Your data matches 17 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00097: Binary words delta morphismInteger compositions
St000899: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [1] => 1
1 => [1] => 1
00 => [2] => 1
01 => [1,1] => 2
10 => [1,1] => 2
11 => [2] => 1
000 => [3] => 1
001 => [2,1] => 1
010 => [1,1,1] => 3
011 => [1,2] => 1
100 => [1,2] => 1
101 => [1,1,1] => 3
110 => [2,1] => 1
111 => [3] => 1
0000 => [4] => 1
0001 => [3,1] => 1
0010 => [2,1,1] => 2
0011 => [2,2] => 2
0100 => [1,1,2] => 2
0101 => [1,1,1,1] => 4
0110 => [1,2,1] => 1
0111 => [1,3] => 1
1000 => [1,3] => 1
1001 => [1,2,1] => 1
1010 => [1,1,1,1] => 4
1011 => [1,1,2] => 2
1100 => [2,2] => 2
1101 => [2,1,1] => 2
1110 => [3,1] => 1
1111 => [4] => 1
00000 => [5] => 1
00001 => [4,1] => 1
00010 => [3,1,1] => 2
00011 => [3,2] => 1
00100 => [2,1,2] => 1
00101 => [2,1,1,1] => 3
00110 => [2,2,1] => 2
00111 => [2,3] => 1
01000 => [1,1,3] => 2
01001 => [1,1,2,1] => 2
01010 => [1,1,1,1,1] => 5
01011 => [1,1,1,2] => 3
01100 => [1,2,2] => 2
01101 => [1,2,1,1] => 2
01110 => [1,3,1] => 1
01111 => [1,4] => 1
10000 => [1,4] => 1
10001 => [1,3,1] => 1
10010 => [1,2,1,1] => 2
10011 => [1,2,2] => 2
Description
The maximal number of repetitions of an integer composition. This is the maximal part of the composition obtained by applying the delta morphism.
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [1] => [1] => 1
1 => [1] => [1] => 1
00 => [2] => [1] => 1
01 => [1,1] => [2] => 2
10 => [1,1] => [2] => 2
11 => [2] => [1] => 1
000 => [3] => [1] => 1
001 => [2,1] => [1,1] => 1
010 => [1,1,1] => [3] => 3
011 => [1,2] => [1,1] => 1
100 => [1,2] => [1,1] => 1
101 => [1,1,1] => [3] => 3
110 => [2,1] => [1,1] => 1
111 => [3] => [1] => 1
0000 => [4] => [1] => 1
0001 => [3,1] => [1,1] => 1
0010 => [2,1,1] => [1,2] => 2
0011 => [2,2] => [2] => 2
0100 => [1,1,2] => [2,1] => 2
0101 => [1,1,1,1] => [4] => 4
0110 => [1,2,1] => [1,1,1] => 1
0111 => [1,3] => [1,1] => 1
1000 => [1,3] => [1,1] => 1
1001 => [1,2,1] => [1,1,1] => 1
1010 => [1,1,1,1] => [4] => 4
1011 => [1,1,2] => [2,1] => 2
1100 => [2,2] => [2] => 2
1101 => [2,1,1] => [1,2] => 2
1110 => [3,1] => [1,1] => 1
1111 => [4] => [1] => 1
00000 => [5] => [1] => 1
00001 => [4,1] => [1,1] => 1
00010 => [3,1,1] => [1,2] => 2
00011 => [3,2] => [1,1] => 1
00100 => [2,1,2] => [1,1,1] => 1
00101 => [2,1,1,1] => [1,3] => 3
00110 => [2,2,1] => [2,1] => 2
00111 => [2,3] => [1,1] => 1
01000 => [1,1,3] => [2,1] => 2
01001 => [1,1,2,1] => [2,1,1] => 2
01010 => [1,1,1,1,1] => [5] => 5
01011 => [1,1,1,2] => [3,1] => 3
01100 => [1,2,2] => [1,2] => 2
01101 => [1,2,1,1] => [1,1,2] => 2
01110 => [1,3,1] => [1,1,1] => 1
01111 => [1,4] => [1,1] => 1
10000 => [1,4] => [1,1] => 1
10001 => [1,3,1] => [1,1,1] => 1
10010 => [1,2,1,1] => [1,1,2] => 2
10011 => [1,2,2] => [1,2] => 2
Description
The largest part of an integer composition.
Matching statistic: St000147
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [1] => [1] => [1]
=> 1
1 => [1] => [1] => [1]
=> 1
00 => [2] => [1] => [1]
=> 1
01 => [1,1] => [2] => [2]
=> 2
10 => [1,1] => [2] => [2]
=> 2
11 => [2] => [1] => [1]
=> 1
000 => [3] => [1] => [1]
=> 1
001 => [2,1] => [1,1] => [1,1]
=> 1
010 => [1,1,1] => [3] => [3]
=> 3
011 => [1,2] => [1,1] => [1,1]
=> 1
100 => [1,2] => [1,1] => [1,1]
=> 1
101 => [1,1,1] => [3] => [3]
=> 3
110 => [2,1] => [1,1] => [1,1]
=> 1
111 => [3] => [1] => [1]
=> 1
0000 => [4] => [1] => [1]
=> 1
0001 => [3,1] => [1,1] => [1,1]
=> 1
0010 => [2,1,1] => [1,2] => [2,1]
=> 2
0011 => [2,2] => [2] => [2]
=> 2
0100 => [1,1,2] => [2,1] => [2,1]
=> 2
0101 => [1,1,1,1] => [4] => [4]
=> 4
0110 => [1,2,1] => [1,1,1] => [1,1,1]
=> 1
0111 => [1,3] => [1,1] => [1,1]
=> 1
1000 => [1,3] => [1,1] => [1,1]
=> 1
1001 => [1,2,1] => [1,1,1] => [1,1,1]
=> 1
1010 => [1,1,1,1] => [4] => [4]
=> 4
1011 => [1,1,2] => [2,1] => [2,1]
=> 2
1100 => [2,2] => [2] => [2]
=> 2
1101 => [2,1,1] => [1,2] => [2,1]
=> 2
1110 => [3,1] => [1,1] => [1,1]
=> 1
1111 => [4] => [1] => [1]
=> 1
00000 => [5] => [1] => [1]
=> 1
00001 => [4,1] => [1,1] => [1,1]
=> 1
00010 => [3,1,1] => [1,2] => [2,1]
=> 2
00011 => [3,2] => [1,1] => [1,1]
=> 1
00100 => [2,1,2] => [1,1,1] => [1,1,1]
=> 1
00101 => [2,1,1,1] => [1,3] => [3,1]
=> 3
00110 => [2,2,1] => [2,1] => [2,1]
=> 2
00111 => [2,3] => [1,1] => [1,1]
=> 1
01000 => [1,1,3] => [2,1] => [2,1]
=> 2
01001 => [1,1,2,1] => [2,1,1] => [2,1,1]
=> 2
01010 => [1,1,1,1,1] => [5] => [5]
=> 5
01011 => [1,1,1,2] => [3,1] => [3,1]
=> 3
01100 => [1,2,2] => [1,2] => [2,1]
=> 2
01101 => [1,2,1,1] => [1,1,2] => [2,1,1]
=> 2
01110 => [1,3,1] => [1,1,1] => [1,1,1]
=> 1
01111 => [1,4] => [1,1] => [1,1]
=> 1
10000 => [1,4] => [1,1] => [1,1]
=> 1
10001 => [1,3,1] => [1,1,1] => [1,1,1]
=> 1
10010 => [1,2,1,1] => [1,1,2] => [2,1,1]
=> 2
10011 => [1,2,2] => [1,2] => [2,1]
=> 2
Description
The largest part of an integer partition.
