Processing math: 100%

Your data matches 30 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00324: Graphs chromatic difference sequenceInteger compositions
St001486: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1
([],2)
=> [2] => 2
([],3)
=> [3] => 2
([],4)
=> [4] => 2
([(0,3),(1,2)],4)
=> [2,2] => 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 4
([],5)
=> [5] => 2
([(1,4),(2,3)],5)
=> [3,2] => 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 4
([],6)
=> [6] => 2
([(2,5),(3,4)],6)
=> [4,2] => 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => 6
Description
The number of corners of the ribbon associated with an integer composition. We associate a ribbon shape to a composition c=(c1,,cn) with ci cells in the i-th row from bottom to top, such that the cells in two rows overlap in precisely one cell. This statistic records the total number of corners of the ribbon shape.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1,0]
=> 0 = 1 - 1
([],2)
=> [2] => [1,1,0,0]
=> 1 = 2 - 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> 1 = 2 - 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5 = 6 - 1
Description
The number of non-final maximal constant sub-paths of length greater than one. This is the total number of occurrences of the patterns 110 and 001.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St000691: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1 => 0 = 1 - 1
([],2)
=> [2] => 10 => 1 = 2 - 1
([],3)
=> [3] => 100 => 1 = 2 - 1
([],4)
=> [4] => 1000 => 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => 1010 => 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2] => 1010 => 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 1010 => 3 = 4 - 1
([],5)
=> [5] => 10000 => 1 = 2 - 1
([(1,4),(2,3)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([],6)
=> [6] => 100000 => 1 = 2 - 1
([(2,5),(3,4)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => 100110 => 3 = 4 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => 101010 => 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => 101010 => 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => 101010 => 5 = 6 - 1
Description
The number of changes of a binary word. This is the number of indices i such that wiwi+1.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000453: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1
([],2)
=> [2] => [1,1] => ([(0,1)],2)
=> 2
([],3)
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([],6)
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The number of distinct Laplacian eigenvalues of a graph.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000777: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1
([],2)
=> [2] => [1,1] => ([(0,1)],2)
=> 2
([],3)
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([],6)
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001035: Dyck paths ⟶ ℤResult quality: 75% values known / values provided: 100%distinct values known / distinct values provided: 75%
Values
([],1)
=> [1] => [1] => [1,0]
=> ? = 1 - 2
([],2)
=> [2] => [1,1] => [1,0,1,0]
=> 0 = 2 - 2
([],3)
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 2 - 2
([],4)
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
([],5)
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([],6)
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(2,5),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
Description
The convexity degree of the parallelogram polyomino associated with the Dyck path. A parallelogram polyomino is k-convex if k is the maximal number of turns an axis-parallel path must take to connect two cells of the polyomino. For example, any rotation of a Ferrers shape has convexity degree at most one. The (bivariate) generating function is given in Theorem 2 of [1].
Matching statistic: St000762
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
St000762: Integer compositions ⟶ ℤResult quality: 50% values known / values provided: 89%distinct values known / distinct values provided: 50%
Values
([],1)
=> [1] => [1] => [1] => ? = 1 - 3
([],2)
=> [2] => [1] => [1] => ? = 2 - 3
([],3)
=> [3] => [1] => [1] => ? = 2 - 3
([],4)
=> [4] => [1] => [1] => ? = 2 - 3
([(0,3),(1,2)],4)
=> [2,2] => [2] => [1] => ? = 4 - 3
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2] => [1] => ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2] => [1] => ? = 4 - 3
([],5)
=> [5] => [1] => [1] => ? = 2 - 3
([(1,4),(2,3)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([],6)
=> [6] => [1] => [1] => ? = 2 - 3
([(2,5),(3,4)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,1,1] => [3] => 1 = 4 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([],7)
=> [7] => [1] => [1] => ? = 2 - 3
([(3,6),(4,5)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,3),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,2),(3,6),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
Description
The sum of the positions of the weak records of an integer composition. A weak record is an element ai such that aiaj for all j<i. This statistic is the sum of their positions.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 25% values known / values provided: 38%distinct values known / distinct values provided: 25%
Values
([],1)
=> [1] => ([],1)
=> ? = 1 - 4
([],2)
=> [2] => ([],2)
=> ? = 2 - 4
([],3)
=> [3] => ([],3)
=> ? = 2 - 4
([],4)
=> [4] => ([],4)
=> ? = 2 - 4
([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0 = 4 - 4
([],5)
=> [5] => ([],5)
=> ? = 2 - 4
([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([],6)
=> [6] => ([],6)
=> ? = 2 - 4
([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([],7)
=> [7] => ([],7)
=> ? = 2 - 4
