searching the database
Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000872
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
St000872: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 0
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 0
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 0
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
[1,4,5,3,2] => 0
Description
The number of very big descents of a permutation.
A very big descent of a permutation $\pi$ is an index $i$ such that $\pi_i - \pi_{i+1} > 2$.
For the number of descents, see [[St000021]] and for the number of big descents, see [[St000647]]. General $r$-descents were for example be studied in [1, Section 2].
Matching statistic: St000871
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
St000871: Permutations ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 100%
St000871: Permutations ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 100%
Values
[1,2] => [2,1] => 0
[2,1] => [1,2] => 0
[1,2,3] => [3,2,1] => 0
[1,3,2] => [3,1,2] => 0
[2,1,3] => [2,3,1] => 0
[2,3,1] => [2,1,3] => 0
[3,1,2] => [1,3,2] => 0
[3,2,1] => [1,2,3] => 0
[1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [4,3,1,2] => 0
[1,3,2,4] => [4,2,3,1] => 0
[1,3,4,2] => [4,2,1,3] => 0
[1,4,2,3] => [4,1,3,2] => 0
[1,4,3,2] => [4,1,2,3] => 0
[2,1,3,4] => [3,4,2,1] => 0
[2,1,4,3] => [3,4,1,2] => 0
[2,3,1,4] => [3,2,4,1] => 0
[2,3,4,1] => [3,2,1,4] => 1
[2,4,1,3] => [3,1,4,2] => 1
[2,4,3,1] => [3,1,2,4] => 0
[3,1,2,4] => [2,4,3,1] => 0
[3,1,4,2] => [2,4,1,3] => 0
[3,2,1,4] => [2,3,4,1] => 0
[3,2,4,1] => [2,3,1,4] => 1
[3,4,1,2] => [2,1,4,3] => 1
[3,4,2,1] => [2,1,3,4] => 0
[4,1,2,3] => [1,4,3,2] => 1
[4,1,3,2] => [1,4,2,3] => 1
[4,2,1,3] => [1,3,4,2] => 0
[4,2,3,1] => [1,3,2,4] => 0
[4,3,1,2] => [1,2,4,3] => 0
[4,3,2,1] => [1,2,3,4] => 0
[1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [5,4,3,1,2] => 0
[1,2,4,3,5] => [5,4,2,3,1] => 0
[1,2,4,5,3] => [5,4,2,1,3] => 0
[1,2,5,3,4] => [5,4,1,3,2] => 0
[1,2,5,4,3] => [5,4,1,2,3] => 0
[1,3,2,4,5] => [5,3,4,2,1] => 0
[1,3,2,5,4] => [5,3,4,1,2] => 0
[1,3,4,2,5] => [5,3,2,4,1] => 0
[1,3,4,5,2] => [5,3,2,1,4] => 1
[1,3,5,2,4] => [5,3,1,4,2] => 1
[1,3,5,4,2] => [5,3,1,2,4] => 0
[1,4,2,3,5] => [5,2,4,3,1] => 0
[1,4,2,5,3] => [5,2,4,1,3] => 0
[1,4,3,2,5] => [5,2,3,4,1] => 0
[1,4,3,5,2] => [5,2,3,1,4] => 1
[1,4,5,2,3] => [5,2,1,4,3] => 1
[1,4,5,3,2] => [5,2,1,3,4] => 0
[1,2,3,4,6,5,7] => [7,6,5,4,2,3,1] => ? = 0
