searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000802
Mp00064: Permutations —reverse⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000802: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000802: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [2,1] => [1,2] => [1,2] => 0
[2,1] => [1,2] => [2,1] => [2,1] => 0
[1,2,3] => [3,2,1] => [1,3,2] => [1,3,2] => 0
[1,3,2] => [2,3,1] => [1,2,3] => [1,2,3] => 0
[2,1,3] => [3,1,2] => [3,1,2] => [2,3,1] => 0
[2,3,1] => [1,3,2] => [2,1,3] => [2,1,3] => 0
[3,1,2] => [2,1,3] => [3,2,1] => [3,2,1] => 1
[3,2,1] => [1,2,3] => [2,3,1] => [3,1,2] => 0
[1,2,3,4] => [4,3,2,1] => [1,4,3,2] => [1,4,3,2] => 0
[1,2,4,3] => [3,4,2,1] => [1,4,2,3] => [1,3,4,2] => 0
[1,3,2,4] => [4,2,3,1] => [1,3,4,2] => [1,4,2,3] => 0
[1,3,4,2] => [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 0
[1,4,2,3] => [3,2,4,1] => [1,3,2,4] => [1,3,2,4] => 0
[1,4,3,2] => [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
[2,1,3,4] => [4,3,1,2] => [4,1,3,2] => [2,4,3,1] => 0
[2,1,4,3] => [3,4,1,2] => [4,1,2,3] => [2,3,4,1] => 0
[2,3,1,4] => [4,1,3,2] => [3,1,4,2] => [2,4,1,3] => 0
[2,3,4,1] => [1,4,3,2] => [2,1,4,3] => [2,1,4,3] => 0
[2,4,1,3] => [3,1,4,2] => [3,1,2,4] => [2,3,1,4] => 0
[2,4,3,1] => [1,3,4,2] => [2,1,3,4] => [2,1,3,4] => 0
[3,1,2,4] => [4,2,1,3] => [4,3,1,2] => [3,4,2,1] => 1
[3,1,4,2] => [2,4,1,3] => [4,2,1,3] => [3,2,4,1] => 1
[3,2,1,4] => [4,1,2,3] => [3,4,1,2] => [3,4,1,2] => 0
[3,2,4,1] => [1,4,2,3] => [2,4,1,3] => [3,1,4,2] => 0
[3,4,1,2] => [2,1,4,3] => [3,2,1,4] => [3,2,1,4] => 1
[3,4,2,1] => [1,2,4,3] => [2,3,1,4] => [3,1,2,4] => 0
[4,1,2,3] => [3,2,1,4] => [4,3,2,1] => [4,3,2,1] => 3
[4,1,3,2] => [2,3,1,4] => [4,2,3,1] => [4,2,3,1] => 2
[4,2,1,3] => [3,1,2,4] => [3,4,2,1] => [4,3,1,2] => 2
[4,2,3,1] => [1,3,2,4] => [2,4,3,1] => [4,1,3,2] => 1
[4,3,1,2] => [2,1,3,4] => [3,2,4,1] => [4,2,1,3] => 1
[4,3,2,1] => [1,2,3,4] => [2,3,4,1] => [4,1,2,3] => 0
[1,2,3,4,5] => [5,4,3,2,1] => [1,5,4,3,2] => [1,5,4,3,2] => 0
[1,2,3,5,4] => [4,5,3,2,1] => [1,5,4,2,3] => [1,4,5,3,2] => 0
[1,2,4,3,5] => [5,3,4,2,1] => [1,5,3,4,2] => [1,5,3,4,2] => 0
[1,2,4,5,3] => [3,5,4,2,1] => [1,5,2,4,3] => [1,3,5,4,2] => 0
[1,2,5,3,4] => [4,3,5,2,1] => [1,5,3,2,4] => [1,4,3,5,2] => 0
[1,2,5,4,3] => [3,4,5,2,1] => [1,5,2,3,4] => [1,3,4,5,2] => 0
[1,3,2,4,5] => [5,4,2,3,1] => [1,4,5,3,2] => [1,5,4,2,3] => 0
[1,3,2,5,4] => [4,5,2,3,1] => [1,4,5,2,3] => [1,4,5,2,3] => 0
[1,3,4,2,5] => [5,2,4,3,1] => [1,3,5,4,2] => [1,5,2,4,3] => 0
[1,3,4,5,2] => [2,5,4,3,1] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,3,5,2,4] => [4,2,5,3,1] => [1,3,5,2,4] => [1,4,2,5,3] => 0
[1,3,5,4,2] => [2,4,5,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => 0
[1,4,2,3,5] => [5,3,2,4,1] => [1,4,3,5,2] => [1,5,3,2,4] => 0
[1,4,2,5,3] => [3,5,2,4,1] => [1,4,2,5,3] => [1,3,5,2,4] => 0
[1,4,3,2,5] => [5,2,3,4,1] => [1,3,4,5,2] => [1,5,2,3,4] => 0
[1,4,3,5,2] => [2,5,3,4,1] => [1,2,4,5,3] => [1,2,5,3,4] => 0
[1,4,5,2,3] => [3,2,5,4,1] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,4,5,3,2] => [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 0
Description
The number of occurrences of the vincular pattern |321 in a permutation.
This is the number of occurrences of the pattern $(3,2,1)$, such that the letter matched by $3$ is the first entry of the permutation.
Matching statistic: St000801
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000801: Permutations ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 1
[3,4,2,1] => 0
[4,1,2,3] => 3
[4,1,3,2] => 2
[4,2,1,3] => 2
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 0
[1,4,5,3,2] => 0
[1,4,6,5,7,2,3] => ? = 0
[1,4,6,5,7,3,2] => ? = 0
[1,4,6,7,2,5,3] => ? = 0
[1,4,6,7,3,5,2] => ? = 0
[1,4,6,7,5,2,3] => ? = 0
[1,4,6,7,5,3,2] => ? = 0
[1,4,7,2,5,6,3] => ? = 0
[1,4,7,2,6,5,3] => ? = 0
[1,4,7,3,5,6,2] => ? = 0
[1,4,7,3,6,5,2] => ? = 0
[1,4,7,5,2,6,3] => ? = 0
[1,4,7,5,3,6,2] => ? = 0
[1,4,7,5,6,2,3] => ? = 0
[1,4,7,5,6,3,2] => ? = 0
[1,4,7,6,2,5,3] => ? = 0
[1,4,7,6,3,5,2] => ? = 0
[1,4,7,6,5,2,3] => ? = 0
[1,4,7,6,5,3,2] => ? = 0
[1,5,2,4,6,7,3] => ? = 0
[1,5,2,4,7,6,3] => ? = 0
[1,5,2,6,4,7,3] => ? = 0
[1,5,2,6,7,3,4] => ? = 0
[1,5,2,6,7,4,3] => ? = 0
[1,5,2,7,3,6,4] => ? = 0
[1,5,2,7,4,6,3] => ? = 0
[1,5,2,7,6,3,4] => ? = 0
[1,5,2,7,6,4,3] => ? = 0
[1,5,3,4,6,7,2] => ? = 0
[1,5,3,4,7,6,2] => ? = 0
[1,5,3,6,4,7,2] => ? = 0
[1,5,3,6,7,2,4] => ? = 0
[1,5,3,6,7,4,2] => ? = 0
[1,5,3,7,2,6,4] => ? = 0
[1,5,3,7,4,6,2] => ? = 0
[1,5,3,7,6,2,4] => ? = 0
[1,5,3,7,6,4,2] => ? = 0
[1,5,4,2,6,7,3] => ? = 0
[1,5,4,2,7,6,3] => ? = 0
[1,5,4,3,6,7,2] => ? = 0
[1,5,4,3,7,6,2] => ? = 0
[1,5,4,6,2,7,3] => ? = 0
[1,5,4,6,3,7,2] => ? = 0
[1,5,4,6,7,2,3] => ? = 0
[1,5,4,6,7,3,2] => ? = 0
[1,5,4,7,2,6,3] => ? = 0
[1,5,4,7,3,6,2] => ? = 0
[1,5,4,7,6,2,3] => ? = 0
[1,5,4,7,6,3,2] => ? = 0
[1,5,6,2,4,7,3] => ? = 0
[1,5,6,2,7,3,4] => ? = 0
Description
The number of occurrences of the vincular pattern |312 in a permutation.
This is the number of occurrences of the pattern $(3,1,2)$, such that the letter matched by $3$ is the first entry of the permutation.
