4],[2]]
=> [3,1,2,4] => [3,1,2,4] => 4 = 2 + 2
[[1,1,4],[3]]
=> [3,1,2,4] => [3,1,2,4] => 4 = 2 + 2
[[1,2,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => 4 = 2 + 2
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1,2,4] => 4 = 2 + 2
[[1,3,4],[3]]
=> [2,1,3,4] => [2,1,3,4] => 4 = 2 + 2
[[2,2,4],[3]]
=> [3,1,2,4] => [3,1,2,4] => 4 = 2 + 2
[[2,3,4],[3]]
=> [2,1,3,4] => [2,1,3,4] => 4 = 2 + 2
[[1,1],[2],[4]]
=> [4,3,1,2] => [4,3,1,2] => 4 = 2 + 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => 4 = 2 + 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [4,2,1,3] => 4 = 2 + 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => 4 = 2 + 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => 4 = 2 + 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [4,2,1,3] => 4 = 2 + 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => 4 = 2 + 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [4,2,1,3] => 4 = 2 + 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => 4 = 2 + 2
[[1,1,1,3],[2]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 3 + 2
[[1,1,2,3],[2]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ? = 3 + 2
[[1,2,2,3],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ? = 3 + 2
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 3 + 2
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [5,4,1,2,3] => ? = 3 + 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [5,3,1,2,4] => ? = 3 + 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [5,2,1,3,4] => ? = 3 + 2
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ? = 3 + 2
[[1,6],[2]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1,6],[3]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1,6],[4]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1,6],[5]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[2,6],[3]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[2,6],[4]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[2,6],[5]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[3,6],[4]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[3,6],[5]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[4,6],[5]]
=> [2,1,3] => [2,1,3] => 3 = 1 + 2
[[1,1,1,4],[2]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 3 + 2
[[1,1,1,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 3 + 2
[[1,1,2,4],[2]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ? = 3 + 2
[[1,1,2,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 3 + 2
[[1,1,3,4],[3]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ? = 3 + 2
[[1,2,2,4],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ? = 3 + 2
[[1,2,2,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 3 + 2
[[1,2,3,4],[3]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ? = 3 + 2
[[1,3,3,4],[3]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ? = 3 + 2
[[2,2,2,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 3 + 2
[[2,2,3,4],[3]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ? = 3 + 2
[[2,3,3,4],[3]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ? = 3 + 2
[[1,1,4],[2,2]]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 3 + 2
[[1,1,4],[2,3]]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 3 + 2
[[1,1,4],[3,3]]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 3 + 2
[[1,2,4],[2,3]]
=> [2,4,1,3,5] => [2,4,1,3,5] => ? = 3 + 2
[[1,2,4],[3,3]]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 3 + 2
[[2,2,4],[3,3]]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 3 + 2
[[1,1,1],[2],[4]]
=> [5,4,1,2,3] => [5,4,1,2,3] => ? = 3 + 2
[[1,1,1],[3],[4]]
=> [5,4,1,2,3] => [5,4,1,2,3] => ? = 3 + 2
[[1,1,2],[2],[4]]
=> [5,3,1,2,4] => [5,3,1,2,4] => ? = 3 + 2
[[1,1,2],[3],[4]]
=> [5,4,1,2,3] => [5,4,1,2,3] => ? = 3 + 2
[[1,1,4],[2],[3]]
=> [4,3,1,2,5] => [4,3,1,2,5] => ? = 2 + 2
[[1,1,3],[3],[4]]
=> [5,3,1,2,4] => [5,3,1,2,4] => ? = 3 + 2
[[1,2,2],[2],[4]]
=> [5,2,1,3,4] => [5,2,1,3,4] => ? = 3 + 2
[[1,2,2],[3],[4]]
=> [5,4,1,2,3] => [5,4,1,2,3] => ? = 3 + 2
