Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000832: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 1
[2,1] => 1
[1,2,3] => 2
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 2
[1,2,3,4] => 3
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 3
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 1
[2,3,4,1] => 3
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 3
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 3
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 3
[1,2,3,4,5] => 4
[1,2,3,5,4] => 2
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 4
[1,3,2,4,5] => 1
[1,3,2,5,4] => 1
[1,3,4,2,5] => 1
[1,3,4,5,2] => 3
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 1
[1,4,2,5,3] => 1
[1,4,3,2,5] => 4
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
[1,4,5,3,2] => 1
Description
The number of permutations obtained by reversing blocks of three consecutive numbers.
Matching statistic: St001570
Mp00065: Permutations permutation posetPosets
Mp00074: Posets to graphGraphs
Mp00154: Graphs coreGraphs
St001570: Graphs ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 17%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,1] => ([],2)
=> ([],2)
=> ([],1)
=> ? = 1 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 2 - 1
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,2,1] => ([],3)
=> ([],3)
=> ([],1)
=> ? = 2 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 - 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,3,2,1] => ([],4)
=> ([],4)
=> ([],1)
=> ? = 3 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 - 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 - 1
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 - 1
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,3,4,6,2,5] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,3,6,4,2,5] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,5,3,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,5,2,4,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,5,2,4,6,3] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,5,3,4,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,5,4,2,3,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,6,3,4,2,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,6,4,2,3,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,1,5,3,4,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,1,6,5,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,4,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,5,1,6,3,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,5,1,6,4,3] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[2,6,4,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
[3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 1 - 1
Description
The minimal number of edges to add to make a graph Hamiltonian. A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St001060
Mp00065: Permutations permutation posetPosets
Mp00074: Posets to graphGraphs
Mp00154: Graphs coreGraphs
St001060: Graphs ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 17%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,1] => ([],2)
=> ([],2)
=> ([],1)
=> ? = 1 + 2
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 2 + 2
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 2
[3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 2
[3,2,1] => ([],3)
=> ([],3)
=> ([],1)
=> ? = 2 + 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 2
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 2
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 2
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 2
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 2
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 2
[4,3,2,1] => ([],4)
=> ([],4)
=> ([],1)
=> ? = 3 + 2
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 2
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 2
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 2
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 2
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 2
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 2
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,3,4,6,2,5] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,3,6,4,2,5] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,5,3,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,5,2,4,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,5,2,4,6,3] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,5,3,4,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,5,4,2,3,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,6,3,4,2,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[1,6,4,2,3,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,1,5,3,4,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,1,6,5,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,4,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,5,1,6,3,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,5,1,6,4,3] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[2,6,4,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
[3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 1 + 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St000264
Mp00065: Permutations permutation posetPosets
Mp00074: Posets to graphGraphs
Mp00154: Graphs coreGraphs
St000264: Graphs ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 17%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,1] => ([],2)
=> ([],2)
=> ([],1)
=> ? = 1 + 4
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 2 + 4
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 4
[3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 4
[3,2,1] => ([],3)
=> ([],3)
=> ([],1)
=> ? = 2 + 4
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 4
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 4
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 4
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 4
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 4
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 4
[4,3,2,1] => ([],4)
=> ([],4)
=> ([],1)
=> ? = 3 + 4
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 4
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 4
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 4
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 4
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 4
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 4
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 4
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,3,4,6,2,5] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,3,6,4,2,5] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,5,3,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,5,2,4,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,5,2,4,6,3] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,5,3,4,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,5,4,2,3,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,6,3,4,2,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[1,6,4,2,3,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,1,5,3,4,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,1,6,5,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,4,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,5,1,6,3,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,5,1,6,4,3] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[2,6,4,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
[3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 1 + 4
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Matching statistic: St000699
Mp00065: Permutations permutation posetPosets
Mp00074: Posets to graphGraphs
Mp00154: Graphs coreGraphs
St000699: Graphs ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 17%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,1] => ([],2)
=> ([],2)
=> ([],1)
=> ? = 1 + 11
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 2 + 11
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 11
[3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 11
[3,2,1] => ([],3)
=> ([],3)
=> ([],1)
=> ? = 2 + 11
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 11
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 11
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 11
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 11
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 11
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
[4,3,2,1] => ([],4)
=> ([],4)
=> ([],1)
=> ? = 3 + 11
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 11
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 11
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 11
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 11
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 11
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,3,4,6,2,5] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,3,6,4,2,5] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,5,3,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,5,2,4,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,5,2,4,6,3] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,5,3,4,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,5,4,2,3,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,6,3,4,2,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[1,6,4,2,3,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,1,5,3,4,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,1,6,5,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,4,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,5,1,6,3,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,5,1,6,4,3] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[2,6,4,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
[3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph. A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$. The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero. This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.