searching the database
Your data matches 30 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001486
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
St001486: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001486: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1
([],2)
=> [2] => 2
([],3)
=> [3] => 2
([],4)
=> [4] => 2
([(0,3),(1,2)],4)
=> [2,2] => 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 4
([],5)
=> [5] => 2
([(1,4),(2,3)],5)
=> [3,2] => 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 4
([],6)
=> [6] => 2
([(2,5),(3,4)],6)
=> [4,2] => 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => 6
Description
The number of corners of the ribbon associated with an integer composition.
We associate a ribbon shape to a composition c=(c1,…,cn) with ci cells in the i-th row from bottom to top, such that the cells in two rows overlap in precisely one cell.
This statistic records the total number of corners of the ribbon shape.
Matching statistic: St000340
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1,0]
=> 0 = 1 - 1
([],2)
=> [2] => [1,1,0,0]
=> 1 = 2 - 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> 1 = 2 - 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5 = 6 - 1
Description
The number of non-final maximal constant sub-paths of length greater than one.
This is the total number of occurrences of the patterns 110 and 001.
Matching statistic: St000691
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000691: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00094: Integer compositions —to binary word⟶ Binary words
St000691: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1 => 0 = 1 - 1
([],2)
=> [2] => 10 => 1 = 2 - 1
([],3)
=> [3] => 100 => 1 = 2 - 1
([],4)
=> [4] => 1000 => 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => 1010 => 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2] => 1010 => 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 1010 => 3 = 4 - 1
([],5)
=> [5] => 10000 => 1 = 2 - 1
([(1,4),(2,3)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 10010 => 3 = 4 - 1
([],6)
=> [6] => 100000 => 1 = 2 - 1
([(2,5),(3,4)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => 100010 => 3 = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => 100110 => 3 = 4 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => 100100 => 3 = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => 101010 => 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => 101010 => 5 = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => 101010 => 5 = 6 - 1
Description
The number of changes of a binary word.
This is the number of indices i such that wi≠wi+1.
Matching statistic: St000453
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000453: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000453: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1
([],2)
=> [2] => [1,1] => ([(0,1)],2)
=> 2
([],3)
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([],6)
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The number of distinct Laplacian eigenvalues of a graph.
Matching statistic: St000777
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1
([],2)
=> [2] => [1,1] => ([(0,1)],2)
=> 2
([],3)
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([],6)
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001035
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001035: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 100%●distinct values known / distinct values provided: 75%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001035: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 100%●distinct values known / distinct values provided: 75%
Values
([],1)
=> [1] => [1] => [1,0]
=> ? = 1 - 2
([],2)
=> [2] => [1,1] => [1,0,1,0]
=> 0 = 2 - 2
([],3)
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 2 - 2
([],4)
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
([],5)
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([],6)
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(2,5),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
Description
The convexity degree of the parallelogram polyomino associated with the Dyck path.
A parallelogram polyomino is k-convex if k is the maximal number of turns an axis-parallel path must take to connect two cells of the polyomino.
For example, any rotation of a Ferrers shape has convexity degree at most one.
The (bivariate) generating function is given in Theorem 2 of [1].
Matching statistic: St000762
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St000762: Integer compositions ⟶ ℤResult quality: 50% ●values known / values provided: 89%●distinct values known / distinct values provided: 50%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St000762: Integer compositions ⟶ ℤResult quality: 50% ●values known / values provided: 89%●distinct values known / distinct values provided: 50%
Values
([],1)
=> [1] => [1] => [1] => ? = 1 - 3
([],2)
=> [2] => [1] => [1] => ? = 2 - 3
([],3)
=> [3] => [1] => [1] => ? = 2 - 3
([],4)
=> [4] => [1] => [1] => ? = 2 - 3
([(0,3),(1,2)],4)
=> [2,2] => [2] => [1] => ? = 4 - 3
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2] => [1] => ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2] => [1] => ? = 4 - 3
([],5)
=> [5] => [1] => [1] => ? = 2 - 3
([(1,4),(2,3)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1] => [2] => 1 = 4 - 3
([],6)
=> [6] => [1] => [1] => ? = 2 - 3
([(2,5),(3,4)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,1,1] => [3] => 1 = 4 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => [2] => [1] => ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [3] => [1] => ? = 6 - 3
([],7)
=> [7] => [1] => [1] => ? = 2 - 3
([(3,6),(4,5)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,3),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,2),(3,6),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => [1,1] => [2] => 1 = 4 - 3
Description
The sum of the positions of the weak records of an integer composition.
A weak record is an element ai such that ai≥aj for all j<i. This statistic is the sum of their positions.
