Identifier
- St001566: Permutations ⟶ ℤ
Values
[1] => 1
[1,2] => 2
[2,1] => 2
[1,2,3] => 3
[1,3,2] => 2
[2,1,3] => 2
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 3
[1,2,3,4] => 4
[1,2,4,3] => 3
[1,3,2,4] => 2
[1,3,4,2] => 2
[1,4,2,3] => 3
[1,4,3,2] => 3
[2,1,3,4] => 3
[2,1,4,3] => 2
[2,3,1,4] => 3
[2,3,4,1] => 3
[2,4,1,3] => 2
[2,4,3,1] => 2
[3,1,2,4] => 2
[3,1,4,2] => 2
[3,2,1,4] => 3
[3,2,4,1] => 3
[3,4,1,2] => 2
[3,4,2,1] => 3
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 2
[4,2,3,1] => 2
[4,3,1,2] => 3
[4,3,2,1] => 4
[1,2,3,4,5] => 5
[1,2,3,5,4] => 4
[1,2,4,3,5] => 3
[1,2,4,5,3] => 3
[1,2,5,3,4] => 4
[1,2,5,4,3] => 3
[1,3,2,4,5] => 3
[1,3,2,5,4] => 3
[1,3,4,2,5] => 3
[1,3,4,5,2] => 3
[1,3,5,2,4] => 3
[1,3,5,4,2] => 3
[1,4,2,3,5] => 3
[1,4,2,5,3] => 3
[1,4,3,2,5] => 3
[1,4,3,5,2] => 3
[1,4,5,2,3] => 3
[1,4,5,3,2] => 3
[1,5,2,3,4] => 4
[1,5,2,4,3] => 3
[1,5,3,2,4] => 2
[1,5,3,4,2] => 2
[1,5,4,2,3] => 3
[1,5,4,3,2] => 4
[2,1,3,4,5] => 4
[2,1,3,5,4] => 3
[2,1,4,3,5] => 3
[2,1,4,5,3] => 2
[2,1,5,3,4] => 3
[2,1,5,4,3] => 3
[2,3,1,4,5] => 4
[2,3,1,5,4] => 3
[2,3,4,1,5] => 4
[2,3,4,5,1] => 4
[2,3,5,1,4] => 3
[2,3,5,4,1] => 3
[2,4,1,3,5] => 3
[2,4,1,5,3] => 2
[2,4,3,1,5] => 2
[2,4,3,5,1] => 2
[2,4,5,1,3] => 2
[2,4,5,3,1] => 3
[2,5,1,3,4] => 3
[2,5,1,4,3] => 3
[2,5,3,1,4] => 3
[2,5,3,4,1] => 3
[2,5,4,1,3] => 3
[2,5,4,3,1] => 3
[3,1,2,4,5] => 3
[3,1,2,5,4] => 2
[3,1,4,2,5] => 3
[3,1,4,5,2] => 3
[3,1,5,2,4] => 2
[3,1,5,4,2] => 2
[3,2,1,4,5] => 3
[3,2,1,5,4] => 3
[3,2,4,1,5] => 3
[3,2,4,5,1] => 3
[3,2,5,1,4] => 3
[3,2,5,4,1] => 3
[3,4,1,2,5] => 3
[3,4,1,5,2] => 3
[3,4,2,1,5] => 3
[3,4,2,5,1] => 3
[3,4,5,1,2] => 3
[3,4,5,2,1] => 3
[3,5,1,2,4] => 2
[3,5,1,4,2] => 2
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The length of the longest arithmetic progression in a permutation.
For a permutation $\pi$ of length $n$, this is the biggest $k$ such that there exist $1 \leq i_1 < \dots < i_k \leq n$ with
$$\pi(i_2) - \pi(i_1) = \pi(i_3) - \pi(i_2) = \dots = \pi(i_k) - \pi(i_{k-1}).$$
For a permutation $\pi$ of length $n$, this is the biggest $k$ such that there exist $1 \leq i_1 < \dots < i_k \leq n$ with
$$\pi(i_2) - \pi(i_1) = \pi(i_3) - \pi(i_2) = \dots = \pi(i_k) - \pi(i_{k-1}).$$
Code
def arith_prog_next(pi,lst):
new_lst = []
for seq in lst:
for i in range(seq[-1]+1,len(pi)):
if pi[i] - pi[seq[-1]] == pi[seq[-1]] - pi[seq[-2]]:
new_lst.append(seq+[i])
return new_lst
def statistic(pi):
n = len(pi)
if n <= 2:
return n
stat = 1
lst = [[i,j] for j in range(n) for i in range(j)]
while lst:
lst = arith_prog_next(pi,lst)
stat += 1
return stat
Created
Jul 15, 2020 at 08:37 by Christian Stump
Updated
Jul 15, 2020 at 08:37 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!