[[1,2,4],[2],[3]]
=> [4,2,1,3,5] => [4,2,1,3,5] => ? = 2 + 2
[[1,2,3],[3],[4]]
=> [5,3,1,2,4] => [5,3,1,2,4] => ? = 3 + 2
[[1,3,4],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => ? = 1 + 2
[[1,3,3],[3],[4]]
=> [5,2,1,3,4] => [5,2,1,3,4] => ? = 3 + 2
[[2,2,2],[3],[4]]
=> [5,4,1,2,3] => [5,4,1,2,3] => ? = 3 + 2
[[2,2,3],[3],[4]]
=> [5,3,1,2,4] => [5,3,1,2,4] => ? = 3 + 2
[[2,3,3],[3],[4]]
=> [5,2,1,3,4] => [5,2,1,3,4] => ? = 3 + 2
[[1,1],[2,2],[4]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ? = 3 + 2
[[1,1],[2,3],[4]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ? = 3 + 2
[[1,1],[3,3],[4]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ? = 3 + 2
[[1,2],[2,3],[4]]
=> [5,2,4,1,3] => [5,2,4,1,3] => ? = 3 + 2
[[1,2],[3,3],[4]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ? = 3 + 2
[[2,2],[3,3],[4]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ? = 3 + 2
[[1,1],[2],[3],[4]]
=> [5,4,3,1,2] => [5,4,3,1,2] => ? = 2 + 2
[[1,2],[2],[3],[4]]
=> [5,4,2,1,3] => [5,4,2,1,3] => ? = 2 + 2
[[1,3],[2],[3],[4]]
=> [5,3,2,1,4] => [5,3,2,1,4] => ? = 1 + 2
Description
Sparre Andersen's number of positives of a signed permutation.
For $\pi$ a signed permutation of length $n$, first create the tuple $x = (x_1, \dots, x_n)$, where $x_i = c_{|\pi_1|} \operatorname{sgn}(\pi_{|\pi_1|}) + \cdots + c_{|\pi_i|} \operatorname{sgn}(\pi_{|\pi_i|})$ and $(c_1, \dots ,c_n) = (1, 2, \dots, 2^{n-1})$. The actual value of the c-tuple for Andersen's statistic does not matter so long as no sums or differences of any subset of the $c_i$'s is zero. The choice of powers of $2$ is just a convenient choice.
This returns the number of strictly positive values in the $x$-tuple. This is related to the ''discrete arcsin distribution''. The number of signed permutations with value equal to $k$ is given by $\binom{2k}{k} \binom{2n-2k}{n-k} \frac{n!}{2^n}$. This statistic is equidistributed with Sparre Andersen's `Position of Maximum' statistic.
Matching statistic: St001583
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00107: Semistandard tableaux —catabolism⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St001583: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St001583: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Values
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => [3,1,2] => 1
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => [3,1,2] => 1
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => [3,1,2] => 1
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => [3,1,2] => 1
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => [3,1,2] => 1
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => [3,1,2] => 1
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => [3,1,2] => 1
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => [3,1,2] => 1
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => [3,1,2] => 1
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => [3,1,2] => 1
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => [3,1,2] => 1
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => [3,1,2] => 1
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => [3,1,2] => 1
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => [3,1,2] => 1
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => [3,1,2] => 1
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => [3,1,2] => 1
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => [3,1,2] => 1
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => [3,1,2] => 1
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => [3,1,2] => 1
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => [3,1,2] => 1
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [4,1,3,2] => 2
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => [3,4,1,2] => 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [4,1,3,2] => 2