Matching statistic: St000803
Mp00069: Permutations —complement⟶ Permutations
St000803: Permutations ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 100%
St000803: Permutations ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 100%
Values
[1,2] => [2,1] => 0
[2,1] => [1,2] => 0
[1,2,3] => [3,2,1] => 0
[1,3,2] => [3,1,2] => 0
[2,1,3] => [2,3,1] => 0
[2,3,1] => [2,1,3] => 0
[3,1,2] => [1,3,2] => 1
[3,2,1] => [1,2,3] => 0
[1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [4,3,1,2] => 0
[1,3,2,4] => [4,2,3,1] => 0
[1,3,4,2] => [4,2,1,3] => 0
[1,4,2,3] => [4,1,3,2] => 0
[1,4,3,2] => [4,1,2,3] => 0
[2,1,3,4] => [3,4,2,1] => 0
[2,1,4,3] => [3,4,1,2] => 0
[2,3,1,4] => [3,2,4,1] => 0
[2,3,4,1] => [3,2,1,4] => 0
[2,4,1,3] => [3,1,4,2] => 0
[2,4,3,1] => [3,1,2,4] => 0
[3,1,2,4] => [2,4,3,1] => 1
[3,1,4,2] => [2,4,1,3] => 1
[3,2,1,4] => [2,3,4,1] => 0
[3,2,4,1] => [2,3,1,4] => 0
[3,4,1,2] => [2,1,4,3] => 1
[3,4,2,1] => [2,1,3,4] => 0
[4,1,2,3] => [1,4,3,2] => 3
[4,1,3,2] => [1,4,2,3] => 2
[4,2,1,3] => [1,3,4,2] => 2
[4,2,3,1] => [1,3,2,4] => 1
[4,3,1,2] => [1,2,4,3] => 1
[4,3,2,1] => [1,2,3,4] => 0
[1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [5,4,3,1,2] => 0
[1,2,4,3,5] => [5,4,2,3,1] => 0
[1,2,4,5,3] => [5,4,2,1,3] => 0
[1,2,5,3,4] => [5,4,1,3,2] => 0
[1,2,5,4,3] => [5,4,1,2,3] => 0
[1,3,2,4,5] => [5,3,4,2,1] => 0
[1,3,2,5,4] => [5,3,4,1,2] => 0
[1,3,4,2,5] => [5,3,2,4,1] => 0
[1,3,4,5,2] => [5,3,2,1,4] => 0
[1,3,5,2,4] => [5,3,1,4,2] => 0
[1,3,5,4,2] => [5,3,1,2,4] => 0
[1,4,2,3,5] => [5,2,4,3,1] => 0
[1,4,2,5,3] => [5,2,4,1,3] => 0
[1,4,3,2,5] => [5,2,3,4,1] => 0
[1,4,3,5,2] => [5,2,3,1,4] => 0
[1,4,5,2,3] => [5,2,1,4,3] => 0
[1,4,5,3,2] => [5,2,1,3,4] => 0
[1,2,3,6,7,5,4] => [7,6,5,2,1,3,4] => ? = 0
[1,2,3,7,6,5,4] => [7,6,5,1,2,3,4] => ? = 0
[1,2,4,5,6,7,3] => [7,6,4,3,2,1,5] => ? = 0
[1,2,4,5,7,6,3] => [7,6,4,3,1,2,5] => ? = 0
[1,2,4,6,5,7,3] => [7,6,4,2,3,1,5] => ? = 0
[1,2,4,6,7,5,3] => [7,6,4,2,1,3,5] => ? = 0
[1,2,4,7,5,6,3] => [7,6,4,1,3,2,5] => ? = 0
[1,2,4,7,6,5,3] => [7,6,4,1,2,3,5] => ? = 0