Matching statistic: St000013
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
0 => [1] => [1] => [1,0]
=> 1
1 => [1] => [1] => [1,0]
=> 1
00 => [2] => [1] => [1,0]
=> 1
01 => [1,1] => [2] => [1,1,0,0]
=> 2
10 => [1,1] => [2] => [1,1,0,0]
=> 2
11 => [2] => [1] => [1,0]
=> 1
000 => [3] => [1] => [1,0]
=> 1
001 => [2,1] => [1,1] => [1,0,1,0]
=> 1
010 => [1,1,1] => [3] => [1,1,1,0,0,0]
=> 3
011 => [1,2] => [1,1] => [1,0,1,0]
=> 1
100 => [1,2] => [1,1] => [1,0,1,0]
=> 1
101 => [1,1,1] => [3] => [1,1,1,0,0,0]
=> 3
110 => [2,1] => [1,1] => [1,0,1,0]
=> 1
111 => [3] => [1] => [1,0]
=> 1
0000 => [4] => [1] => [1,0]
=> 1
0001 => [3,1] => [1,1] => [1,0,1,0]
=> 1
0010 => [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
0011 => [2,2] => [2] => [1,1,0,0]
=> 2
0100 => [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
0101 => [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 4
0110 => [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
0111 => [1,3] => [1,1] => [1,0,1,0]
=> 1
1000 => [1,3] => [1,1] => [1,0,1,0]
=> 1
1001 => [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
1010 => [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 4
1011 => [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
1100 => [2,2] => [2] => [1,1,0,0]
=> 2
1101 => [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
1110 => [3,1] => [1,1] => [1,0,1,0]
=> 1
1111 => [4] => [1] => [1,0]
=> 1
00000 => [5] => [1] => [1,0]
=> 1
00001 => [4,1] => [1,1] => [1,0,1,0]
=> 1
00010 => [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
00011 => [3,2] => [1,1] => [1,0,1,0]
=> 1
00100 => [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 1
00101 => [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
00110 => [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
00111 => [2,3] => [1,1] => [1,0,1,0]
=> 1
01000 => [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2
01001 => [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
01010 => [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
01011 => [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
01100 => [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2
01101 => [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
01110 => [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
01111 => [1,4] => [1,1] => [1,0,1,0]
=> 1
10000 => [1,4] => [1,1] => [1,0,1,0]
=> 1
10001 => [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
10010 => [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
10011 => [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2
010100101 => [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
010101101 => [1,1,1,1,1,2,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5
010110101 => [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
101001010 => [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
101010010 => [1,1,1,1,1,2,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5
101011010 => [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000444
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000444: Dyck paths ⟶ ℤResult quality: 78% values known / values provided: 97%distinct values known / distinct values provided: 78%
Values
0 => [1] => [1] => [1,0]
=> ? = 1
1 => [1] => [1] => [1,0]
=> ? = 1
00 => [2] => [1] => [1,0]
=> ? = 1
01 => [1,1] => [2] => [1,1,0,0]
=> 2
10 => [1,1] => [2] => [1,1,0,0]
=> 2
11 => [2] => [1] => [1,0]
=> ? = 1
000 => [3] => [1] => [1,0]
=> ? = 1
001 => [2,1] => [1,1] => [1,0,1,0]
=> 1
010 => [1,1,1] => [3] => [1,1,1,0,0,0]
=> 3
011 => [1,2] => [1,1] => [1,0,1,0]
=> 1
100 => [1,2] => [1,1] => [1,0,1,0]
=> 1
101 => [1,1,1] => [3] => [1,1,1,0,0,0]
=> 3
110 => [2,1] => [1,1] => [1,0,1,0]
=> 1
111 => [3] => [1] => [1,0]
=> ? = 1
0000 => [4] => [1] => [1,0]
=> ? = 1
0001 => [3,1] => [1,1] => [1,0,1,0]
=> 1
0010 => [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
0011 => [2,2] => [2] => [1,1,0,0]
=> 2
0100 => [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
0101 => [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 4
0110 => [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
0111 => [1,3] => [1,1] => [1,0,1,0]
=> 1
1000 => [1,3] => [1,1] => [1,0,1,0]
=> 1
1001 => [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
1010 => [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 4
1011 => [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
1100 => [2,2] => [2] => [1,1,0,0]
=> 2
1101 => [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
1110 => [3,1] => [1,1] => [1,0,1,0]
=> 1
1111 => [4] => [1] => [1,0]
=> ? = 1