([(3,6),(4,5)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(2,3),(4,6),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(1,2),(3,6),(4,6),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001596: Skew partitions ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 50%
Values
([],1)
=> []
=> [[],[]]
=> ? = 1 - 4
([],2)
=> []
=> [[],[]]
=> ? = 2 - 4
([],3)
=> []
=> [[],[]]
=> ? = 2 - 4
([],4)
=> []
=> [[],[]]
=> ? = 2 - 4
([(0,3),(1,2)],4)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([],5)
=> []
=> [[],[]]
=> ? = 2 - 4
([(1,4),(2,3)],5)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [[6],[]]
=> 0 = 4 - 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([],6)
=> []
=> [[],[]]
=> ? = 2 - 4
([(2,5),(3,4)],6)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [[6],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [[6,1],[]]
=> 0 = 4 - 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [[6,1],[]]
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [[6],[]]
=> 0 = 4 - 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [[7],[]]
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[3,3],[]]
=> 2 = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [3,3,1]
=> [[3,3,1],[]]
=> 2 = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[5,3],[]]
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [10]
=> [[10],[]]
=> ? = 6 - 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [[8],[]]
=> ? = 6 - 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [[10],[]]
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> [[10],[]]
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> [[11],[]]
=> ? = 6 - 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [12]
=> [[12],[]]
=> ? = 6 - 4
([],7)
=> []
=> [[],[]]
=> ? = 2 - 4
([(3,6),(4,5)],7)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(3,6),(4,5),(5,6)],7)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(2,3),(4,6),(5,6)],7)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,2),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> 0 = 4 - 4
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([(1,6),(2,6),(3,5),(4,5)],7)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [[8,1],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [10]
=> [[10],[]]
=> ? = 4 - 4
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [[8,1],[]]
=> ? = 4 - 4
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [7,1]
=> [[7,1],[]]
=> ? = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [4,4]
=> [[4,4],[]]
=> ? = 4 - 4
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [8,1]
=> [[8,1],[]]
=> ? = 4 - 4
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [9,1]
=> [[9,1],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [10]
=> [[10],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [11]
=> [[11],[]]
=> ? = 4 - 4
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [9,1]
=> [[9,1],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [10]
=> [[10],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [11]
=> [[11],[]]
=> ? = 4 - 4
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [12]
=> [[12],[]]
=> ? = 4 - 4
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 6 - 4
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [[5,3],[]]
=> ? = 6 - 4
Description
The number of two-by-two squares inside a skew partition. This is, the number of cells (i,j) in a skew partition for which the box (i+1,j+1) is also a cell inside the skew partition.
Mp00117: Graphs Ore closureGraphs
Mp00243: Graphs weak duplicate orderPosets
St001890: Posets ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 25%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 3
([],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([],3)
=> ([],3)
=> ([],1)
=> ? = 2 - 3
([],4)
=> ([],4)
=> ([],1)
=> ? = 2 - 3
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],4)
=> 1 = 4 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1 = 4 - 3
([],5)
=> ([],5)
=> ([],1)
=> ? = 2 - 3
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> 1 = 4 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 1 = 4 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([],6)
=> ([],6)
=> ([],1)
=> ? = 2 - 3
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> 1 = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],4)
=> 1 = 4 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> 1 = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],6)
=> ? = 4 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(4,2),(5,3)],6)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3)],5)
=> 1 = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([],6)
=> ? = 4 - 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3)],6)
=> ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([],7)
=> ([],7)
=> ([],1)
=> ? = 2 - 3
([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],4)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([],4)
=> 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 4 - 3
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],6)
=> ? = 4 - 3
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> ? = 4 - 3
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ? = 4 - 3
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(1,4),(4,2),(5,3)],6)
=> ? = 4 - 3
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4 - 3
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 4 - 3
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value μ(x,y) is equal to the signed sum of chains from x to y, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
The following 20 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001651The Frankl number of a lattice. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001763The Hurwitz number of an integer partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000264The girth of a graph, which is not a tree. St001060The distinguishing index of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian.