searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000771
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 1
[[1,2]]
=> [2] => [1,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2]]
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[[1,2,3,4]]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3,4],[2]]
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,3,4,5]]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,4,5],[2]]
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,4,5],[3]]
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3,5],[4]]
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,5],[2,4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,5],[3,4]]
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4,5]]
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,5],[2],[4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,5],[3],[4]]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2,5],[4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,5],[4]]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3,4,5,6],[2]]
=> [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,4,5,6],[3]]
=> [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,5,6],[4]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4,6],[5]]
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5,6],[2,4]]
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3,4]]
=> [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,4,6],[2,5]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,6],[3,5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,6],[4,5]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3],[4]]
=> [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,6],[4],[5]]
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5,6]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,5,6]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,6],[3,5],[4]]
=> [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,6],[5]]
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
Matching statistic: St000982
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000982: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000982: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => 1 => 1
[[1,2]]
=> [2] => [2] => 10 => 1
[[1,2,3]]
=> [3] => [3] => 100 => 2
[[1,3],[2]]
=> [1,2] => [2,1] => 101 => 1
[[1,2,3,4]]
=> [4] => [4] => 1000 => 3
[[1,3,4],[2]]
=> [1,3] => [3,1] => 1001 => 2
[[1,2,4],[3]]
=> [2,2] => [2,2] => 1010 => 1
[[1,2],[3,4]]
=> [2,2] => [2,2] => 1010 => 1
[[1,4],[2],[3]]
=> [1,1,2] => [2,1,1] => 1011 => 2
[[1,2,3,4,5]]
=> [5] => [5] => 10000 => 4
[[1,3,4,5],[2]]
=> [1,4] => [4,1] => 10001 => 3
[[1,2,4,5],[3]]
=> [2,3] => [3,2] => 10010 => 2
[[1,2,3,5],[4]]
=> [3,2] => [2,3] => 10100 => 2
[[1,3,5],[2,4]]
=> [1,2,2] => [2,2,1] => 10101 => 1
[[1,2,5],[3,4]]
=> [2,3] => [3,2] => 10010 => 2
[[1,2,3],[4,5]]
=> [3,2] => [2,3] => 10100 => 2
[[1,4,5],[2],[3]]
=> [1,1,3] => [3,1,1] => 10011 => 2
[[1,3,5],[2],[4]]
=> [1,2,2] => [2,2,1] => 10101 => 1
[[1,2,5],[3],[4]]
=> [2,1,2] => [2,1,2] => 10110 => 2
[[1,3],[2,5],[4]]
=> [1,2,2] => [2,2,1] => 10101 => 1
[[1,2],[3,5],[4]]
=> [2,1,2] => [2,1,2] => 10110 => 2
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [2,1,1,1] => 10111 => 3
[[1,2,3,4,5,6]]
=> [6] => [6] => 100000 => 5
[[1,3,4,5,6],[2]]
=> [1,5] => [5,1] => 100001 => 4
[[1,2,4,5,6],[3]]
=> [2,4] => [4,2] => 100010 => 3
[[1,2,3,5,6],[4]]
=> [3,3] => [3,3] => 100100 => 2
[[1,2,3,4,6],[5]]
=> [4,2] => [2,4] => 101000 => 3
[[1,3,5,6],[2,4]]
=> [1,2,3] => [3,2,1] => 100101 => 2
[[1,2,5,6],[3,4]]
=> [2,4] => [4,2] => 100010 => 3
[[1,3,4,6],[2,5]]
=> [1,3,2] => [2,3,1] => 101001 => 2
[[1,2,4,6],[3,5]]
=> [2,2,2] => [2,2,2] => 101010 => 1
[[1,2,3,6],[4,5]]
=> [3,3] => [3,3] => 100100 => 2
[[1,2,3,4],[5,6]]
=> [4,2] => [2,4] => 101000 => 3
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [4,1,1] => 100011 => 3
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [3,2,1] => 100101 => 2
[[1,2,5,6],[3],[4]]
=> [2,1,3] => [3,1,2] => 100110 => 2
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [2,3,1] => 101001 => 2
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [2,2,2] => 101010 => 1
[[1,2,3,6],[4],[5]]
=> [3,1,2] => [2,1,3] => 101100 => 2
[[1,3,4],[2,5,6]]
=> [1,3,2] => [2,3,1] => 101001 => 2
[[1,2,4],[3,5,6]]
=> [2,2,2] => [2,2,2] => 101010 => 1
[[1,2,3],[4,5,6]]
=> [3,3] => [3,3] => 100100 => 2
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [2,2,1,1] => 101011 => 2
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [3,2,1] => 100101 => 2
[[1,2,6],[3,5],[4]]
=> [2,1,3] => [3,1,2] => 100110 => 2
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [2,1,2,1] => 101101 => 2
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [2,2,2] => 101010 => 1
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [2,3,1] => 101001 => 2
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [2,2,2] => 101010 => 1
[[1,2,3],[4,6],[5]]
=> [3,1,2] => [2,1,3] => 101100 => 2
Description
The length of the longest constant subword.