00000 => [5] => [1] => [1,0]
=> ? = 1
00001 => [4,1] => [1,1] => [1,0,1,0]
=> 1
00010 => [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
00011 => [3,2] => [1,1] => [1,0,1,0]
=> 1
00100 => [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 1
00101 => [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
00110 => [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
00111 => [2,3] => [1,1] => [1,0,1,0]
=> 1
01000 => [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2
01001 => [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
01010 => [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
01011 => [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
01100 => [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2
01101 => [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
01110 => [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
01111 => [1,4] => [1,1] => [1,0,1,0]
=> 1
10000 => [1,4] => [1,1] => [1,0,1,0]
=> 1
10001 => [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
10010 => [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
10011 => [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2
10100 => [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
10101 => [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
10110 => [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
10111 => [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2
11000 => [2,3] => [1,1] => [1,0,1,0]
=> 1
11001 => [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
11010 => [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
11011 => [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 1
11100 => [3,2] => [1,1] => [1,0,1,0]
=> 1
11111 => [5] => [1] => [1,0]
=> ? = 1
000000 => [6] => [1] => [1,0]
=> ? = 1
111111 => [6] => [1] => [1,0]
=> ? = 1
0000000 => [7] => [1] => [1,0]
=> ? = 1
1111111 => [7] => [1] => [1,0]
=> ? = 1
00000000 => [8] => [1] => [1,0]
=> ? = 1
01010101 => [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
10101010 => [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
11111111 => [8] => [1] => [1,0]
=> ? = 1
000000000 => [9] => [1] => [1,0]
=> ? = 1
010100101 => [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
010101001 => [1,1,1,1,1,1,2,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6
010101010 => [1,1,1,1,1,1,1,1,1] => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 9
010101011 => [1,1,1,1,1,1,1,2] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
010101101 => [1,1,1,1,1,2,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5
010110101 => [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
101001010 => [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
101010010 => [1,1,1,1,1,2,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5
101010100 => [1,1,1,1,1,1,1,2] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
101010101 => [1,1,1,1,1,1,1,1,1] => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 9
101010110 => [1,1,1,1,1,1,2,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6
101011010 => [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
111111111 => [9] => [1] => [1,0]
=> ? = 1
Description
The length of the maximal rise of a Dyck path.
Matching statistic: St000442
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 78% values known / values provided: 97%distinct values known / distinct values provided: 78%
Values
0 => [1] => [1] => [1,0]
=> ? = 1 - 1
1 => [1] => [1] => [1,0]
=> ? = 1 - 1
00 => [2] => [1] => [1,0]
=> ? = 1 - 1
01 => [1,1] => [2] => [1,1,0,0]
=> 1 = 2 - 1
10 => [1,1] => [2] => [1,1,0,0]
=> 1 = 2 - 1
11 => [2] => [1] => [1,0]
=> ? = 1 - 1
000 => [3] => [1] => [1,0]
=> ? = 1 - 1
001 => [2,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
010 => [1,1,1] => [3] => [1,1,1,0,0,0]
=> 2 = 3 - 1
011 => [1,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
100 => [1,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
101 => [1,1,1] => [3] => [1,1,1,0,0,0]
=> 2 = 3 - 1
110 => [2,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
111 => [3] => [1] => [1,0]
=> ? = 1 - 1
0000 => [4] => [1] => [1,0]
=> ? = 1 - 1
0001 => [3,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
0010 => [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
0011 => [2,2] => [2] => [1,1,0,0]
=> 1 = 2 - 1
0100 => [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
0101 => [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
0110 => [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
0111 => [1,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