[1,2,3,4,6,7,5] => [7,6,5,4,2,1,3] => ? = 0
[1,2,3,4,7,5,6] => [7,6,5,4,1,3,2] => ? = 0
[1,2,3,5,4,6,7] => [7,6,5,3,4,2,1] => ? = 0
[1,2,3,5,6,4,7] => [7,6,5,3,2,4,1] => ? = 0
[1,2,3,5,6,7,4] => [7,6,5,3,2,1,4] => ? = 1
[1,2,3,5,7,4,6] => [7,6,5,3,1,4,2] => ? = 1
[1,2,3,5,7,6,4] => [7,6,5,3,1,2,4] => ? = 0
[1,2,3,6,4,5,7] => [7,6,5,2,4,3,1] => ? = 0
[1,2,3,6,4,7,5] => [7,6,5,2,4,1,3] => ? = 0
[1,2,3,6,5,4,7] => [7,6,5,2,3,4,1] => ? = 0
[1,2,3,6,5,7,4] => [7,6,5,2,3,1,4] => ? = 1
[1,2,3,6,7,4,5] => [7,6,5,2,1,4,3] => ? = 1
[1,2,3,6,7,5,4] => [7,6,5,2,1,3,4] => ? = 0
[1,2,3,7,4,5,6] => [7,6,5,1,4,3,2] => ? = 1
[1,2,3,7,4,6,5] => [7,6,5,1,4,2,3] => ? = 1
[1,2,3,7,5,4,6] => [7,6,5,1,3,4,2] => ? = 0
[1,2,3,7,5,6,4] => [7,6,5,1,3,2,4] => ? = 0
[1,2,3,7,6,4,5] => [7,6,5,1,2,4,3] => ? = 0
[1,2,4,3,5,6,7] => [7,6,4,5,3,2,1] => ? = 0
[1,2,4,3,5,7,6] => [7,6,4,5,3,1,2] => ? = 0
[1,2,4,3,6,5,7] => [7,6,4,5,2,3,1] => ? = 0
[1,2,4,3,6,7,5] => [7,6,4,5,2,1,3] => ? = 0
[1,2,4,3,7,5,6] => [7,6,4,5,1,3,2] => ? = 0
[1,2,4,5,3,6,7] => [7,6,4,3,5,2,1] => ? = 0
[1,2,4,5,3,7,6] => [7,6,4,3,5,1,2] => ? = 0
[1,2,4,5,6,3,7] => [7,6,4,3,2,5,1] => ? = 1
[1,2,4,5,6,7,3] => [7,6,4,3,2,1,5] => ? = 1
[1,2,4,5,7,3,6] => [7,6,4,3,1,5,2] => ? = 1
[1,2,4,5,7,6,3] => [7,6,4,3,1,2,5] => ? = 1
[1,2,4,6,3,5,7] => [7,6,4,2,5,3,1] => ? = 1
[1,2,4,6,3,7,5] => [7,6,4,2,5,1,3] => ? = 1
[1,2,4,6,5,3,7] => [7,6,4,2,3,5,1] => ? = 0
[1,2,4,6,5,7,3] => [7,6,4,2,3,1,5] => ? = 1
[1,2,4,6,7,3,5] => [7,6,4,2,1,5,3] => ? = 1
[1,2,4,6,7,5,3] => [7,6,4,2,1,3,5] => ? = 0
[1,2,4,7,3,5,6] => [7,6,4,1,5,3,2] => ? = 1
[1,2,4,7,3,6,5] => [7,6,4,1,5,2,3] => ? = 1
[1,2,4,7,5,3,6] => [7,6,4,1,3,5,2] => ? = 0
[1,2,4,7,5,6,3] => [7,6,4,1,3,2,5] => ? = 1
[1,2,4,7,6,3,5] => [7,6,4,1,2,5,3] => ? = 1
[1,2,4,7,6,5,3] => [7,6,4,1,2,3,5] => ? = 0
[1,2,5,3,4,6,7] => [7,6,3,5,4,2,1] => ? = 0
[1,2,5,3,4,7,6] => [7,6,3,5,4,1,2] => ? = 0
[1,2,5,3,6,4,7] => [7,6,3,5,2,4,1] => ? = 0
[1,2,5,3,6,7,4] => [7,6,3,5,2,1,4] => ? = 1
[1,2,5,3,7,4,6] => [7,6,3,5,1,4,2] => ? = 1
[1,2,5,3,7,6,4] => [7,6,3,5,1,2,4] => ? = 0
[1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => ? = 0
[1,2,5,4,3,7,6] => [7,6,3,4,5,1,2] => ? = 0
Description
The number of very big ascents of a permutation.
A very big ascent of a permutation $\pi$ is an index $i$ such that $\pi_{i+1} - \pi_i > 2$.
For the number of ascents, see [[St000245]] and for the number of big ascents, see [[St000646]]. General $r$-ascents were for example be studied in [1, Section 2].