Matching statistic: St000774
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000774: Graphs ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000774: Graphs ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 1
[[1,2]]
=> [2] => [1,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2]]
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[[1,2,3,4]]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3,4],[2]]
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,3,4,5]]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,4,5],[2]]
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,4,5],[3]]
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3,5],[4]]
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,5],[2,4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,5],[3,4]]
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4,5]]
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,5],[2],[4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,5],[3],[4]]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2,5],[4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,5],[4]]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3,4,5,6],[2]]
=> [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,4,5,6],[3]]
=> [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,5,6],[4]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4,6],[5]]
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5,6],[2,4]]
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3,4]]
=> [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,4,6],[2,5]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,6],[3,5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,6],[4,5]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3],[4]]
=> [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,6],[4],[5]]
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5,6]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,5,6]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,6],[3,5],[4]]
=> [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,6],[5]]
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,6,7],[4],[5]]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,2,3,7],[4,6],[5]]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,2,3],[4,6,7],[5]]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
Description
The maximal multiplicity of a Laplacian eigenvalue in a graph.
Matching statistic: St000307
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000307: Posets ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 50%
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000307: Posets ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> => => ?
=> ? = 1
[[1,2]]
=> 0 => 0 => ([(0,1)],2)
=> 1
[[1,2,3]]
=> 00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[1,3],[2]]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 1
[[1,2,3,4]]
=> 000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3
[[1,3,4],[2]]
=> 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,2,4],[3]]
=> 010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 1
[[1,2],[3,4]]
=> 010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 1
[[1,4],[2],[3]]
=> 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,2,3,4,5]]
=> 0000 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4
[[1,3,4,5],[2]]
=> 1000 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
[[1,2,4,5],[3]]
=> 0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[[1,2,3,5],[4]]
=> 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[[1,3,5],[2,4]]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[1,2,5],[3,4]]
=> 0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[[1,2,3],[4,5]]
=> 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[[1,4,5],[2],[3]]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2
[[1,3,5],[2],[4]]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[1,2,5],[3],[4]]
=> 0110 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[[1,3],[2,5],[4]]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[1,2],[3,5],[4]]
=> 0110 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[[1,5],[2],[3],[4]]
=> 1110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
[[1,2,3,4,5,6]]
=> 00000 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5
[[1,3,4,5,6],[2]]
=> 10000 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
[[1,2,4,5,6],[3]]
=> 01000 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
[[1,2,3,5,6],[4]]
=> 00100 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
[[1,2,3,4,6],[5]]
=> 00010 => 01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
[[1,3,5,6],[2,4]]
=> 10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[[1,2,5,6],[3,4]]
=> 01000 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
[[1,3,4,6],[2,5]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,4,6],[3,5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[1,2,3,6],[4,5]]
=> 00100 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
[[1,2,3,4],[5,6]]
=> 00010 => 01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
[[1,4,5,6],[2],[3]]
=> 11000 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
[[1,3,5,6],[2],[4]]
=> 10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[[1,2,5,6],[3],[4]]
=> 01100 => 00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[[1,3,4,6],[2],[5]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,4,6],[3],[5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[1,2,3,6],[4],[5]]
=> 00110 => 01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[[1,3,4],[2,5,6]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,4],[3,5,6]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[1,2,3],[4,5,6]]
=> 00100 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
[[1,4,6],[2,5],[3]]
=> 11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[[1,3,6],[2,5],[4]]
=> 10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[[1,2,6],[3,5],[4]]
=> 01100 => 00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[[1,3,6],[2,4],[5]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,6],[3,4],[5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[1,3,4],[2,6],[5]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,4],[3,6],[5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[1,2,3],[4,6],[5]]
=> 00110 => 01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[[1,5,6],[2],[3],[4]]
=> 11100 => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
[[1,4,6],[2],[3],[5]]
=> 11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[[1,3,6],[2],[4],[5]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,6],[3],[4],[5]]
=> 01110 => 00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3
[[1,4],[2,5],[3,6]]
=> 11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
[[1,3],[2,4],[5,6]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2],[3,4],[5,6]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[1,4],[2,6],[3],[5]]
=> 11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[[1,3],[2,6],[4],[5]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2],[3,6],[4],[5]]
=> 01110 => 00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3
[[1,6],[2],[3],[4],[5]]
=> 11110 => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
[[1,2,3,4,5,6,7]]
=> 000000 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 6
[[1,3,4,5,6,7],[2]]
=> 100000 => 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5
[[1,2,4,5,6,7],[3]]
=> 010000 => 000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4
[[1,2,3,5,6,7],[4]]
=> 001000 => 011101 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3
[[1,2,3,4,6,7],[5]]
=> 000100 => 010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3
[[1,2,3,4,5,7],[6]]
=> 000010 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4
[[1,3,5,7],[2,4,6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,5,7],[2,6],[4]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,5,7],[2,4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,5,7],[2],[4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,5],[2,6,7],[4]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,5],[2,4,7],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,7],[2,5],[4,6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,5],[2,4],[6,7]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,7],[2,5],[4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3,5],[2,7],[4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[1,3],[2,5],[4,7],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset P. It sends an order ideal I to the order ideal generated by the minimal antichain of P∖I.