[1,2,5,4,6,7,3] => [7,6,3,4,2,1,5] => ? = 0
[1,2,5,4,7,6,3] => [7,6,3,4,1,2,5] => ? = 0
[1,2,5,6,4,7,3] => [7,6,3,2,4,1,5] => ? = 0
[1,2,5,6,7,3,4] => [7,6,3,2,1,5,4] => ? = 0
[1,2,5,6,7,4,3] => [7,6,3,2,1,4,5] => ? = 0
[1,2,5,7,3,6,4] => [7,6,3,1,5,2,4] => ? = 0
[1,2,5,7,4,6,3] => [7,6,3,1,4,2,5] => ? = 0
[1,2,5,7,6,3,4] => [7,6,3,1,2,5,4] => ? = 0
[1,2,5,7,6,4,3] => [7,6,3,1,2,4,5] => ? = 0
[1,2,6,3,7,5,4] => [7,6,2,5,1,3,4] => ? = 0
[1,2,6,4,5,7,3] => [7,6,2,4,3,1,5] => ? = 0
[1,2,6,4,7,5,3] => [7,6,2,4,1,3,5] => ? = 0
[1,2,6,5,4,7,3] => [7,6,2,3,4,1,5] => ? = 0
[1,2,6,5,7,3,4] => [7,6,2,3,1,5,4] => ? = 0
[1,2,6,5,7,4,3] => [7,6,2,3,1,4,5] => ? = 0
[1,2,6,7,3,5,4] => [7,6,2,1,5,3,4] => ? = 0
[1,2,6,7,4,5,3] => [7,6,2,1,4,3,5] => ? = 0
[1,2,6,7,5,3,4] => [7,6,2,1,3,5,4] => ? = 0
[1,2,6,7,5,4,3] => [7,6,2,1,3,4,5] => ? = 0
[1,2,7,3,5,6,4] => [7,6,1,5,3,2,4] => ? = 0
[1,2,7,3,6,5,4] => [7,6,1,5,2,3,4] => ? = 0
[1,2,7,4,5,6,3] => [7,6,1,4,3,2,5] => ? = 0
[1,2,7,4,6,5,3] => [7,6,1,4,2,3,5] => ? = 0
[1,2,7,5,3,6,4] => [7,6,1,3,5,2,4] => ? = 0
[1,2,7,5,4,6,3] => [7,6,1,3,4,2,5] => ? = 0
[1,2,7,5,6,3,4] => [7,6,1,3,2,5,4] => ? = 0
[1,2,7,5,6,4,3] => [7,6,1,3,2,4,5] => ? = 0
[1,2,7,6,3,5,4] => [7,6,1,2,5,3,4] => ? = 0
[1,2,7,6,4,5,3] => [7,6,1,2,4,3,5] => ? = 0
[1,2,7,6,5,3,4] => [7,6,1,2,3,5,4] => ? = 0
[1,2,7,6,5,4,3] => [7,6,1,2,3,4,5] => ? = 0
[1,3,2,6,7,5,4] => [7,5,6,2,1,3,4] => ? = 0
[1,3,2,7,6,5,4] => [7,5,6,1,2,3,4] => ? = 0
[1,3,4,5,6,7,2] => [7,5,4,3,2,1,6] => ? = 0
[1,3,4,5,7,6,2] => [7,5,4,3,1,2,6] => ? = 0
[1,3,4,6,5,7,2] => [7,5,4,2,3,1,6] => ? = 0
[1,3,4,6,7,5,2] => [7,5,4,2,1,3,6] => ? = 0
[1,3,4,7,5,6,2] => [7,5,4,1,3,2,6] => ? = 0
[1,3,4,7,6,5,2] => [7,5,4,1,2,3,6] => ? = 0
[1,3,5,4,6,7,2] => [7,5,3,4,2,1,6] => ? = 0
[1,3,5,4,7,6,2] => [7,5,3,4,1,2,6] => ? = 0
[1,3,5,6,4,7,2] => [7,5,3,2,4,1,6] => ? = 0
Description
The number of occurrences of the vincular pattern |132 in a permutation.
This is the number of occurrences of the pattern $(1,3,2)$, such that the letter matched by $1$ is the first entry of the permutation.