Matching statistic: St001964
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 25%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 25%
Values
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 0
[2,1] => [2,1] => [1,2] => ([(0,1)],2)
=> 0
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[1,3,2] => [1,3,2] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[2,1,3] => [2,1,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[2,3,1] => [3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,1,2] => [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,2,1] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => [1,2,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2,4] => [1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,4,2] => [1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0
[1,4,2,3] => [1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0
[1,4,3,2] => [1,3,4,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,3,4] => [2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,4,3] => [2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,1,4] => [3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0
[2,3,4,1] => [4,2,3,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[2,4,1,3] => [4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1
[2,4,3,1] => [3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0
[3,1,2,4] => [3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0
[3,1,4,2] => [3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0
[3,2,1,4] => [2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[3,2,4,1] => [4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,4,1,2] => [4,1,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,4,2,1] => [2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0
[4,1,2,3] => [4,1,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1
[4,1,3,2] => [4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[4,2,1,3] => [2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0
[4,2,3,1] => [3,4,2,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0
[4,3,1,2] => [3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0
[4,3,2,1] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,2,5,3,4] => [1,2,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,2,5,4,3] => [1,2,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,2,4,5] => [1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,2,5,4] => [1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,4,2,5] => [1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,3,4,5,2] => [1,5,3,4,2] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[1,3,5,2,4] => [1,5,3,2,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,5,4,2] => [1,4,3,5,2] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,4,2,3,5] => [1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,4,2,5,3] => [1,4,5,2,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,4,3,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,4,3,5,2] => [1,5,4,3,2] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[1,4,5,2,3] => [1,5,2,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[1,4,5,3,2] => [1,3,5,4,2] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1
[1,5,2,4,3] => [1,5,4,2,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[1,5,3,2,4] => [1,3,5,2,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,5,3,4,2] => [1,4,5,3,2] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,5,4,2,3] => [1,4,2,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,5,4,3,2] => [1,3,4,5,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,3,4,5] => [2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,3,5,4] => [2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,4,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,4,5,3] => [2,1,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,1,5,3,4] => [2,1,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,1,5,4,3] => [2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,1,4,5] => [3,2,1,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[2,3,1,5,4] => [3,2,1,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[2,3,4,1,5] => [4,2,3,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[2,3,4,5,1] => [5,2,3,4,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[2,3,5,1,4] => [5,2,3,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[2,3,5,4,1] => [4,2,3,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[2,4,1,3,5] => [4,2,1,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[2,4,1,5,3] => [4,2,5,1,3] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[2,4,3,1,5] => [3,2,4,1,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[2,4,3,5,1] => [5,2,4,3,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[2,4,5,1,3] => [5,2,1,4,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1
[2,4,5,3,1] => [3,2,5,4,1] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0
[2,5,1,3,4] => [5,2,1,3,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[2,5,1,4,3] => [5,2,4,1,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1
[2,5,3,1,4] => [3,2,5,1,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0
[2,5,3,4,1] => [4,2,5,3,1] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1
[3,2,1,4,5] => [2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2,1,5,4] => [2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[4,3,2,1,5] => [2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[5,4,3,2,1] => [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,5,4,6] => [1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,6,5,4] => [1,2,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,4,3,5,6] => [1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,5,4,3,6] => [1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,6,5,4,3] => [1,2,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,2,4,5,6] => [1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,2,4,6,5] => [1,3,2,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,2,5,4,6] => [1,3,2,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,2,6,5,4] => [1,3,2,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,4,3,2,5,6] => [1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,4,3,2,6,5] => [1,3,4,2,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,5,4,3,2,6] => [1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,6,5,4,3,2] => [1,3,4,5,6,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,1,3,4,5,6] => [2,1,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,1,3,4,6,5] => [2,1,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St001630
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
[1,2] => ([],2)
=> ([],1)
=> ? = 0 + 2
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,2,3] => ([],3)
=> ([],1)
=> ? = 0 + 2
[1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,4] => ([],4)
=> ([],1)
=> ? = 0 + 2