Matching statistic: St000632
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000632: Posets ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 50%
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000632: Posets ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> => => ?
=> ? = 1 - 1
[[1,2]]
=> 0 => 0 => ([(0,1)],2)
=> 0 = 1 - 1
[[1,2,3]]
=> 00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[1,3],[2]]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[1,2,3,4]]
=> 000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
[[1,3,4],[2]]
=> 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,2,4],[3]]
=> 010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,2],[3,4]]
=> 010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,4],[2],[3]]
=> 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[1,2,3,4,5]]
=> 0000 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4 - 1
[[1,3,4,5],[2]]
=> 1000 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
[[1,2,4,5],[3]]
=> 0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[[1,2,3,5],[4]]
=> 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[[1,3,5],[2,4]]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[1,2,5],[3,4]]
=> 0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[[1,2,3],[4,5]]
=> 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[[1,4,5],[2],[3]]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 - 1
[[1,3,5],[2],[4]]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[1,2,5],[3],[4]]
=> 0110 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 - 1
[[1,3],[2,5],[4]]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[1,2],[3,5],[4]]
=> 0110 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 - 1
[[1,5],[2],[3],[4]]
=> 1110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
[[1,2,3,4,5,6]]
=> 00000 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5 - 1
[[1,3,4,5,6],[2]]
=> 10000 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
[[1,2,4,5,6],[3]]
=> 01000 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
[[1,2,3,5,6],[4]]
=> 00100 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2 - 1
[[1,2,3,4,6],[5]]
=> 00010 => 01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
[[1,3,5,6],[2,4]]
=> 10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[[1,2,5,6],[3,4]]
=> 01000 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
[[1,3,4,6],[2,5]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2,4,6],[3,5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[[1,2,3,6],[4,5]]
=> 00100 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2 - 1
[[1,2,3,4],[5,6]]
=> 00010 => 01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
[[1,4,5,6],[2],[3]]
=> 11000 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
[[1,3,5,6],[2],[4]]
=> 10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[[1,2,5,6],[3],[4]]
=> 01100 => 00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 - 1
[[1,3,4,6],[2],[5]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2,4,6],[3],[5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[[1,2,3,6],[4],[5]]
=> 00110 => 01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 - 1
[[1,3,4],[2,5,6]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2,4],[3,5,6]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[[1,2,3],[4,5,6]]
=> 00100 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2 - 1
[[1,4,6],[2,5],[3]]
=> 11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[[1,3,6],[2,5],[4]]
=> 10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[[1,2,6],[3,5],[4]]
=> 01100 => 00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 - 1
[[1,3,6],[2,4],[5]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2,6],[3,4],[5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[[1,3,4],[2,6],[5]]
=> 10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2,4],[3,6],[5]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[[1,2,3],[4,6],[5]]
=> 00110 => 01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 - 1
[[1,5,6],[2],[3],[4]]
=> 11100 => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
[[1,4,6],[2],[3],[5]]
=> 11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[[1,3,6],[2],[4],[5]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2,6],[3],[4],[5]]
=> 01110 => 00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3 - 1
[[1,4],[2,5],[3,6]]
=> 11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2 - 1
[[1,3],[2,4],[5,6]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2],[3,4],[5,6]]
=> 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[[1,4],[2,6],[3],[5]]
=> 11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[[1,3],[2,6],[4],[5]]
=> 10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[[1,2],[3,6],[4],[5]]
=> 01110 => 00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3 - 1
[[1,6],[2],[3],[4],[5]]
=> 11110 => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
[[1,2,3,4,5,6,7]]
=> 000000 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 6 - 1
[[1,3,4,5,6,7],[2]]
=> 100000 => 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5 - 1
[[1,2,4,5,6,7],[3]]
=> 010000 => 000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4 - 1
[[1,2,3,5,6,7],[4]]
=> 001000 => 011101 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3 - 1
[[1,2,3,4,6,7],[5]]
=> 000100 => 010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3 - 1
[[1,2,3,4,5,7],[6]]
=> 000010 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4 - 1
[[1,3,5,7],[2,4,6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,5,7],[2,6],[4]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,5,7],[2,4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,5,7],[2],[4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,5],[2,6,7],[4]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,5],[2,4,7],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,7],[2,5],[4,6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,5],[2,4],[6,7]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,7],[2,5],[4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3,5],[2,7],[4],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
[[1,3],[2,5],[4,7],[6]]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
Description
The jump number of the poset.
