searching the database
Your data matches 88 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000774
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 3
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> 4
([(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([],5)
=> 5
([(3,4)],5)
=> 4
([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3)],5)
=> 3
([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
Description
The maximal multiplicity of a Laplacian eigenvalue in a graph.
Matching statistic: St000381
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
St000381: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000381: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1
([],2)
=> [2] => 2
([(0,1)],2)
=> [1,1] => 1
([],3)
=> [3] => 3
([(1,2)],3)
=> [1,2] => 2
([(0,2),(1,2)],3)
=> [1,1,1] => 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => 2
([],4)
=> [4] => 4
([(2,3)],4)
=> [1,3] => 3
([(1,3),(2,3)],4)
=> [1,1,2] => 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 2
([(0,3),(1,2)],4)
=> [2,2] => 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 3
([],5)
=> [5] => 5
([(3,4)],5)
=> [1,4] => 4
([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 3
([(1,4),(2,3)],5)
=> [2,3] => 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
Description
The largest part of an integer composition.
Matching statistic: St000013
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1,0]
=> 1
([],2)
=> [2] => [1,1,0,0]
=> 2
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 2
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
Description
The height of a Dyck path.
The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000147
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> 1
([],2)
=> [2] => [2]
=> 2
([(0,1)],2)
=> [1,1] => [1,1]
=> 1
([],3)
=> [3] => [3]
=> 3
([(1,2)],3)
=> [1,2] => [2,1]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 2
([],4)
=> [4] => [4]
=> 4
([(2,3)],4)
=> [1,3] => [3,1]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 3
([],5)
=> [5] => [5]
=> 5
([(3,4)],5)
=> [1,4] => [4,1]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [3,2]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
Description
The largest part of an integer partition.
Matching statistic: St000771
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001235
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St001235: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00039: Integer compositions —complement⟶ Integer compositions
St001235: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => 1
([],2)
=> [2] => [1,1] => 2
([(0,1)],2)
=> [1,1] => [2] => 1
([],3)
=> [3] => [1,1,1] => 3
([(1,2)],3)
=> [1,2] => [2,1] => 2
([(0,2),(1,2)],3)
=> [1,1,1] => [3] => 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,2] => 2
([],4)
=> [4] => [1,1,1,1] => 4
([(2,3)],4)
=> [1,3] => [2,1,1] => 3
([(1,3),(2,3)],4)
=> [1,1,2] => [3,1] => 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,2] => 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [4] => 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,2,1] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [4] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,3] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,2] => 3
([],5)
=> [5] => [1,1,1,1,1] => 5
([(3,4)],5)
=> [1,4] => [2,1,1,1] => 4
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1] => 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1] => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [2,1,2] => 3
([(1,4),(2,3)],5)
=> [2,3] => [1,2,1,1] => 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [4,1] => 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [4,1] => 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,2,1,1] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [4,1] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [3,2] => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,3,1] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [3,2] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,3] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,2,1] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,3] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,4] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Matching statistic: St000319
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> 0 = 1 - 1
([],2)
=> [2] => [2]
=> 1 = 2 - 1
([(0,1)],2)
=> [1,1] => [1,1]
=> 0 = 1 - 1
([],3)
=> [3] => [3]
=> 2 = 3 - 1
([(1,2)],3)
=> [1,2] => [2,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 1 = 2 - 1
([],4)
=> [4] => [4]
=> 3 = 4 - 1
([(2,3)],4)
=> [1,3] => [3,1]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 2 = 3 - 1
([],5)
=> [5] => [5]
=> 4 = 5 - 1
([(3,4)],5)
=> [1,4] => [4,1]
=> 3 = 4 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1]
=> 2 = 3 - 1
([(1,4),(2,3)],5)
=> [2,3] => [3,2]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 2 = 3 - 1
Description
The spin of an integer partition.
The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$
The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross.
This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> 0 = 1 - 1
([],2)
=> [2] => [2]
=> 1 = 2 - 1
([(0,1)],2)
=> [1,1] => [1,1]
=> 0 = 1 - 1
([],3)
=> [3] => [3]
=> 2 = 3 - 1
([(1,2)],3)
=> [1,2] => [2,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 1 = 2 - 1
([],4)
=> [4] => [4]
=> 3 = 4 - 1
([(2,3)],4)
=> [1,3] => [3,1]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 2 = 3 - 1
([],5)
=> [5] => [5]
=> 4 = 5 - 1
([(3,4)],5)
=> [1,4] => [4,1]
=> 3 = 4 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1]
=> 2 = 3 - 1
([(1,4),(2,3)],5)
=> [2,3] => [3,2]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 2 = 3 - 1
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St000010
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> [1]
=> 1
([],2)
=> [2] => [2]
=> [1,1]
=> 2
([(0,1)],2)
=> [1,1] => [1,1]
=> [2]
=> 1
([],3)
=> [3] => [3]
=> [1,1,1]
=> 3
([(1,2)],3)
=> [1,2] => [2,1]
=> [2,1]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> [3]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> [2,1]
=> 2
([],4)
=> [4] => [4]
=> [1,1,1,1]
=> 4
([(2,3)],4)
=> [1,3] => [3,1]
=> [2,1,1]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1]
=> [3,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1]
=> [3,1]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> [2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [4]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2]
=> [2,2]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1]
=> [3,1]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [3,1]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> [2,1,1]
=> 3
([],5)
=> [5] => [5]
=> [1,1,1,1,1]
=> 5
([(3,4)],5)
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1]
=> [3,1,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1]
=> [3,1,1]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [3,2]
=> [2,2,1]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2]
=> [2,2,1]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> [3,2]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> [2,2,1]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [3,2]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [3,1,1]
=> 3
Description
The length of the partition.
Matching statistic: St000025
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1,0]
=> [1,0]
=> 1
([],2)
=> [2] => [1,1,0,0]
=> [1,1,0,0]
=> 2
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [1,0,1,0]
=> 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
Description
The number of initial rises of a Dyck path.
In other words, this is the height of the first peak of $D$.
The following 78 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000028The number of stack-sorts needed to sort a permutation. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St000308The height of the tree associated to a permutation. St000392The length of the longest run of ones in a binary word. St000442The maximal area to the right of an up step of a Dyck path. St000451The length of the longest pattern of the form k 1 2. St000628The balance of a binary word. St000676The number of odd rises of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000734The last entry in the first row of a standard tableau. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000982The length of the longest constant subword. St000983The length of the longest alternating subword. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001372The length of a longest cyclic run of ones of a binary word. St001530The depth of a Dyck path. St001589The nesting number of a perfect matching. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001809The index of the step at the first peak of maximal height in a Dyck path. St000094The depth of an ordered tree. St000141The maximum drop size of a permutation. St000209Maximum difference of elements in cycles. St000306The bounce count of a Dyck path. St000439The position of the first down step of a Dyck path. St000521The number of distinct subtrees of an ordered tree. St000662The staircase size of the code of a permutation. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001090The number of pop-stack-sorts needed to sort a permutation. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St000444The length of the maximal rise of a Dyck path. St000485The length of the longest cycle of a permutation. St000844The size of the largest block in the direct sum decomposition of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001062The maximal size of a block of a set partition. St000503The maximal difference between two elements in a common block. St000956The maximal displacement of a permutation. St001330The hat guessing number of a graph. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000984The number of boxes below precisely one peak. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St001176The size of a partition minus its first part. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000264The girth of a graph, which is not a tree. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!