[1,2,4,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,3,2,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,3,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1 + 2
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0 + 2
[1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 0 + 2
[1,2,3,5,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,2,4,3,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1 + 2
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0 + 2
[2,1,3,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1 + 2
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1 + 2
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 2
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1 + 2
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,2,3,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,4,6,7,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,4,7,5,6] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,4,7,6,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,5,4,7,6] => ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,5,6,4,7] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,4,5,7] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,5,4,7] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,4,3,5,7,6] => ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,4,3,6,5,7] => ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,4,5,3,6,7] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
[1,2] => ([],2)
=> ([],1)
=> ? = 0 + 2
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,2,3] => ([],3)
=> ([],1)
=> ? = 0 + 2
[1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,4] => ([],4)
=> ([],1)
=> ? = 0 + 2
[1,2,4,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,3,2,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,3,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1 + 2
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0 + 2
[1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 0 + 2
[1,2,3,5,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,2,4,3,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1 + 2
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 0 + 2
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0 + 2
[2,1,3,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 0 + 2
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 2
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1 + 2
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1 + 2
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1 + 2
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 2
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1 + 2
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,2,3,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,4,6,7,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,4,7,5,6] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,4,7,6,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,3,5,4,7,6] => ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,5,6,4,7] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,4,5,7] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,6,5,4,7] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,4,3,5,7,6] => ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,4,3,6,5,7] => ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,4,5,3,6,7] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001301
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001301: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001301: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 0
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 0
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 0
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 0
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 0
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 0
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 0
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 0
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 0
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 0
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 0
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(0,11),(1,23),(2,5),(2,20),(3,10),(3,21),(4,9),(4,22),(5,6),(5,15),(6,12),(7,4),(7,17),(8,3),(8,16),(9,14),(9,18),(10,13),(10,14),(11,16),(11,17),(13,24),(14,24),(15,12),(16,21),(17,22),(18,23),(18,24),(19,20),(20,15),(21,13),(22,1),(22,18),(23,2),(23,19),(24,19)],25)
=> ? = 1
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,17),(0,18),(1,21),(2,20),(3,28),(4,27),(5,23),(6,24),(7,2),(7,30),(8,1),(8,31),(9,15),(10,16),(11,13),(11,32),(12,14),(12,33),(13,3),(13,22),(14,4),(14,22),(15,5),(15,25),(16,6),(16,26),(17,7),(17,19),(18,8),(18,19),(19,30),(19,31),(20,32),(21,33),(22,27),(22,28),(23,29),(24,29),(25,23),(26,24),(27,25),(28,26),(30,11),(30,20),(31,12),(31,21),(32,9),(33,10)],34)
=> ? = 0
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,20),(0,21),(1,11),(2,10),(3,27),(3,36),(4,16),(4,34),(5,17),(5,35),(6,26),(6,52),(7,12),(7,53),(8,13),(8,55),(9,15),(9,25),(9,54),(10,51),(11,14),(11,63),(12,38),(13,39),(14,60),(15,19),(15,50),(16,18),(16,64),(17,56),(18,59),(19,22),(19,57),(20,9),(20,58),(21,8),(21,58),(22,47),(22,61),(23,31),(23,46),(24,45),(24,48),(25,37),(25,50),(26,24),(26,49),(26,62),(27,23),(27,61),(27,64),(29,68),(30,68),(31,67),(32,65),(33,69),(34,1),(35,2),(36,6),(37,36),(38,35),(39,34),(40,32),(40,67),(41,51),(41,69),(42,28),(43,28),(44,29),(45,41),(45,66),(46,63),(46,67),(47,52),(48,30),(48,66),(49,48),(49,65),(50,7),(50,57),(51,43),(52,62),(53,5),(53,38),(54,3),(54,37),(55,4),(55,39),(56,33),(56,41),(57,47),(57,53),(58,54),(58,55),(59,32),(59,49),(60,29),(60,30),(61,31),(61,40),(62,45),(62,56),(62,65),(63,44),(63,60),(64,40),(64,46),(64,59),(65,33),(65,66),(66,68),(66,69),(67,44),(68,42),(69,42),(69,43)],70)
=> ? = 1
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,15),(0,16),(0,20),(1,9),(2,13),(2,47),(3,38),(4,14),(4,46),(5,40),(6,10),(6,26),(7,18),(7,45),(8,19),(8,39),(9,25),(10,32),(11,31),(12,44),(13,12),(13,48),(14,11),(14,42),(15,8),(15,28),(16,7),(16,37),(17,24),(17,33),(18,21),(18,36),(19,21),(19,35),(20,28),(20,37),(21,51),(22,49),(23,49),(24,3),(24,50),(26,1),(27,25),(28,39),(29,46),(30,27),(31,30),(32,27),(33,23),(33,50),(34,22),(34,50),(35,40),(35,51),(36,41),(36,51),(37,2),(37,45),(38,43),(39,5),(39,35),(40,4),(40,29),(41,24),(41,34),(42,31),(42,43),(43,30),(43,32),(44,22),(44,23),(45,36),(45,47),(46,38),(46,42),(47,17),(47,41),(47,48),(48,33),(48,34),(48,44),(49,26),(50,6),(50,49),(51,29)],52)
=> ? = 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,3,4,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 0
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 0
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
Description
The first Betti number of the order complex associated with the poset.