A jump in a linear extension e1,…,en of a poset P is a pair (ei,ei+1) so that ei+1 does not cover ei in P. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Matching statistic: St001566
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001566: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 67%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001566: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1,0]
=> [2,1] => 2 = 1 + 1
[[1,2]]
=> [2] => [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[1,2,3]]
=> [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,3],[2]]
=> [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[1,2,3,4]]
=> [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
[[1,3,4],[2]]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3 = 2 + 1
[[1,2,4],[3]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2 = 1 + 1
[[1,2],[3,4]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2 = 1 + 1
[[1,4],[2],[3]]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3 = 2 + 1
[[1,2,3,4,5]]
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5 = 4 + 1
[[1,3,4,5],[2]]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 4 = 3 + 1
[[1,2,4,5],[3]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 3 = 2 + 1
[[1,2,3,5],[4]]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
[[1,3,5],[2,4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 2 = 1 + 1
[[1,2,5],[3,4]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 3 = 2 + 1
[[1,2,3],[4,5]]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
[[1,4,5],[2],[3]]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 3 = 2 + 1
[[1,3,5],[2],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 2 = 1 + 1
[[1,2,5],[3],[4]]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 3 = 2 + 1
[[1,3],[2,5],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 2 = 1 + 1
[[1,2],[3,5],[4]]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 3 = 2 + 1
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 4 = 3 + 1
[[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 5 + 1
[[1,3,4,5,6],[2]]
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 4 + 1
[[1,2,4,5,6],[3]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 3 + 1
[[1,2,3,5,6],[4]]
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 2 + 1
[[1,2,3,4,6],[5]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3 + 1
[[1,3,5,6],[2,4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 2 + 1
[[1,2,5,6],[3,4]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 3 + 1
[[1,3,4,6],[2,5]]
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 2 + 1
[[1,2,4,6],[3,5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
[[1,2,3,6],[4,5]]
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 2 + 1
[[1,2,3,4],[5,6]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3 + 1
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 3 + 1
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 2 + 1
[[1,2,5,6],[3],[4]]
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 2 + 1
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 2 + 1
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
[[1,2,3,6],[4],[5]]
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
[[1,3,4],[2,5,6]]
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 2 + 1
[[1,2,4],[3,5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
[[1,2,3],[4,5,6]]
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 2 + 1
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 2 + 1
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 2 + 1
[[1,2,6],[3,5],[4]]
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 2 + 1
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 2 + 1
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 2 + 1
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
[[1,2,3],[4,6],[5]]
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ? = 3 + 1
[[1,4,6],[2],[3],[5]]
=> [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 2 + 1
[[1,3,6],[2],[4],[5]]
=> [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 2 + 1
[[1,2,6],[3],[4],[5]]
=> [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 3 + 1
[[1,4],[2,5],[3,6]]
=> [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 2 + 1
[[1,3],[2,4],[5,6]]
=> [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 2 + 1
[[1,2],[3,4],[5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
[[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 2 + 1
[[1,3],[2,6],[4],[5]]
=> [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 2 + 1
[[1,2],[3,6],[4],[5]]
=> [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 3 + 1
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 4 + 1
[[1,2,3,4,5,6,7]]
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 6 + 1
[[1,3,4,5,6,7],[2]]
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 5 + 1
[[1,2,4,5,6,7],[3]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 4 + 1
[[1,2,3,5,6,7],[4]]
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [2,3,5,1,6,7,8,4] => ? = 3 + 1
[[1,2,3,4,6,7],[5]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 3 + 1
[[1,2,3,4,5,7],[6]]
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 4 + 1
[[1,3,5,6,7],[2,4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ? = 3 + 1
[[1,2,5,6,7],[3,4]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 4 + 1
[[1,3,4,6,7],[2,5]]
=> [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,1,4,6,2,7,8,5] => ? = 2 + 1
[[1,2,4,6,7],[3,5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 2 + 1
[[1,2,3,6,7],[4,5]]
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [2,3,5,1,6,7,8,4] => ? = 3 + 1
Description
The length of the longest arithmetic progression in a permutation.
For a permutation π of length n, this is the biggest k such that there exist 1≤i1<⋯<ik≤n with
π(i2)−π(i1)=π(i3)−π(i2)=⋯=π(ik)−π(ik−1).
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!