1000 => [1,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
1001 => [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
1010 => [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
1011 => [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
1100 => [2,2] => [2] => [1,1,0,0]
=> 1 = 2 - 1
1101 => [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
1110 => [3,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
1111 => [4] => [1] => [1,0]
=> ? = 1 - 1
00000 => [5] => [1] => [1,0]
=> ? = 1 - 1
00001 => [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
00010 => [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
00011 => [3,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
00100 => [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
00101 => [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
00110 => [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
00111 => [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
01000 => [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
01001 => [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
01010 => [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
01011 => [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
01100 => [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
01101 => [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
01110 => [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
01111 => [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
10000 => [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
10001 => [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
10010 => [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
10011 => [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
10100 => [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
10101 => [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
10110 => [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
10111 => [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
11000 => [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
11001 => [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
11010 => [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
11011 => [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
11100 => [3,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
11111 => [5] => [1] => [1,0]
=> ? = 1 - 1
000000 => [6] => [1] => [1,0]
=> ? = 1 - 1
111111 => [6] => [1] => [1,0]
=> ? = 1 - 1
0000000 => [7] => [1] => [1,0]
=> ? = 1 - 1
1111111 => [7] => [1] => [1,0]
=> ? = 1 - 1
00000000 => [8] => [1] => [1,0]
=> ? = 1 - 1
01010101 => [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8 - 1
10101010 => [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8 - 1
11111111 => [8] => [1] => [1,0]
=> ? = 1 - 1
000000000 => [9] => [1] => [1,0]
=> ? = 1 - 1
010100101 => [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4 - 1
010101001 => [1,1,1,1,1,1,2,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 - 1
010101010 => [1,1,1,1,1,1,1,1,1] => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 9 - 1
010101011 => [1,1,1,1,1,1,1,2] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7 - 1
010101101 => [1,1,1,1,1,2,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5 - 1
010110101 => [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 - 1
101001010 => [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 - 1
101010010 => [1,1,1,1,1,2,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5 - 1
101010100 => [1,1,1,1,1,1,1,2] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7 - 1
101010101 => [1,1,1,1,1,1,1,1,1] => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 9 - 1
101010110 => [1,1,1,1,1,1,2,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 - 1
101011010 => [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4 - 1
111111111 => [9] => [1] => [1,0]
=> ? = 1 - 1
Description
The maximal area to the right of an up step of a Dyck path.
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
St001235: Integer compositions ⟶ ℤResult quality: 67% values known / values provided: 91%distinct values known / distinct values provided: 67%
Values
0 => [1] => [1] => [1] => 1
1 => [1] => [1] => [1] => 1
00 => [2] => [1] => [1] => 1
01 => [1,1] => [2] => [1,1] => 2
10 => [1,1] => [2] => [1,1] => 2
11 => [2] => [1] => [1] => 1
000 => [3] => [1] => [1] => 1
001 => [2,1] => [1,1] => [2] => 1
010 => [1,1,1] => [3] => [1,1,1] => 3
011 => [1,2] => [1,1] => [2] => 1
100 => [1,2] => [1,1] => [2] => 1
101 => [1,1,1] => [3] => [1,1,1] => 3
110 => [2,1] => [1,1] => [2] => 1
111 => [3] => [1] => [1] => 1