The order complex of a poset is the simplicial complex whose faces are the chains of the poset. This statistic is the rank of the first homology group of the order complex.
Matching statistic: St001396
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001396: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001396: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 0
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 0
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 0
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 0
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 0
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 0
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 0
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 0
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 0
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 0
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 0
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 0
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 0
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(0,11),(1,23),(2,5),(2,20),(3,10),(3,21),(4,9),(4,22),(5,6),(5,15),(6,12),(7,4),(7,17),(8,3),(8,16),(9,14),(9,18),(10,13),(10,14),(11,16),(11,17),(13,24),(14,24),(15,12),(16,21),(17,22),(18,23),(18,24),(19,20),(20,15),(21,13),(22,1),(22,18),(23,2),(23,19),(24,19)],25)
=> ? = 1
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,17),(0,18),(1,21),(2,20),(3,28),(4,27),(5,23),(6,24),(7,2),(7,30),(8,1),(8,31),(9,15),(10,16),(11,13),(11,32),(12,14),(12,33),(13,3),(13,22),(14,4),(14,22),(15,5),(15,25),(16,6),(16,26),(17,7),(17,19),(18,8),(18,19),(19,30),(19,31),(20,32),(21,33),(22,27),(22,28),(23,29),(24,29),(25,23),(26,24),(27,25),(28,26),(30,11),(30,20),(31,12),(31,21),(32,9),(33,10)],34)
=> ? = 0
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,20),(0,21),(1,11),(2,10),(3,27),(3,36),(4,16),(4,34),(5,17),(5,35),(6,26),(6,52),(7,12),(7,53),(8,13),(8,55),(9,15),(9,25),(9,54),(10,51),(11,14),(11,63),(12,38),(13,39),(14,60),(15,19),(15,50),(16,18),(16,64),(17,56),(18,59),(19,22),(19,57),(20,9),(20,58),(21,8),(21,58),(22,47),(22,61),(23,31),(23,46),(24,45),(24,48),(25,37),(25,50),(26,24),(26,49),(26,62),(27,23),(27,61),(27,64),(29,68),(30,68),(31,67),(32,65),(33,69),(34,1),(35,2),(36,6),(37,36),(38,35),(39,34),(40,32),(40,67),(41,51),(41,69),(42,28),(43,28),(44,29),(45,41),(45,66),(46,63),(46,67),(47,52),(48,30),(48,66),(49,48),(49,65),(50,7),(50,57),(51,43),(52,62),(53,5),(53,38),(54,3),(54,37),(55,4),(55,39),(56,33),(56,41),(57,47),(57,53),(58,54),(58,55),(59,32),(59,49),(60,29),(60,30),(61,31),(61,40),(62,45),(62,56),(62,65),(63,44),(63,60),(64,40),(64,46),(64,59),(65,33),(65,66),(66,68),(66,69),(67,44),(68,42),(69,42),(69,43)],70)
=> ? = 1
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,15),(0,16),(0,20),(1,9),(2,13),(2,47),(3,38),(4,14),(4,46),(5,40),(6,10),(6,26),(7,18),(7,45),(8,19),(8,39),(9,25),(10,32),(11,31),(12,44),(13,12),(13,48),(14,11),(14,42),(15,8),(15,28),(16,7),(16,37),(17,24),(17,33),(18,21),(18,36),(19,21),(19,35),(20,28),(20,37),(21,51),(22,49),(23,49),(24,3),(24,50),(26,1),(27,25),(28,39),(29,46),(30,27),(31,30),(32,27),(33,23),(33,50),(34,22),(34,50),(35,40),(35,51),(36,41),(36,51),(37,2),(37,45),(38,43),(39,5),(39,35),(40,4),(40,29),(41,24),(41,34),(42,31),(42,43),(43,30),(43,32),(44,22),(44,23),(45,36),(45,47),(46,38),(46,42),(47,17),(47,41),(47,48),(48,33),(48,34),(48,44),(49,26),(50,6),(50,49),(51,29)],52)
=> ? = 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,3,4,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 0
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 0
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 0
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
Description
Number of triples of incomparable elements in a finite poset.