[[1,1,1,3],[2]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,2,3],[2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,2,3],[2]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,3],[2,2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,1],[2],[3]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,2],[2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,2],[2],[3]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1],[2,2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,6],[2]]
=> [[1,2],[6]]
=> [3,1,2] => [3,1,2] => 1
[[1,6],[3]]
=> [[1,3],[6]]
=> [3,1,2] => [3,1,2] => 1
[[1,6],[4]]
=> [[1,4],[6]]
=> [3,1,2] => [3,1,2] => 1
[[1,6],[5]]
=> [[1,5],[6]]
=> [3,1,2] => [3,1,2] => 1
[[2,6],[3]]
=> [[2,3],[6]]
=> [3,1,2] => [3,1,2] => 1
[[2,6],[4]]
=> [[2,4],[6]]
=> [3,1,2] => [3,1,2] => 1
[[2,6],[5]]
=> [[2,5],[6]]
=> [3,1,2] => [3,1,2] => 1
[[3,6],[4]]
=> [[3,4],[6]]
=> [3,1,2] => [3,1,2] => 1
[[3,6],[5]]
=> [[3,5],[6]]
=> [3,1,2] => [3,1,2] => 1
[[4,6],[5]]
=> [[4,5],[6]]
=> [3,1,2] => [3,1,2] => 1
[[1,1,1,4],[2]]
=> [[1,1,1,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,1,4],[3]]
=> [[1,1,1,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,2,4],[2]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,2,4],[3]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,3,4],[3]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,2,4],[2]]
=> [[1,2,2,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,2,4],[3]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,3,4],[3]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,3,3,4],[3]]
=> [[1,3,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,2,2,4],[3]]
=> [[2,2,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,2,3,4],[3]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,3,3,4],[3]]
=> [[2,3,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,4],[2,2]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,4],[2,3]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,4],[3,3]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,4],[2,3]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,4],[3,3]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,2,4],[3,3]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,1],[2],[4]]
=> [[1,1,1,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,1],[3],[4]]
=> [[1,1,1,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,2],[2],[4]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,2],[3],[4]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1,4],[2],[3]]
=> [[1,1,2],[3],[4]]
=> [5,4,1,2,3] => [4,5,1,3,2] => ? = 2
[[1,1,3],[3],[4]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,2],[2],[4]]
=> [[1,2,2,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,2],[3],[4]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2,4],[2],[3]]
=> [[1,2,2],[3],[4]]
=> [5,4,1,2,3] => [4,5,1,3,2] => ? = 2
[[1,2,3],[3],[4]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,3,4],[2],[3]]
=> [[1,2,3],[3],[4]]
=> [5,3,1,2,4] => [4,5,3,1,2] => ? = 1
[[1,3,3],[3],[4]]
=> [[1,3,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,2,2],[3],[4]]
=> [[2,2,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,2,3],[3],[4]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,3,3],[3],[4]]
=> [[2,3,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1],[2,2],[4]]
=> [[1,1,2,2],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1],[2,3],[4]]
=> [[1,1,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1],[3,3],[4]]
=> [[1,1,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2],[2,3],[4]]
=> [[1,2,2,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,2],[3,3],[4]]
=> [[1,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[2,2],[3,3],[4]]
=> [[2,2,3,3],[4]]
=> [5,1,2,3,4] => [3,4,5,1,2] => ? = 3
[[1,1],[2],[3],[4]]
=> [[1,1,2],[3],[4]]
=> [5,4,1,2,3] => [4,5,1,3,2] => ? = 2
[[1,2],[2],[3],[4]]
=> [[1,2,2],[3],[4]]
=> [5,4,1,2,3] => [4,5,1,3,2] => ? = 2
[[1,3],[2],[3],[4]]
=> [[1,2,3],[3],[4]]
=> [5,3,1,2,4] => [4,5,3,1,2] => ? = 1
Description
The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.