0000 => [4] => [1] => [1] => 1
0001 => [3,1] => [1,1] => [2] => 1
0010 => [2,1,1] => [1,2] => [1,2] => 2
0011 => [2,2] => [2] => [1,1] => 2
0100 => [1,1,2] => [2,1] => [2,1] => 2
0101 => [1,1,1,1] => [4] => [1,1,1,1] => 4
0110 => [1,2,1] => [1,1,1] => [3] => 1
0111 => [1,3] => [1,1] => [2] => 1
1000 => [1,3] => [1,1] => [2] => 1
1001 => [1,2,1] => [1,1,1] => [3] => 1
1010 => [1,1,1,1] => [4] => [1,1,1,1] => 4
1011 => [1,1,2] => [2,1] => [2,1] => 2
1100 => [2,2] => [2] => [1,1] => 2
1101 => [2,1,1] => [1,2] => [1,2] => 2
1110 => [3,1] => [1,1] => [2] => 1
1111 => [4] => [1] => [1] => 1
00000 => [5] => [1] => [1] => 1
00001 => [4,1] => [1,1] => [2] => 1
00010 => [3,1,1] => [1,2] => [1,2] => 2
00011 => [3,2] => [1,1] => [2] => 1
00100 => [2,1,2] => [1,1,1] => [3] => 1
00101 => [2,1,1,1] => [1,3] => [1,1,2] => 3
00110 => [2,2,1] => [2,1] => [2,1] => 2
00111 => [2,3] => [1,1] => [2] => 1
01000 => [1,1,3] => [2,1] => [2,1] => 2
01001 => [1,1,2,1] => [2,1,1] => [3,1] => 2
01010 => [1,1,1,1,1] => [5] => [1,1,1,1,1] => 5
01011 => [1,1,1,2] => [3,1] => [2,1,1] => 3
01100 => [1,2,2] => [1,2] => [1,2] => 2
01101 => [1,2,1,1] => [1,1,2] => [1,3] => 2
01110 => [1,3,1] => [1,1,1] => [3] => 1
01111 => [1,4] => [1,1] => [2] => 1
10000 => [1,4] => [1,1] => [2] => 1
10001 => [1,3,1] => [1,1,1] => [3] => 1
10010 => [1,2,1,1] => [1,1,2] => [1,3] => 2
10011 => [1,2,2] => [1,2] => [1,2] => 2
0101010 => [1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => ? = 7
1010101 => [1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => ? = 7
00101010 => [2,1,1,1,1,1,1] => [1,6] => [1,1,1,1,1,2] => ? = 6
01001010 => [1,1,2,1,1,1,1] => [2,1,4] => [1,1,1,3,1] => ? = 4
01010010 => [1,1,1,1,2,1,1] => [4,1,2] => [1,3,1,1,1] => ? = 4
01010100 => [1,1,1,1,1,1,2] => [6,1] => [2,1,1,1,1,1] => ? = 6
01010101 => [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1] => ? = 8
01010110 => [1,1,1,1,1,2,1] => [5,1,1] => [3,1,1,1,1] => ? = 5
01011010 => [1,1,1,2,1,1,1] => [3,1,3] => [1,1,3,1,1] => ? = 3
01101010 => [1,2,1,1,1,1,1] => [1,1,5] => [1,1,1,1,3] => ? = 5
10010101 => [1,2,1,1,1,1,1] => [1,1,5] => [1,1,1,1,3] => ? = 5
10100101 => [1,1,1,2,1,1,1] => [3,1,3] => [1,1,3,1,1] => ? = 3
10101001 => [1,1,1,1,1,2,1] => [5,1,1] => [3,1,1,1,1] => ? = 5
10101010 => [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1] => ? = 8
10101011 => [1,1,1,1,1,1,2] => [6,1] => [2,1,1,1,1,1] => ? = 6
10101101 => [1,1,1,1,2,1,1] => [4,1,2] => [1,3,1,1,1] => ? = 4
10110101 => [1,1,2,1,1,1,1] => [2,1,4] => [1,1,1,3,1] => ? = 4
11010101 => [2,1,1,1,1,1,1] => [1,6] => [1,1,1,1,1,2] => ? = 6
000101010 => [3,1,1,1,1,1,1] => [1,6] => [1,1,1,1,1,2] => ? = 6
001001010 => [2,1,2,1,1,1,1] => [1,1,1,4] => [1,1,1,4] => ? = 4
001010010 => [2,1,1,1,2,1,1] => [1,3,1,2] => [1,3,1,2] => ? = 3
001010100 => [2,1,1,1,1,1,2] => [1,5,1] => [2,1,1,1,2] => ? = 5
001010101 => [2,1,1,1,1,1,1,1] => [1,7] => [1,1,1,1,1,1,2] => ? = 7
001010110 => [2,1,1,1,1,2,1] => [1,4,1,1] => [3,1,1,2] => ? = 4
001011010 => [2,1,1,2,1,1,1] => [1,2,1,3] => [1,1,3,2] => ? = 3
001101010 => [2,2,1,1,1,1,1] => [2,5] => [1,1,1,1,2,1] => ? = 5
010001010 => [1,1,3,1,1,1,1] => [2,1,4] => [1,1,1,3,1] => ? = 4
010010010 => [1,1,2,1,2,1,1] => [2,1,1,1,2] => [1,5,1] => ? = 2
010010100 => [1,1,2,1,1,1,2] => [2,1,3,1] => [2,1,3,1] => ? = 3
010010101 => [1,1,2,1,1,1,1,1] => [2,1,5] => [1,1,1,1,3,1] => ? = 5
010010110 => [1,1,2,1,1,2,1] => [2,1,2,1,1] => [3,3,1] => ? = 2
010011010 => [1,1,2,2,1,1,1] => [2,2,3] => [1,1,2,2,1] => ? = 3
010100010 => [1,1,1,1,3,1,1] => [4,1,2] => [1,3,1,1,1] => ? = 4
010100100 => [1,1,1,1,2,1,2] => [4,1,1,1] => [4,1,1,1] => ? = 4
010100101 => [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,3,1,1,1] => ? = 4
010100110 => [1,1,1,1,2,2,1] => [4,2,1] => [2,2,1,1,1] => ? = 4
010101000 => [1,1,1,1,1,1,3] => [6,1] => [2,1,1,1,1,1] => ? = 6
010101001 => [1,1,1,1,1,1,2,1] => [6,1,1] => [3,1,1,1,1,1] => ? = 6
010101010 => [1,1,1,1,1,1,1,1,1] => [9] => [1,1,1,1,1,1,1,1,1] => ? = 9
010101011 => [1,1,1,1,1,1,1,2] => [7,1] => [2,1,1,1,1,1,1] => ? = 7
010101100 => [1,1,1,1,1,2,2] => [5,2] => [1,2,1,1,1,1] => ? = 5
010101101 => [1,1,1,1,1,2,1,1] => [5,1,2] => [1,3,1,1,1,1] => ? = 5
010101110 => [1,1,1,1,1,3,1] => [5,1,1] => [3,1,1,1,1] => ? = 5
010110010 => [1,1,1,2,2,1,1] => [3,2,2] => [1,2,2,1,1] => ? = 3
010110100 => [1,1,1,2,1,1,2] => [3,1,2,1] => [2,3,1,1] => ? = 3
010110101 => [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,3,1,1] => ? = 4
010110110 => [1,1,1,2,1,2,1] => [3,1,1,1,1] => [5,1,1] => ? = 3
