searching the database
Your data matches 596 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000001
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000001: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000001: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => 3
Description
The number of reduced words for a permutation.
This is the number of ways to write a permutation as a minimal length product of simple transpositions. E.g., there are two reduced words for the permutation $[3,2,1]$, which are $(1,2)(2,3)(1,2) = (2,3)(1,2)(2,3)$.
Matching statistic: St000880
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000880: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000880: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => 3
Description
The number of connected components of long braid edges in the graph of braid moves of a permutation.
Given a permutation $\pi$, let $\operatorname{Red}(\pi)$ denote the set of reduced words for $\pi$ in terms of simple transpositions $s_i = (i,i+1)$. We now say that two reduced words are connected by a long braid move if they are obtained from each other by a modification of the form $s_i s_{i+1} s_i \leftrightarrow s_{i+1} s_i s_{i+1}$ as a consecutive subword of a reduced word.
For example, the two reduced words $s_1s_3s_2s_3$ and $s_1s_2s_3s_2$ for
$$(124) = (12)(34)(23)(34) = (12)(23)(34)(23)$$
share an edge because they are obtained from each other by interchanging $s_3s_2s_3 \leftrightarrow s_3s_2s_3$.
This statistic counts the number connected components of such long braid moves among all reduced words.
Matching statistic: St000407
(load all 33 compositions to match this statistic)
(load all 33 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000407: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000407: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1,3] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => 2 = 3 - 1
Description
The number of occurrences of the pattern 2143 in a permutation.
A permutation $\pi$ avoids this pattern if and only if it is ''vexillary'' as introduced in [1].
Matching statistic: St000751
(load all 27 compositions to match this statistic)
(load all 27 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000751: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000751: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1,3] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => 2 = 3 - 1
Description
The number of occurrences of either of the pattern 2143 or 2143 in a permutation.
Matching statistic: St000881
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000881: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000881: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1,3] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => 2 = 3 - 1
Description
The number of short braid edges in the graph of braid moves of a permutation.
Given a permutation $\pi$, let $\operatorname{Red}(\pi)$ denote the set of reduced words for $\pi$ in terms of simple transpositions $s_i = (i,i+1)$. We now say that two reduced words are connected by a short braid move if they are obtained from each other by a modification of the form $s_i s_j \leftrightarrow s_j s_i$ for $|i-j| > 1$ as a consecutive subword of a reduced word.
For example, the two reduced words $s_1s_3s_2$ and $s_3s_1s_2$ for
$$(1243) = (12)(34)(23) = (34)(12)(23)$$
share an edge because they are obtained from each other by interchanging $s_1s_3 \leftrightarrow s_3s_1$.
This statistic counts the number of such short braid moves among all reduced words.
Matching statistic: St001140
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001140: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001140: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
Description
Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St000278
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000278: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000278: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,2]
=> 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,1,1]
=> 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,3]
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [5,2,2]
=> 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,4,1]
=> 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> 3
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions.
This is the multinomial of the multiplicities of the parts, see [1].
This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$,
where $k$ is the number of parts of $\lambda$.
An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$
where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
Matching statistic: St000570
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000570: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000570: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,6,5,4] => 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,5,4,3,6] => 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,6,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,3,2,4,6,5] => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [1,3,2,6,5,4] => 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [1,4,3,2,5,6] => 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => [1,4,3,2,6,5] => 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [1,5,4,3,2,6] => 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [1,6,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [2,1,3,4,6,5] => 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [2,1,3,5,4,6] => 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => [2,1,3,6,5,4] => 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [2,1,4,3,5,6] => 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [2,1,5,4,3,6] => 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [3,2,1,4,5,6] => 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => [3,2,1,4,6,5] => 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => [3,2,1,5,4,6] => 3
Description
The Edelman-Greene number of a permutation.
This is the sum of the coefficients of the expansion of the Stanley symmetric function $F_\omega$ in Schur functions. Equivalently, this is the number of semistandard tableaux whose column words - obtained by reading up columns starting with the leftmost - are reduced words for $\omega$.