Matching statistic: St001199
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 54%●distinct values known / distinct values provided: 9%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 54%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 0 + 1
[1,2,3] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[2,1,3] => [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[2,3,1] => [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 1
[3,1,2] => [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 1 + 1
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 1
[1,2,3,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,4,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,2,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,3,1,4] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,3,4,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[2,4,1,3] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,4,3,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[3,1,2,4] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[3,1,4,2] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,2,4,1] => [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[3,4,1,2] => [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[3,4,2,1] => [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[4,1,2,3] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[4,1,3,2] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[4,2,1,3] => [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[4,2,3,1] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[4,3,1,2] => [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,2,3,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,5,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,2,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,2,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,4,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,4,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,5,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,4,2,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,4,2,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,4,3,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,4,3,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,5,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,5,2,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,5,3,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,5,4,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[2,1,3,4,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,3,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,3,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,3,1,4,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[2,3,1,5,4] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[2,3,4,1,5] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[2,3,5,1,4] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[2,3,5,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[2,4,1,3,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[2,4,3,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[2,4,5,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[2,5,3,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[2,5,4,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[3,1,2,4,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,1,2,5,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,1,4,2,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,1,4,5,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,1,5,2,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,1,5,4,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,2,4,5,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[3,2,5,4,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[3,4,1,2,5] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,4,1,5,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,4,2,5,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[3,4,5,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,4,5,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[3,5,1,2,4] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,5,1,4,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,5,2,4,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[3,5,4,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[3,5,4,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[4,1,2,3,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[4,1,2,5,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[4,1,3,2,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[4,1,3,5,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[4,1,5,2,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[4,1,5,3,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[4,2,1,3,5] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[4,2,1,5,3] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[4,2,3,1,5] => [4,2,5,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St000260
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 40%●distinct values known / distinct values provided: 9%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 40%●distinct values known / distinct values provided: 9%
Values
[1,2] => [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [[.,.],.]
=> [1,2] => ([],2)
=> ? = 0 + 1
[1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,3] => [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ? = 0 + 1
[2,3,1] => [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ? = 0 + 1
[3,1,2] => [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ? = 1 + 1
[3,2,1] => [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ? = 0 + 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 1 + 1
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 1 + 1
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 1 + 1
[3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
[4,1,3,2] => [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 2 + 1
[4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ? = 2 + 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ? = 1 + 1
[4,3,1,2] => [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ? = 1 + 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ? = 0 + 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,5,2,4,3] => [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,5,3,2,4] => [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,5,4,2,3] => [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,5,1,4,3] => [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,5,3,1,4] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,5,3,4,1] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,5,4,1,3] => [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,1,2,5,4] => [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3,6,4,5] => [.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4,6,3,5] => [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4,6,5,3] => [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,5,3,6,4] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,5,4,3,6] => [.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,5,4,6,3] => [.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,5,6,3,4] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St001198
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 27%●distinct values known / distinct values provided: 9%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 27%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2 = 0 + 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 0 + 2
[1,2,3] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,3,2] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[2,1,3] => [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[2,3,1] => [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[3,1,2] => [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 1 + 2
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[1,2,3,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,2,4,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,3,2,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[2,3,1,4] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[2,3,4,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[2,4,1,3] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[2,4,3,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[3,1,2,4] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[3,1,4,2] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[3,2,4,1] => [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[3,4,1,2] => [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[3,4,2,1] => [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[4,1,2,3] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 3 + 2
[4,1,3,2] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 2 + 2
[4,2,1,3] => [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 2 + 2
[4,2,3,1] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[4,3,1,2] => [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[1,2,3,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,3,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,4,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,4,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,5,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,2,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,2,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,4,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,4,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,5,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,2,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,2,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,3,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,3,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,2,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,3,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,4,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,1,3,4,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,3,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,4,3,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,4,1,5] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,3,5,1,4] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,5,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,4,1,3,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,4,3,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,4,5,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,5,3,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,5,4,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,1,2,4,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,2,5,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,4,2,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,4,5,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,5,2,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,5,4,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,2,4,5,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,2,5,4,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,4,1,2,5] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,4,1,5,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,4,2,5,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,4,5,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,4,5,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,5,1,2,4] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,5,1,4,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,5,2,4,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,5,4,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,5,4,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[4,1,2,3,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[4,1,2,5,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[4,1,3,2,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,1,3,5,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,1,5,2,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[4,1,5,3,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,2,1,3,5] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,2,1,5,3] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,2,3,1,5] => [4,2,5,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 27%●distinct values known / distinct values provided: 9%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 27%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2 = 0 + 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 0 + 2