010111010 => [1,1,1,3,1,1,1] => [3,1,3] => [1,1,3,1,1] => ? = 3
011001010 => [1,2,2,1,1,1,1] => [1,2,4] => [1,1,1,2,2] => ? = 4
011010010 => [1,2,1,1,2,1,1] => [1,1,2,1,2] => [1,3,3] => ? = 2
Description
The global dimension of the corresponding Comp-Nakayama algebra. We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Matching statistic: St001330
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00203: Graphs coneGraphs
St001330: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 78%
Values
0 => [1] => ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
1 => [1] => ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
00 => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
01 => [1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
10 => [1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
11 => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
000 => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
001 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
011 => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
100 => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
110 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
111 => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
0000 => [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
0010 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
0011 => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
0110 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
0111 => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1000 => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1100 => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1110 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1111 => [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
00000 => [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
00100 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
00110 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
00111 => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
01001 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
01100 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
01101 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
01110 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
01111 => [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
10000 => [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
10001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
10011 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
10110 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
11000 => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
11001 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
11011 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
11100 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
11111 => [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
000000 => [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
000010 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
000110 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
111111 => [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
0000000 => [7] => ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 1 + 1
0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 8 = 7 + 1
1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 8 = 7 + 1
1111111 => [7] => ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 1 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000475
Mp00262: Binary words poset of factorsPosets
Mp00332: Posets Jordan block partitionInteger partitions
St000475: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 33%
Values
0 => ([(0,1)],2)
=> [2]
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> [2]
=> 0 = 1 - 1
00 => ([(0,2),(2,1)],3)
=> [3]
=> 0 = 1 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
11 => ([(0,2),(2,1)],3)
=> [3]
=> 0 = 1 - 1
000 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0 = 1 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 0 = 1 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,1,1]
=> 2 = 3 - 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 0 = 1 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 0 = 1 - 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,1,1]
=> 2 = 3 - 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 0 = 1 - 1
111 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0 = 1 - 1
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 0 = 1 - 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 1 - 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ?