For a finite poset this is the number of 3-element sets $S \in \binom{P}{3}$ that are pairwise incomparable.
Matching statistic: St000181
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000181: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000181: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1 + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0 + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0 + 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1 + 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0 + 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0 + 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 0 + 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 1 + 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1 + 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 1 + 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 1 + 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 1 + 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 1 + 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 0 + 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1 + 1
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(0,11),(1,23),(2,5),(2,20),(3,10),(3,21),(4,9),(4,22),(5,6),(5,15),(6,12),(7,4),(7,17),(8,3),(8,16),(9,14),(9,18),(10,13),(10,14),(11,16),(11,17),(13,24),(14,24),(15,12),(16,21),(17,22),(18,23),(18,24),(19,20),(20,15),(21,13),(22,1),(22,18),(23,2),(23,19),(24,19)],25)
=> ? = 1 + 1
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,17),(0,18),(1,21),(2,20),(3,28),(4,27),(5,23),(6,24),(7,2),(7,30),(8,1),(8,31),(9,15),(10,16),(11,13),(11,32),(12,14),(12,33),(13,3),(13,22),(14,4),(14,22),(15,5),(15,25),(16,6),(16,26),(17,7),(17,19),(18,8),(18,19),(19,30),(19,31),(20,32),(21,33),(22,27),(22,28),(23,29),(24,29),(25,23),(26,24),(27,25),(28,26),(30,11),(30,20),(31,12),(31,21),(32,9),(33,10)],34)
=> ? = 0 + 1
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,20),(0,21),(1,11),(2,10),(3,27),(3,36),(4,16),(4,34),(5,17),(5,35),(6,26),(6,52),(7,12),(7,53),(8,13),(8,55),(9,15),(9,25),(9,54),(10,51),(11,14),(11,63),(12,38),(13,39),(14,60),(15,19),(15,50),(16,18),(16,64),(17,56),(18,59),(19,22),(19,57),(20,9),(20,58),(21,8),(21,58),(22,47),(22,61),(23,31),(23,46),(24,45),(24,48),(25,37),(25,50),(26,24),(26,49),(26,62),(27,23),(27,61),(27,64),(29,68),(30,68),(31,67),(32,65),(33,69),(34,1),(35,2),(36,6),(37,36),(38,35),(39,34),(40,32),(40,67),(41,51),(41,69),(42,28),(43,28),(44,29),(45,41),(45,66),(46,63),(46,67),(47,52),(48,30),(48,66),(49,48),(49,65),(50,7),(50,57),(51,43),(52,62),(53,5),(53,38),(54,3),(54,37),(55,4),(55,39),(56,33),(56,41),(57,47),(57,53),(58,54),(58,55),(59,32),(59,49),(60,29),(60,30),(61,31),(61,40),(62,45),(62,56),(62,65),(63,44),(63,60),(64,40),(64,46),(64,59),(65,33),(65,66),(66,68),(66,69),(67,44),(68,42),(69,42),(69,43)],70)
=> ? = 1 + 1
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,15),(0,16),(0,20),(1,9),(2,13),(2,47),(3,38),(4,14),(4,46),(5,40),(6,10),(6,26),(7,18),(7,45),(8,19),(8,39),(9,25),(10,32),(11,31),(12,44),(13,12),(13,48),(14,11),(14,42),(15,8),(15,28),(16,7),(16,37),(17,24),(17,33),(18,21),(18,36),(19,21),(19,35),(20,28),(20,37),(21,51),(22,49),(23,49),(24,3),(24,50),(26,1),(27,25),(28,39),(29,46),(30,27),(31,30),(32,27),(33,23),(33,50),(34,22),(34,50),(35,40),(35,51),(36,41),(36,51),(37,2),(37,45),(38,43),(39,5),(39,35),(40,4),(40,29),(41,24),(41,34),(42,31),(42,43),(43,30),(43,32),(44,22),(44,23),(45,36),(45,47),(46,38),(46,42),(47,17),(47,41),(47,48),(48,33),(48,34),(48,44),(49,26),(50,6),(50,49),(51,29)],52)
=> ? = 1 + 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
Description
The number of connected components of the Hasse diagram for the poset.