Matching statistic: St001095
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001095: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001095: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Values
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,4],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,4],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2,4],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1],[2],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,1,3],[2]]
=> [3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,2,3],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,5],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,5],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,5],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2,5],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2,5],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[3,5],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1],[2],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[3],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,1,4],[2]]
=> [3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,1,4],[3]]
=> [3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,2,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,2,4],[3]]
=> [3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,3,4],[3]]
=> [2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[2,2,4],[3]]
=> [3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[2,3,4],[3]]
=> [2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,1],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[2,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 2 - 1
[[1,1,1,3],[2]]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,1,2,3],[2]]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 - 1
[[1,2,2,3],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[[1,6],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,6],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,6],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2,6],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2,6],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[2,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[3,6],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[3,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[4,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[1,1,1,4],[2]]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,1,1,4],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,1,2,4],[2]]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 - 1
[[1,1,2,4],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,1,3,4],[3]]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 - 1
[[1,2,2,4],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,2,2,4],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,2,3,4],[3]]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 - 1
[[1,3,3,4],[3]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[2,2,2,4],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[2,2,3,4],[3]]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 - 1
[[2,3,3,4],[3]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[[1,1,4],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,4],[2,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,4],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,2,4],[2,3]]
=> [2,4,1,3,5] => [4,3,1,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[[1,2,4],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[2,2,4],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,1],[2],[4]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,1],[3],[4]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,2],[2],[4]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[1,1,2],[3],[4]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,1,4],[2],[3]]
=> [4,3,1,2,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 - 1
[[1,1,3],[3],[4]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[1,2,2],[2],[4]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[1,2,2],[3],[4]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[1,2,4],[2],[3]]
=> [4,2,1,3,5] => [2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 - 1
[[1,2,3],[3],[4]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[1,3,4],[2],[3]]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 - 1
[[1,3,3],[3],[4]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[2,2,2],[3],[4]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 3 - 1
[[2,2,3],[3],[4]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[2,3,3],[3],[4]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 - 1
[[1,1],[2,2],[4]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[[1,1],[2,3],[4]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[[1,1],[3,3],[4]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[[1,2],[2,3],[4]]
=> [5,2,4,1,3] => [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 - 1
[[1,2],[3,3],[4]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[[2,2],[3,3],[4]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[[1,1],[2],[3],[4]]
=> [5,4,3,1,2] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 2 - 1
[[1,2],[2],[3],[4]]
=> [5,4,2,1,3] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2 - 1
[[1,3],[2],[3],[4]]
=> [5,3,2,1,4] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
Description
The number of non-isomorphic posets with precisely one further covering relation.
Matching statistic: St001926
(load all 37 compositions to match this statistic)
(load all 37 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001926: Signed permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Mp00252: Permutations —restriction⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001926: Signed permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Values
[[1,3],[2]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1],[2],[3]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[1,4],[2]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1,4],[3]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[2,4],[3]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1],[2],[4]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[1],[3],[4]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[2],[3],[4]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[1,1,3],[2]]