[1,2,3] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,3,2] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[2,1,3] => [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[2,3,1] => [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[3,1,2] => [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 1 + 2
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[1,2,3,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,2,4,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,3,2,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[2,3,1,4] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[2,3,4,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[2,4,1,3] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[2,4,3,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[3,1,2,4] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[3,1,4,2] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[3,2,4,1] => [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[3,4,1,2] => [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[3,4,2,1] => [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[4,1,2,3] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 3 + 2
[4,1,3,2] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 2 + 2
[4,2,1,3] => [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 2 + 2
[4,2,3,1] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[4,3,1,2] => [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[1,2,3,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,3,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,4,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,4,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,5,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,2,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,2,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,2,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,4,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,4,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,5,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,2,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,2,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,3,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,3,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,2,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,3,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,4,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,1,3,4,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,3,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,4,3,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,4,1,5] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,3,5,1,4] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[2,3,5,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,4,1,3,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,4,3,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,4,5,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,5,3,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,5,4,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,1,2,4,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,2,5,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,4,2,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,4,5,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,5,2,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,1,5,4,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,2,4,5,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,2,5,4,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,4,1,2,5] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,4,1,5,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,4,2,5,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,4,5,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,4,5,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,5,1,2,4] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,5,1,4,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,5,2,4,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[3,5,4,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[3,5,4,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[4,1,2,3,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[4,1,2,5,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[4,1,3,2,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,1,3,5,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,1,5,2,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 2
[4,1,5,3,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,2,1,3,5] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,2,1,5,3] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[4,2,3,1,5] => [4,2,5,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Matching statistic: St001876
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00196: Lattices —The modular quotient of a lattice.⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 9%
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00196: Lattices —The modular quotient of a lattice.⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 9%
Values
[1,2] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,2] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,3,1] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,2] => [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? = 1 + 1
[3,2,1] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,3,4] => [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,4,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,2,4] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,4,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,3] => [3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,4,3,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3,4] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,1,4,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,3,1,4] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,3,4,1] => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,4,1,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,4,3,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
[3,1,4,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 1 + 1
[3,2,1,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ? = 0 + 1
[3,2,4,1] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? = 0 + 1
[3,4,1,2] => [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? = 1 + 1
[3,4,2,1] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 0 + 1
[4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ? = 3 + 1
[4,1,3,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? = 2 + 1
[4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[4,2,3,1] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 1 + 1
[4,3,1,2] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? = 1 + 1
[4,3,2,1] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,3,4,5] => [2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,3,5,4] => [2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,4,3,5] => [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,4,5,3] => [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,5,3,4] => [2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2,5,4,3] => [2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,2,4,5] => [3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,2,5,4] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,4,2,5] => [4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,4,5,2] => [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,5,2,4] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,5,4,2] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,3,5] => [3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,4,2,5,3] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,4,3,2,5] => [4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,4,3,5,2] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,5,2,3] => [4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,4,5,3,2] => [5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,2,3,4] => [3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,5,2,4,3] => [3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,5,3,2,4] => [4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,5,3,4,2] => [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,4,2,3] => [4,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,5,4,3,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3,4,5] => [1,3,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,1,3,5,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,1,4,3,5] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,1,4,5,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,1,5,3,4] => [1,4,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,1,5,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,3,1,4,5] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,3,1,5,4] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,5,4,1] => [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,4,3,5,1] => [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,4,5,3,1] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,5,3,4,1] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,5,4,3,1] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,6,5,2] => [6,2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,5,4,6,2] => [6,2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,5,6,4,2] => [6,2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,6,4,5,2] => [6,2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,6,5,4,2] => [6,2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,3,5,6,2] => [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,3,6,5,2] => [6,3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,5,3,6,2] => [6,4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,5,6,3,2] => [6,5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,6,3,5,2] => [6,4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,6,5,3,2] => [6,5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,3,4,6,2] => [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,3,6,4,2] => [6,3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,4,3,6,2] => [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,4,6,3,2] => [6,5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,6,3,4,2] => [6,4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,6,4,3,2] => [6,5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,6,3,4,5,2] => [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,6,3,5,4,2] => [6,3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,6,4,3,5,2] => [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,6,4,5,3,2] => [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,6,5,3,4,2] => [6,4,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,4,6,5,1] => [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,5,4,6,1] => [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,5,6,4,1] => [1,2,5,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,6,4,5,1] => [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,6,5,4,1] => [1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,4,3,5,6,1] => [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,4,3,6,5,1] => [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St000259
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 9%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000302
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000302: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 9%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000302: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The determinant of the distance matrix of a connected graph.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001330The hat guessing number of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!