Matching statistic: St000908
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000908: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000908: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1 + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0 + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0 + 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1 + 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0 + 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0 + 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 0 + 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 1 + 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1 + 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 1 + 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 1 + 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 1 + 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 1 + 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 0 + 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1 + 1
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(0,11),(1,23),(2,5),(2,20),(3,10),(3,21),(4,9),(4,22),(5,6),(5,15),(6,12),(7,4),(7,17),(8,3),(8,16),(9,14),(9,18),(10,13),(10,14),(11,16),(11,17),(13,24),(14,24),(15,12),(16,21),(17,22),(18,23),(18,24),(19,20),(20,15),(21,13),(22,1),(22,18),(23,2),(23,19),(24,19)],25)
=> ? = 1 + 1
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,17),(0,18),(1,21),(2,20),(3,28),(4,27),(5,23),(6,24),(7,2),(7,30),(8,1),(8,31),(9,15),(10,16),(11,13),(11,32),(12,14),(12,33),(13,3),(13,22),(14,4),(14,22),(15,5),(15,25),(16,6),(16,26),(17,7),(17,19),(18,8),(18,19),(19,30),(19,31),(20,32),(21,33),(22,27),(22,28),(23,29),(24,29),(25,23),(26,24),(27,25),(28,26),(30,11),(30,20),(31,12),(31,21),(32,9),(33,10)],34)
=> ? = 0 + 1
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,20),(0,21),(1,11),(2,10),(3,27),(3,36),(4,16),(4,34),(5,17),(5,35),(6,26),(6,52),(7,12),(7,53),(8,13),(8,55),(9,15),(9,25),(9,54),(10,51),(11,14),(11,63),(12,38),(13,39),(14,60),(15,19),(15,50),(16,18),(16,64),(17,56),(18,59),(19,22),(19,57),(20,9),(20,58),(21,8),(21,58),(22,47),(22,61),(23,31),(23,46),(24,45),(24,48),(25,37),(25,50),(26,24),(26,49),(26,62),(27,23),(27,61),(27,64),(29,68),(30,68),(31,67),(32,65),(33,69),(34,1),(35,2),(36,6),(37,36),(38,35),(39,34),(40,32),(40,67),(41,51),(41,69),(42,28),(43,28),(44,29),(45,41),(45,66),(46,63),(46,67),(47,52),(48,30),(48,66),(49,48),(49,65),(50,7),(50,57),(51,43),(52,62),(53,5),(53,38),(54,3),(54,37),(55,4),(55,39),(56,33),(56,41),(57,47),(57,53),(58,54),(58,55),(59,32),(59,49),(60,29),(60,30),(61,31),(61,40),(62,45),(62,56),(62,65),(63,44),(63,60),(64,40),(64,46),(64,59),(65,33),(65,66),(66,68),(66,69),(67,44),(68,42),(69,42),(69,43)],70)
=> ? = 1 + 1
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,15),(0,16),(0,20),(1,9),(2,13),(2,47),(3,38),(4,14),(4,46),(5,40),(6,10),(6,26),(7,18),(7,45),(8,19),(8,39),(9,25),(10,32),(11,31),(12,44),(13,12),(13,48),(14,11),(14,42),(15,8),(15,28),(16,7),(16,37),(17,24),(17,33),(18,21),(18,36),(19,21),(19,35),(20,28),(20,37),(21,51),(22,49),(23,49),(24,3),(24,50),(26,1),(27,25),(28,39),(29,46),(30,27),(31,30),(32,27),(33,23),(33,50),(34,22),(34,50),(35,40),(35,51),(36,41),(36,51),(37,2),(37,45),(38,43),(39,5),(39,35),(40,4),(40,29),(41,24),(41,34),(42,31),(42,43),(43,30),(43,32),(44,22),(44,23),(45,36),(45,47),(46,38),(46,42),(47,17),(47,41),(47,48),(48,33),(48,34),(48,44),(49,26),(50,6),(50,49),(51,29)],52)
=> ? = 1 + 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
Description
The length of the shortest maximal antichain in a poset.