=> ? = 2 - 1
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ? = 2 - 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ?
=> ? = 2 - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ?
=> ? = 4 - 1
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ?
=> ? = 1 - 1
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 1 - 1
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 1 - 1
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ?
=> ? = 1 - 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ?
=> ? = 4 - 1
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ?
=> ? = 2 - 1
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ? = 2 - 1
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ?
=> ? = 2 - 1
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 1 - 1
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 0 = 1 - 1
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 0 = 1 - 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1 - 1
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 2 - 1
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 1 - 1
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ?
=> ? = 1 - 1
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 3 - 1
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 1 - 1
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 2 - 1
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 2 - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ?
=> ? = 5 - 1
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 3 - 1
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 2 - 1
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ?
=> ? = 1 - 1
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1 - 1
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1 - 1
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ?
=> ? = 1 - 1
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 2 - 1
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 3 - 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ?
=> ? = 5 - 1
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 2 - 1
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 2 - 1
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 1 - 1
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 3 - 1
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ?
=> ? = 1 - 1
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 1 - 1
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 2 - 1
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1 - 1
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 0 = 1 - 1
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 0 = 1 - 1
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 1 - 1
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ?
=> ? = 2 - 1
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 1 - 1
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ?
=> ? = 1 - 1
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ?
=> ? = 3 - 1
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ?
=> ? = 1 - 1
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 0 = 1 - 1
Description
The number of parts equal to 1 in a partition.
Mp00158: Binary words alternating inverseBinary words
Mp00262: Binary words poset of factorsPosets
St000907: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 67%
Values
0 => 0 => ([(0,1)],2)
=> 2 = 1 + 1
1 => 1 => ([(0,1)],2)
=> 2 = 1 + 1
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
01 => 00 => ([(0,2),(2,1)],3)
=> 3 = 2 + 1
10 => 11 => ([(0,2),(2,1)],3)
=> 3 = 2 + 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
0000 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1 + 1
0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 + 1
0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 + 1
0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
0110 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
0111 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 + 1
1000 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 + 1
1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 + 1
1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
1110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 + 1
1111 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1 + 1
00000 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 1 + 1
00001 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 + 1
00010 => 01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
00011 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 1 + 1
00100 => 01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 1 + 1
00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 + 1
00110 => 01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 1
00111 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 1 + 1
01000 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
01011 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 + 1
01100 => 00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 1
01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
01110 => 00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 1 + 1
01111 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 + 1
10000 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 + 1
10001 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 1 + 1
10010 => 11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
10011 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 1
10100 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 + 1
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
10110 => 11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
10111 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
11000 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 1 + 1
11001 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 1
11010 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 + 1
11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 1 + 1
11100 => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 1 + 1
11101 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
11110 => 10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 + 1
11111 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 1 + 1
000000 => 010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 1 + 1
000001 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 + 1
000010 => 010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 2 + 1
000011 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ? = 1 + 1
000100 => 010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 1 + 1
000101 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 3 + 1
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
Description
The number of maximal antichains of minimal length in a poset.
The following 7 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001354The number of series nodes in the modular decomposition of a graph. St000553The number of blocks of a graph. St000552The number of cut vertices of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001691The number of kings in a graph.