searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000852
St000852: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 3
['A',2]
=> 12
['B',2]
=> 15
['G',2]
=> 21
['A',3]
=> 55
['B',3]
=> 84
['C',3]
=> 84
['A',4]
=> 273
['B',4]
=> 495
['C',4]
=> 495
['D',4]
=> 336
['F',4]
=> 780
['A',5]
=> 1428
['B',5]
=> 3003
['C',5]
=> 3003
['D',5]
=> 2079
['A',6]
=> 7752
['B',6]
=> 18564
['C',6]
=> 18564
['D',6]
=> 13013
['E',6]
=> 16588
['A',7]
=> 43263
['B',7]
=> 116280
['C',7]
=> 116280
['D',7]
=> 82212
['E',7]
=> 144210
['A',8]
=> 246675
['B',8]
=> 735471
['C',8]
=> 735471
['D',8]
=> 523260
['E',8]
=> 1520922
Description
The second Fuss-Catalan number of a finite Cartan type.
The Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh) = \prod \frac{d_i+mh}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
Matching statistic: St000063
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 16%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 16%
Values
['A',1]
=> ([],1)
=> [2]
=> 3
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 12
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 15
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 21
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 55
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 84
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 84
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 273
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 495
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 495
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? = 336
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? = 780
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? = 1428
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 3003
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 3003
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? = 2079
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2]
=> ? = 7752
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ?
=> ? = 18564
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ?
=> ? = 18564
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ?
=> ? = 13013
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ?
=> ? = 16588
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 43263
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 116280
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 116280
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 82212
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 144210
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 246675
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 735471
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 735471
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 523260
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 1520922
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!