=> [3,1,2,4] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,2,3],[2]]
=> [2,1,3,4] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[1,5],[2]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1,5],[3]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1,5],[4]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[2,5],[3]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[2,5],[4]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[3,5],[4]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1],[2],[5]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[1],[3],[5]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[1],[4],[5]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[2],[3],[5]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[2],[4],[5]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[3],[4],[5]]
=> [3,2,1] => [2,1] => [2,1] => 2 = 1 + 1
[[1,1,4],[2]]
=> [3,1,2,4] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,1,4],[3]]
=> [3,1,2,4] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,2,4],[2]]
=> [2,1,3,4] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,3,4],[3]]
=> [2,1,3,4] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[2,2,4],[3]]
=> [3,1,2,4] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[2,3,4],[3]]
=> [2,1,3,4] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,1],[3],[4]]
=> [4,3,1,2] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1] => [3,2,1] => 3 = 2 + 1
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[2,2],[3],[4]]
=> [4,3,1,2] => [3,1,2] => [3,1,2] => 3 = 2 + 1
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,1,3] => [2,1,3] => 3 = 2 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,2,1] => [3,2,1] => 3 = 2 + 1
[[1,1,1,3],[2]]
=> [4,1,2,3,5] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,2,3],[2]]
=> [3,1,2,4,5] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,2,2,3],[2]]
=> [2,1,3,4,5] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,6],[2]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1,6],[3]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1,6],[4]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1,6],[5]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[2,6],[3]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[2,6],[4]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[2,6],[5]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[3,6],[4]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[3,6],[5]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[4,6],[5]]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[[1,1,1,4],[2]]
=> [4,1,2,3,5] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,1,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,2,4],[2]]
=> [3,1,2,4,5] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,1,2,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,3,4],[3]]
=> [3,1,2,4,5] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,2,2,4],[2]]
=> [2,1,3,4,5] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[1,2,2,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,2,3,4],[3]]
=> [3,1,2,4,5] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,3,3,4],[3]]
=> [2,1,3,4,5] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[2,2,2,4],[3]]
=> [4,1,2,3,5] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[2,2,3,4],[3]]
=> [3,1,2,4,5] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[2,3,3,4],[3]]
=> [2,1,3,4,5] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[1,1,4],[2,2]]
=> [3,4,1,2,5] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,1,4],[2,3]]
=> [3,4,1,2,5] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,1,4],[3,3]]
=> [3,4,1,2,5] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,2,4],[2,3]]
=> [2,4,1,3,5] => [2,4,1,3] => [2,4,1,3] => ? = 3 + 1
[[1,2,4],[3,3]]
=> [3,4,1,2,5] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[2,2,4],[3,3]]
=> [3,4,1,2,5] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,1,1],[2],[4]]
=> [5,4,1,2,3] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,1],[3],[4]]
=> [5,4,1,2,3] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,2],[2],[4]]
=> [5,3,1,2,4] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,1,2],[3],[4]]
=> [5,4,1,2,3] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,1,4],[2],[3]]
=> [4,3,1,2,5] => [4,3,1,2] => [4,3,1,2] => ? = 2 + 1
[[1,1,3],[3],[4]]
=> [5,3,1,2,4] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,2,2],[2],[4]]
=> [5,2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[1,2,2],[3],[4]]
=> [5,4,1,2,3] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[1,2,4],[2],[3]]
=> [4,2,1,3,5] => [4,2,1,3] => [4,2,1,3] => ? = 2 + 1
[[1,2,3],[3],[4]]
=> [5,3,1,2,4] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[1,3,4],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4] => [3,2,1,4] => ? = 1 + 1
[[1,3,3],[3],[4]]
=> [5,2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[2,2,2],[3],[4]]
=> [5,4,1,2,3] => [4,1,2,3] => [4,1,2,3] => ? = 3 + 1
[[2,2,3],[3],[4]]
=> [5,3,1,2,4] => [3,1,2,4] => [3,1,2,4] => ? = 3 + 1
[[2,3,3],[3],[4]]
=> [5,2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ? = 3 + 1
[[1,1],[2,2],[4]]
=> [5,3,4,1,2] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,1],[2,3],[4]]
=> [5,3,4,1,2] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,1],[3,3],[4]]
=> [5,3,4,1,2] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,2],[2,3],[4]]
=> [5,2,4,1,3] => [2,4,1,3] => [2,4,1,3] => ? = 3 + 1
[[1,2],[3,3],[4]]
=> [5,3,4,1,2] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[2,2],[3,3],[4]]
=> [5,3,4,1,2] => [3,4,1,2] => [3,4,1,2] => ? = 3 + 1
[[1,1],[2],[3],[4]]
=> [5,4,3,1,2] => [4,3,1,2] => [4,3,1,2] => ? = 2 + 1
[[1,2],[2],[3],[4]]
=> [5,4,2,1,3] => [4,2,1,3] => [4,2,1,3] => ? = 2 + 1
[[1,3],[2],[3],[4]]
=> [5,3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ? = 1 + 1
Description
Sparre Andersen's position of the maximum of a signed permutation.