Matching statistic: St001532
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001532: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001532: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 25%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1 + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0 + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0 + 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 1 + 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 1 + 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 0 + 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 0 + 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 0 + 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 0 + 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 1 + 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1 + 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 1 + 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 1 + 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 1 + 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 0 + 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 1 + 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 1 + 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 0 + 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 1 + 1
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(0,11),(1,23),(2,5),(2,20),(3,10),(3,21),(4,9),(4,22),(5,6),(5,15),(6,12),(7,4),(7,17),(8,3),(8,16),(9,14),(9,18),(10,13),(10,14),(11,16),(11,17),(13,24),(14,24),(15,12),(16,21),(17,22),(18,23),(18,24),(19,20),(20,15),(21,13),(22,1),(22,18),(23,2),(23,19),(24,19)],25)
=> ? = 1 + 1
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,17),(0,18),(1,21),(2,20),(3,28),(4,27),(5,23),(6,24),(7,2),(7,30),(8,1),(8,31),(9,15),(10,16),(11,13),(11,32),(12,14),(12,33),(13,3),(13,22),(14,4),(14,22),(15,5),(15,25),(16,6),(16,26),(17,7),(17,19),(18,8),(18,19),(19,30),(19,31),(20,32),(21,33),(22,27),(22,28),(23,29),(24,29),(25,23),(26,24),(27,25),(28,26),(30,11),(30,20),(31,12),(31,21),(32,9),(33,10)],34)
=> ? = 0 + 1
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,20),(0,21),(1,11),(2,10),(3,27),(3,36),(4,16),(4,34),(5,17),(5,35),(6,26),(6,52),(7,12),(7,53),(8,13),(8,55),(9,15),(9,25),(9,54),(10,51),(11,14),(11,63),(12,38),(13,39),(14,60),(15,19),(15,50),(16,18),(16,64),(17,56),(18,59),(19,22),(19,57),(20,9),(20,58),(21,8),(21,58),(22,47),(22,61),(23,31),(23,46),(24,45),(24,48),(25,37),(25,50),(26,24),(26,49),(26,62),(27,23),(27,61),(27,64),(29,68),(30,68),(31,67),(32,65),(33,69),(34,1),(35,2),(36,6),(37,36),(38,35),(39,34),(40,32),(40,67),(41,51),(41,69),(42,28),(43,28),(44,29),(45,41),(45,66),(46,63),(46,67),(47,52),(48,30),(48,66),(49,48),(49,65),(50,7),(50,57),(51,43),(52,62),(53,5),(53,38),(54,3),(54,37),(55,4),(55,39),(56,33),(56,41),(57,47),(57,53),(58,54),(58,55),(59,32),(59,49),(60,29),(60,30),(61,31),(61,40),(62,45),(62,56),(62,65),(63,44),(63,60),(64,40),(64,46),(64,59),(65,33),(65,66),(66,68),(66,69),(67,44),(68,42),(69,42),(69,43)],70)
=> ? = 1 + 1
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,15),(0,16),(0,20),(1,9),(2,13),(2,47),(3,38),(4,14),(4,46),(5,40),(6,10),(6,26),(7,18),(7,45),(8,19),(8,39),(9,25),(10,32),(11,31),(12,44),(13,12),(13,48),(14,11),(14,42),(15,8),(15,28),(16,7),(16,37),(17,24),(17,33),(18,21),(18,36),(19,21),(19,35),(20,28),(20,37),(21,51),(22,49),(23,49),(24,3),(24,50),(26,1),(27,25),(28,39),(29,46),(30,27),(31,30),(32,27),(33,23),(33,50),(34,22),(34,50),(35,40),(35,51),(36,41),(36,51),(37,2),(37,45),(38,43),(39,5),(39,35),(40,4),(40,29),(41,24),(41,34),(42,31),(42,43),(43,30),(43,32),(44,22),(44,23),(45,36),(45,47),(46,38),(46,42),(47,17),(47,41),(47,48),(48,33),(48,34),(48,44),(49,26),(50,6),(50,49),(51,29)],52)
=> ? = 1 + 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
Description
The leading coefficient of the Poincare polynomial of the poset cone.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its leading coefficient.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000914The sum of the values of the Möbius function of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001490The number of connected components of a skew partition. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!