Matching statistic: St000455
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 38%●distinct values known / distinct values provided: 25%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 38%●distinct values known / distinct values provided: 25%
Values
([],1)
=> [1] => ([],1)
=> ? = 1 - 4
([],2)
=> [2] => ([],2)
=> ? = 2 - 4
([],3)
=> [3] => ([],3)
=> ? = 2 - 4
([],4)
=> [4] => ([],4)
=> ? = 2 - 4
([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0 = 4 - 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0 = 4 - 4
([],5)
=> [5] => ([],5)
=> ? = 2 - 4
([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
([],6)
=> [6] => ([],6)
=> ? = 2 - 4
([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,2),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 4
([],7)
=> [7] => ([],7)
=> ? = 2 - 4
([(3,6),(4,5)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(2,3),(4,6),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(1,2),(3,6),(4,6),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 4
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001596
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001596: Skew partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 50%
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001596: Skew partitions ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 50%
Values
([],1)
=> []
=> [[],[]]
=> ? = 1 - 4
([],2)
=> []
=> [[],[]]
=> ? = 2 - 4
([],3)
=> []
=> [[],[]]
=> ? = 2 - 4
([],4)
=> []
=> [[],[]]
=> ? = 2 - 4
([(0,3),(1,2)],4)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([],5)
=> []
=> [[],[]]
=> ? = 2 - 4
([(1,4),(2,3)],5)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [[6],[]]
=> 0 = 4 - 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([],6)
=> []
=> [[],[]]
=> ? = 2 - 4
([(2,5),(3,4)],6)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [[6],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [[6,1],[]]
=> 0 = 4 - 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0 = 4 - 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [[6,1],[]]
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [6]
=> [[6],[]]
=> 0 = 4 - 4
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [7]
=> [[7],[]]
=> 0 = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[3,3],[]]
=> 2 = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [3,3,1]
=> [[3,3,1],[]]
=> 2 = 6 - 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[5,3],[]]
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [10]
=> [[10],[]]
=> ? = 6 - 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [[8],[]]
=> ? = 6 - 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [9]
=> [[9],[]]
=> ? = 6 - 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [[10],[]]
=> ? = 6 - 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> [[10],[]]
=> ? = 6 - 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> [[11],[]]
=> ? = 6 - 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [12]
=> [[12],[]]
=> ? = 6 - 4
([],7)
=> []
=> [[],[]]
=> ? = 2 - 4
([(3,6),(4,5)],7)
=> [1,1]
=> [[1,1],[]]
=> 0 = 4 - 4
([(3,6),(4,5),(5,6)],7)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(2,3),(4,6),(5,6)],7)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0 = 4 - 4
([(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,2),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0 = 4 - 4
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> 0 = 4 - 4
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4]
=> [[4],[]]
=> 0 = 4 - 4
([(1,6),(2,6),(3,5),(4,5)],7)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0 = 4 - 4
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,1]
=> [[4,1],[]]
=> 0 = 4 - 4
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [[8,1],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [10]
=> [[10],[]]
=> ? = 4 - 4
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [[8,1],[]]
=> ? = 4 - 4
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [7,1]
=> [[7,1],[]]
=> ? = 4 - 4
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [4,4]
=> [[4,4],[]]
=> ? = 4 - 4
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 4 - 4
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [8,1]
=> [[8,1],[]]
=> ? = 4 - 4
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [8]
=> [[8],[]]
=> ? = 4 - 4
([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [9,1]
=> [[9,1],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [10]
=> [[10],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [11]
=> [[11],[]]
=> ? = 4 - 4
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [9]
=> [[9],[]]
=> ? = 4 - 4
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [9,1]
=> [[9,1],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [10]
=> [[10],[]]
=> ? = 4 - 4
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [11]
=> [[11],[]]
=> ? = 4 - 4
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [12]
=> [[12],[]]
=> ? = 4 - 4
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 6 - 4
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [[5,3],[]]
=> ? = 6 - 4
Description
The number of two-by-two squares inside a skew partition.
This is, the number of cells (i,j) in a skew partition for which the box (i+1,j+1) is also a cell inside the skew partition.
Matching statistic: St001890
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 3
([],2)
=> ([],2)
=> ([],1)
=> ? = 2 - 3
([],3)
=> ([],3)
=> ([],1)
=> ? = 2 - 3
([],4)
=> ([],4)
=> ([],1)
=> ? = 2 - 3
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],4)
=> 1 = 4 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1 = 4 - 3
([],5)
=> ([],5)
=> ([],1)
=> ? = 2 - 3
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> 1 = 4 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 1 = 4 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([],6)
=> ([],6)
=> ([],1)
=> ? = 2 - 3
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> 1 = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],4)
=> 1 = 4 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> 1 = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],6)
=> ? = 4 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(4,2),(5,3)],6)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3)],5)
=> 1 = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([],6)
=> ? = 4 - 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3)],6)
=> ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 4 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 6 - 3
([],7)
=> ([],7)
=> ([],1)
=> ? = 2 - 3
([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],4)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([],4)
=> 1 = 4 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 4 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 1 = 4 - 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 4 - 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,4)],5)
=> 1 = 4 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 4 - 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 4 - 3
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],6)
=> ? = 4 - 3
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> ? = 4 - 3
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ? = 4 - 3
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(1,4),(4,2),(5,3)],6)
=> ? = 4 - 3
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4 - 3
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 4 - 3
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 4 - 3
Description
The maximum magnitude of the Möbius function of a poset.
The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value μ(x,y) is equal to the signed sum of chains from x to y, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
The following 20 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001651The Frankl number of a lattice. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001763The Hurwitz number of an integer partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000264The girth of a graph, which is not a tree. St001060The distinguishing index of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!