searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000907
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 1
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 1
([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> 1
([],4)
=> 1
([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 3
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> 1
([(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(4,2)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(2,3),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 2
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
Description
The number of maximal antichains of minimal length in a poset.
Matching statistic: St000160
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
St000160: Integer partitions ⟶ ℤResult quality: 54% ●values known / values provided: 64%●distinct values known / distinct values provided: 54%
Mp00251: Graphs —clique sizes⟶ Integer partitions
St000160: Integer partitions ⟶ ℤResult quality: 54% ●values known / values provided: 64%●distinct values known / distinct values provided: 54%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 3
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> ? = 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? = 1
([(1,5),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> ? = 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> ? = 3
([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> ? = 5
([(0,5),(1,5),(2,3),(5,4)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? = 4
([(0,5),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> ? = 2
([(0,5),(1,5),(2,3),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> ? = 3
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> ? = 4
([(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? = 5
([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> ? = 7
([(1,5),(2,3),(2,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> ? = 2
([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? = 1
([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> ? = 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> ? = 1
([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> ? = 2
([(0,4),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? = 4
([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> ? = 3
([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? = 4
([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> ? = 2
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> ? = 7
([(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? = 5
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> ? = 8
([(0,5),(1,3),(1,4),(5,2)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> ? = 3
([(0,4),(1,3),(1,5),(4,2),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> ? = 5
([(1,3),(2,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? = 6
([(0,4),(1,5),(5,2),(5,3)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? = 4
([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? = 1
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? = 9
([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> ? = 7
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> ? = 8
([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> ? = 6
([(0,5),(1,4),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? = 5
([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> ? = 7
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> ? = 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? = 1
([(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? = 5
([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? = 4
([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> ? = 7
([(0,5),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? = 1
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> ? = 8
([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> ? = 2
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> ? = 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,1]
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,1]
=> ? = 1
([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,1]
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,1]
=> ? = 1
([(2,4),(2,5),(2,6),(6,3)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,3]
=> ? = 1
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,2]
=> ? = 1
Description
The multiplicity of the smallest part of a partition.
This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$.
The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences
\begin{align*}
spt(5n+4) &\equiv 0\quad \pmod{5}\\\
spt(7n+5) &\equiv 0\quad \pmod{7}\\\
spt(13n+6) &\equiv 0\quad \pmod{13},
\end{align*}
analogous to those of the counting function of partitions, see [1] and [2].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!