Matching statistic: St000123
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000123: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000123: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,1,2] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,1,2] => 2 = 3 - 1
Description
The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map.
The Simion-Schmidt map takes a permutation and turns each occcurrence of [3,2,1] into an occurrence of [3,1,2], thus reducing the number of inversions of the permutation. This statistic records the difference in length of the permutation and its image.
Apparently, this statistic can be described as the number of occurrences of the mesh pattern ([3,2,1], {(0,3),(0,2)}). Equivalent mesh patterns are ([3,2,1], {(0,2),(1,2)}), ([3,2,1], {(0,3),(1,3)}) and ([3,2,1], {(1,2),(1,3)}).
Matching statistic: St000175
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,2]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,1,1]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,3]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [5,2,2]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,4,1]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> 2 = 3 - 1
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape.
Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial
$$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$
The statistic of the degree of this polynomial.
For example, the partition $(3, 2, 1, 1, 1)$ gives
$$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$
which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$.
This is the same as the number of unordered pairs of different parts, which follows from:
$$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
The following 586 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000235The number of indices that are not cyclical small weak excedances. St000449The number of pairs of vertices of a graph with distance 4. St000592The number of occurrences of the pattern {{1},{2},{3}} such that 1 is maximal. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St001305The number of induced cycles on four vertices in a graph. St001705The number of occurrences of the pattern 2413 in a permutation. St000071The number of maximal chains in a poset. St000909The number of maximal chains of maximal size in a poset. St000910The number of maximal chains of minimal length in a poset. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001510The number of self-evacuating linear extensions of a finite poset. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000355The number of occurrences of the pattern 21-3. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000586The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal. St000599The number of occurrences of the pattern {{1},{2,3}} such that (2,3) are consecutive in a block. St000673The number of non-fixed points of a permutation. St000708The product of the parts of an integer partition. St000824The sum of the number of descents and the number of recoils of a permutation. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000933The number of multipartitions of sizes given by an integer partition. St001083The number of boxed occurrences of 132 in a permutation. St001279The sum of the parts of an integer partition that are at least two. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001458The rank of the adjacency matrix of a graph. St001464The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise. St001584The area statistic between a Dyck path and its bounce path. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St001389The number of partitions of the same length below the given integer partition. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001271The competition number of a graph. St001722The number of minimal chains with small intervals between a binary word and the top element. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000632The jump number of the poset. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001095The number of non-isomorphic posets with precisely one further covering relation. St001964The interval resolution global dimension of a poset. St001330The hat guessing number of a graph. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001856The number of edges in the reduced word graph of a permutation. St000039The number of crossings of a permutation. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St000951The dimension of $Ext^{1}(D(A),A)$ of the corresponding LNakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001811The Castelnuovo-Mumford regularity of a permutation. St000238The number of indices that are not small weak excedances. St000240The number of indices that are not small excedances. St000242The number of indices that are not cyclical small weak excedances. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000842The breadth of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000297The number of leading ones in a binary word. St000392The length of the longest run of ones in a binary word. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000292The number of ascents of a binary word. St000390The number of runs of ones in a binary word. St000181The number of connected components of the Hasse diagram for the poset. St000260The radius of a connected graph. St000456The monochromatic index of a connected graph. St000635The number of strictly order preserving maps of a poset into itself. St001890The maximum magnitude of the Möbius function of a poset. St000259The diameter of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000662The staircase size of the code of a permutation. St000741The Colin de Verdière graph invariant. St000862The number of parts of the shifted shape of a permutation. St000982The length of the longest constant subword. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001545The second Elser number of a connected graph. St001896The number of right descents of a signed permutations. St001769The reflection length of a signed permutation. St001862The number of crossings of a signed permutation. St001864The number of excedances of a signed permutation. St001895The oddness of a signed permutation. St000405The number of occurrences of the pattern 1324 in a permutation. St001868The number of alignments of type NE of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001866The nesting alignments of a signed permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001875The number of simple modules with projective dimension at most 1. St000068The number of minimal elements in a poset. St001394The genus of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000454The largest eigenvalue of a graph if it is integral. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000035The number of left outer peaks of a permutation. St000422The energy of a graph, if it is integral. St000647The number of big descents of a permutation. St000884The number of isolated descents of a permutation. St001044The number of pairs whose larger element is at most one more than half the size of the perfect matching. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000381The largest part of an integer composition. St000806The semiperimeter of the associated bargraph. St001597The Frobenius rank of a skew partition. St000617The number of global maxima of a Dyck path. St000660The number of rises of length at least 3 of a Dyck path. St001104The number of descents of the invariant in a tensor power of the adjoint representation of the rank two general linear group. St000291The number of descents of a binary word. St001532The leading coefficient of the Poincare polynomial of the poset cone. St000245The number of ascents of a permutation. St001396Number of triples of incomparable elements in a finite poset. St001624The breadth of a lattice. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000352The Elizalde-Pak rank of a permutation. St000627The exponent of a binary word. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000996The number of exclusive left-to-right maxima of a permutation. St001115The number of even descents of a permutation. St000366The number of double descents of a permutation. St000834The number of right outer peaks of a permutation. St000983The length of the longest alternating subword. St001260The permanent of an alternating sign matrix. St001863The number of weak excedances of a signed permutation. St000308The height of the tree associated to a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St000902 The minimal number of repetitions of an integer composition. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001413Half the length of the longest even length palindromic prefix of a binary word. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001712The number of natural descents of a standard Young tableau. St001768The number of reduced words of a signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001935The number of ascents in a parking function. St001946The number of descents in a parking function. St001960The number of descents of a permutation minus one if its first entry is not one. St000904The maximal number of repetitions of an integer composition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001668The number of points of the poset minus the width of the poset. St001715The number of non-records in a permutation. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001845The number of join irreducibles minus the rank of a lattice. St001948The number of augmented double ascents of a permutation. St000155The number of exceedances (also excedences) of a permutation. St000213The number of weak exceedances (also weak excedences) of a permutation. St000443The number of long tunnels of a Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St000023The number of inner peaks of a permutation. St000120The number of left tunnels of a Dyck path. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St000317The cycle descent number of a permutation. St000335The difference of lower and upper interactions. St000353The number of inner valleys of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000445The number of rises of length 1 of a Dyck path. St000486The number of cycles of length at least 3 of a permutation. St000534The number of 2-rises of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000654The first descent of a permutation. St000657The smallest part of an integer composition. St000711The number of big exceedences of a permutation. St000761The number of ascents in an integer composition. St000768The number of peaks in an integer composition. St000779The tier of a permutation. St000805The number of peaks of the associated bargraph. St000807The sum of the heights of the valleys of the associated bargraph. St000876The number of factors in the Catalan decomposition of a binary word. St000900The minimal number of repetitions of a part in an integer composition. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001162The minimum jump of a permutation. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001263The index of the maximal parabolic seaweed algebra associated with the composition. St001267The length of the Lyndon factorization of the binary word. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001335The cardinality of a minimal cycle-isolating set of a graph. St001344The neighbouring number of a permutation. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001423The number of distinct cubes in a binary word. St001437The flex of a binary word. St001470The cyclic holeyness of a permutation. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001518The number of graphs with the same ordinary spectrum as the given graph. St001537The number of cyclic crossings of a permutation. St001557The number of inversions of the second entry of a permutation. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001728The number of invisible descents of a permutation. St001821The sorting index of a signed permutation. St001823The Stasinski-Voll length of a signed permutation. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001884The number of borders of a binary word. St001904The length of the initial strictly increasing segment of a parking function. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St000015The number of peaks of a Dyck path. St000021The number of descents of a permutation. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000331The number of upper interactions of a Dyck path. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000354The number of recoils of a permutation. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000406The number of occurrences of the pattern 3241 in a permutation. St000461The rix statistic of a permutation. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000516The number of stretching pairs of a permutation. St000542The number of left-to-right-minima of a permutation. St000619The number of cyclic descents of a permutation. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000629The defect of a binary word. St000648The number of 2-excedences of a permutation. St000666The number of right tethers of a permutation. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000702The number of weak deficiencies of a permutation. St000710The number of big deficiencies of a permutation. St000732The number of double deficiencies of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000754The Grundy value for the game of removing nestings in a perfect matching. St000758The length of the longest staircase fitting into an integer composition. St000829The Ulam distance of a permutation to the identity permutation. St000877The depth of the binary word interpreted as a path. St000898The number of maximal entries in the last diagonal of the monotone triangle. St000899The maximal number of repetitions of an integer composition. St000942The number of critical left to right maxima of the parking functions. St000991The number of right-to-left minima of a permutation. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001060The distinguishing index of a graph. St001061The number of indices that are both descents and recoils of a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001152The number of pairs with even minimum in a perfect matching. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001415The length of the longest palindromic prefix of a binary word. St001462The number of factors of a standard tableaux under concatenation. St001489The maximum of the number of descents and the number of inverse descents. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001517The length of a longest pair of twins in a permutation. St001520The number of strict 3-descents. St001530The depth of a Dyck path. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001565The number of arithmetic progressions of length 2 in a permutation. St001589The nesting number of a perfect matching. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001625The Möbius invariant of a lattice. St001665The number of pure excedances of a permutation. St001667The maximal size of a pair of weak twins for a permutation. St001729The number of visible descents of a permutation. St001734The lettericity of a graph. St001741The largest integer such that all patterns of this size are contained in the permutation. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001812The biclique partition number of a graph. St001847The number of occurrences of the pattern 1432 in a permutation. St001867The number of alignments of type EN of a signed permutation. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001928The number of non-overlapping descents in a permutation. St000062The length of the longest increasing subsequence of the permutation. St000083The number of left oriented leafs of a binary tree except the first one. St000168The number of internal nodes of an ordered tree. St000316The number of non-left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000332The positive inversions of an alternating sign matrix. St000470The number of runs in a permutation. St000746The number of pairs with odd minimum in a perfect matching. St000864The number of circled entries of the shifted recording tableau of a permutation. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001298The number of repeated entries in the Lehmer code of a permutation. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001566The length of the longest arithmetic progression in a permutation. St001649The length of a longest trail in a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000024The number of double up and double down steps of a Dyck path. St000144The pyramid weight of the Dyck path. St000863The length of the first row of the shifted shape of a permutation. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001872The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001874Lusztig's a-function for the symmetric group. St000264The girth of a graph, which is not a tree. St000284The Plancherel distribution on integer partitions. St000618The number of self-evacuating tableaux of given shape. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St000934The 2-degree of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001280The number of parts of an integer partition that are at least two. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001568The smallest positive integer that does not appear twice in the partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000717The number of ordinal summands of a poset. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000907The number of maximal antichains of minimal length in a poset. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001301The first Betti number of the order complex associated with the poset. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001525The number of symmetric hooks on the diagonal of a partition. St001561The value of the elementary symmetric function evaluated at 1. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001720The minimal length of a chain of small intervals in a lattice. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001820The size of the image of the pop stack sorting operator. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St000069The number of maximal elements of a poset. St000911The number of maximal antichains of maximal size in a poset. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001429The number of negative entries in a signed permutation. St001613The binary logarithm of the size of the center of a lattice. St001635The trace of the square of the Coxeter matrix of the incidence algebra of a poset. St001881The number of factors of a lattice as a Cartesian product of lattices. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000417The size of the automorphism group of the ordered tree. St000451The length of the longest pattern of the form k 1 2. St000546The number of global descents of a permutation. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000679The pruning number of an ordered tree. St001058The breadth of the ordered tree. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001616The number of neutral elements in a lattice. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001892The flag excedance statistic of a signed permutation. St000906The length of the shortest maximal chain in a poset. St000253The crossing number of a set partition. St000254The nesting number of a set partition. St000383The last part of an integer composition. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000661The number of rises of length 3 of a Dyck path. St000674The number of hills of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000730The maximal arc length of a set partition. St000925The number of topologically connected components of a set partition. St000931The number of occurrences of the pattern UUU in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St001050The number of terminal closers of a set partition. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St000124The cardinality of the preimage of the Simion-Schmidt map. St000232The number of crossings of a set partition. St000233The number of nestings of a set partition. St000247The number of singleton blocks of a set partition. St000251The number of nonsingleton blocks of a set partition. St000396The register function (or Horton-Strahler number) of a binary tree. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000491The number of inversions of a set partition. St000496The rcs statistic of a set partition. St000497The lcb statistic of a set partition. St000555The number of occurrences of the pattern {{1,3},{2}} in a set partition. St000557The number of occurrences of the pattern {{1},{2},{3}} in a set partition. St000559The number of occurrences of the pattern {{1,3},{2,4}} in a set partition. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000562The number of internal points of a set partition. St000563The number of overlapping pairs of blocks of a set partition. St000565The major index of a set partition. St000572The dimension exponent of a set partition. St000573The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton and 2 a maximal element. St000575The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element and 2 a singleton. St000576The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal and 2 a minimal element. St000578The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton. St000580The number of occurrences of the pattern {{1},{2},{3}} such that 2 is minimal, 3 is maximal. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000582The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000583The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 1, 2 are maximal. St000584The number of occurrences of the pattern {{1},{2},{3}} such that 1 is minimal, 3 is maximal. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000587The number of occurrences of the pattern {{1},{2},{3}} such that 1 is minimal. St000588The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are minimal, 2 is maximal. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000591The number of occurrences of the pattern {{1},{2},{3}} such that 2 is maximal. St000593The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000596The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 1 is maximal. St000600The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, (1,3) are consecutive in a block. St000602The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal. St000603The number of occurrences of the pattern {{1},{2},{3}} such that 2,3 are minimal. St000604The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 2 is maximal. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000608The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal, 3 is maximal. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000611The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000615The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are maximal. St000701The protection number of a binary tree. St000748The major index of the permutation obtained by flattening the set partition. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000981The length of the longest zigzag subpath. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001172The number of 1-rises at odd height of a Dyck path. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001669The number of single rises in a Dyck path. St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St000093The cardinality of a maximal independent set of vertices of a graph. St000385The number of vertices with out-degree 1 in a binary tree. St000444The length of the maximal rise of a Dyck path. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000007The number of saliances of the permutation. St000883The number of longest increasing subsequences of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000119The number of occurrences of the pattern 321 in a permutation. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000223The number of nestings in the permutation. St000237The number of small exceedances. St000895The number of ones on the main diagonal of an alternating sign matrix. St001434The number of negative sum pairs of a signed permutation. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St000441The number of successions of a permutation. St000891The number of distinct diagonal sums of a permutation matrix. St000696The number of cycles in the breakpoint graph of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000054The first entry of the permutation. St000153The number of adjacent cycles of a permutation. St000466The Gutman (or modified Schultz) index of a connected graph. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000665The number of rafts of a permutation. St000669The number of permutations obtained by switching ascents or descents of size 2. St000729The minimal arc length of a set partition. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St000359The number of occurrences of the pattern 23-1. St000447The number of pairs of vertices of a graph with distance 3. St000464The Schultz index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000878The number of ones minus the number of zeros of a binary word. St000920The logarithmic height of a Dyck path. St001075The minimal size of a block of a set partition. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001645The pebbling number of a connected graph. St001851The number of Hecke atoms of a signed permutation. St000013The height of a Dyck path. St000098The chromatic number of a graph. St000302The determinant of the distance matrix of a connected graph. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St000402Half the size of the symmetry class of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!