For $\pi$ a signed permutation of length $n$, first create the tuple $x = (x_1, \dots, x_n)$, where $x_i = c_{|\pi_1|} \operatorname{sgn}(\pi_{|\pi_1|}) + \cdots + c_{|\pi_i|} \operatorname{sgn}(\pi_{|\pi_i|})$ and $(c_1, \dots ,c_n) = (1, 2, \dots, 2^{n-1})$. The actual value of the c-tuple for Andersen's statistic does not matter so long as no sums or differences of any subset of the $c_i$'s is zero. The choice of powers of $2$ is just a convenient choice.
This returns the largest position of the maximum value in the $x$-tuple. This is related to the ''discrete arcsine distribution''. The number of signed permutations with value equal to $k$ is given by $\binom{2k}{k} \binom{2n-2k}{n-k} \frac{n!}{2^n}$. This statistic is equidistributed with Sparre Andersen's `Number of Positives' statistic.
Matching statistic: St001877
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 60%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 60%
Values
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1,4],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1,4],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[2,4],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1,1,3],[2]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,2,3],[2]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,2],[2],[3]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[1,5],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1,5],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1,5],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[2,5],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[2,5],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[3,5],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1,1,4],[2]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,1,4],[3]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,2,4],[2]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3,4],[3]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[2,2,4],[3]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,3,4],[3]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[1,1],[2],[4]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,1],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,2],[2],[4]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,3],[3],[4]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[2,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[2,3],[3],[4]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 2 + 3
[[1,1,1,3],[2]]
=> [4,1,2,3,5] => [4,1,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 3 + 3
[[1,1,2,3],[2]]
=> [3,1,2,4,5] => [3,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 3 + 3
[[1,2,2,3],[2]]
=> [2,1,3,4,5] => [2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 + 3
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [5,4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 3 + 3
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 3 + 3
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [5,2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 + 3
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 + 3
[[1,6],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1,6],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1,6],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[2,6],[3]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[2,6],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[2,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[3,6],[4]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[3,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[4,6],[5]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 1 + 3
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 1 + 3
[[1,1,5],[2]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,1,5],[3]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,1,5],[4]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,2,5],[2]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[1,2,5],[3]]
=> [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3,5],[3]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[1,4,5],[4]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[2,3,5],[3]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[2,4,5],[4]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[3,4,5],[4]]
=> [2,1,3,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 3
[[1,1],[2],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,1],[3],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,1],[4],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,2],[2],[5]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[1,2],[3],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,5],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,2],[4],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,5],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,3],[3],[5]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[1,3],[4],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[1,5],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,4],[4],[5]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[2,2],[3],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[2,2],[4],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[2,3],[3],[5]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[2,3],[4],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[2,5],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[2,4],[4],[5]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[3,3],[4],[5]]
=> [4,3,1,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 2 + 3
[[3,4],[4],[5]]
=> [4,2,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 3
[[1],[2],[3],[5]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 2 + 3
[[1],[2],[4],[5]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 2 + 3
Description
Number of indecomposable injective modules with projective dimension 2.
The following 28 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001875The number of simple modules with projective dimension at most 1. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001722The number of minimal chains with small intervals between a binary word and the top element. St000084The number of subtrees. St000328The maximum number of child nodes in a tree. St000907The number of maximal antichains of minimal length in a poset. St001301The first Betti number of the order complex associated with the poset. St001857The number of edges in the reduced word graph of a signed permutation. St001964The interval resolution global dimension of a poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000782The indicator function of whether a given perfect matching is an L & P matching. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St001890The maximum magnitude of the Möbius function of a poset. St001713The difference of the first and last value in the first row of the Gelfand-Tsetlin pattern. St000327The number of cover relations in a poset. St000635The number of strictly order preserving maps of a poset into itself. St001168The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000075The orbit size of a standard tableau under promotion. St001816Eigenvalues of the top-to-random operator acting on a simple module.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!