Your data matches 51 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000932: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> 1
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001484: Integer partitions ⟶ ℤResult quality: 80% values known / values provided: 80%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1]
=> ? = 5
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 4
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 4
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> ? = 2
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,1,1]
=> ? = 2
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1]
=> ? = 3
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,1,1]
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,1]
=> ? = 3
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,1]
=> ? = 3
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,1,1]
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2]
=> ? = 3
[1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,1,1]
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2]
=> ? = 3
[1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2]
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1,1]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1]
=> ? = 6
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,2,1,1]
=> ? = 3
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,1,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,1,1,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,1,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,2,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,2,1,1]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,1,1,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,1,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [7,6,3,2,1]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,2,1,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,2,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,2,1,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,3,2,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,2,1,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,2,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [7,6,3,2,1,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,1]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,1,1,1]
=> ? = 4
Description
The number of singletons of an integer partition. A singleton in an integer partition is a part that appear precisely once.
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001067: Dyck paths ⟶ ℤResult quality: 72% values known / values provided: 72%distinct values known / distinct values provided: 88%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1,1]
=> ?
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,1]
=> ?
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1,1]
=> ?
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,2,1]
=> ?
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,2,1,1]
=> ?
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,2,1,1]
=> ?
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [7,6,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,1,1]
=> ?
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,1,1]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [7,3,2,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0]
=> [7,5,4,2,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0,1,0]
=> [7,6,4,2,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [7,5,4,2,1,1]
=> ?
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0,1,0]
=> [7,4,2,1]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1,1]
=> ?
=> ? = 5
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,1,1,1]
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,1,1,1]
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,2,1,1]
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,2,1]
=> ?
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,3,2,1]
=> ?
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,2,2,1]
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,2,2,1]
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,2,2,1]
=> ?
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [7,6,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [6,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 3
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00284: Standard tableaux rowsSet partitions
St000502: Set partitions ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [[1,2]]
=> {{1,2}}
=> 1
[1,1,0,0]
=> [2,1] => [[1],[2]]
=> {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> {{1,2,3}}
=> 2
[1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> {{1,3},{2}}
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> {{1,2},{3}}
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> {{1,2,4},{3}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> {{1,3},{2,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> {{1,2,4},{3}}
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,7,6] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,4,6,8,7,5] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,4,7,6,5,8] => [[1,2,3,4,5,8],[6],[7]]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,4,7,6,8,5] => [[1,2,3,4,5,7],[6],[8]]
=> {{1,2,3,4,5,7},{6},{8}}
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,4,7,8,6,5] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,7,6,5] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,8,7,6] => [[1,2,3,4,6],[5,7],[8]]
=> {{1,2,3,4,6},{5,7},{8}}
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,3,5,6,8,7,4] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,3,5,7,6,4,8] => [[1,2,3,4,5,8],[6],[7]]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,3,5,7,6,8,4] => [[1,2,3,4,5,7],[6],[8]]
=> {{1,2,3,4,5,7},{6},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,3,5,7,8,6,4] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3,5,8,7,6,4] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,3,6,5,4,7,8] => [[1,2,3,4,7,8],[5],[6]]
=> {{1,2,3,4,7,8},{5},{6}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,3,6,5,4,8,7] => [[1,2,3,4,7],[5,8],[6]]
=> {{1,2,3,4,7},{5,8},{6}}
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,3,6,5,7,4,8] => [[1,2,3,4,6,8],[5],[7]]
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,3,6,5,7,8,4] => [[1,2,3,4,6,7],[5],[8]]
=> {{1,2,3,4,6,7},{5},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,3,6,5,8,7,4] => [[1,2,3,4,6],[5,7],[8]]
=> {{1,2,3,4,6},{5,7},{8}}
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,3,6,7,5,4,8] => [[1,2,3,4,5,8],[6],[7]]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,3,6,7,5,8,4] => [[1,2,3,4,5,7],[6],[8]]
=> {{1,2,3,4,5,7},{6},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,6,7,8,5,4] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,3,6,8,7,5,4] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,7,6,5,4,8] => [[1,2,3,4,8],[5],[6],[7]]
=> {{1,2,3,4,8},{5},{6},{7}}
=> ? = 3
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,3,7,6,5,8,4] => [[1,2,3,4,7],[5],[6],[8]]
=> {{1,2,3,4,7},{5},{6},{8}}
=> ? = 3
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,3,7,6,8,5,4] => [[1,2,3,4,6],[5],[7],[8]]
=> {{1,2,3,4,6},{5},{7},{8}}
=> ? = 3
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,7,8,6,5,4] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,7,6,5,4] => [[1,2,3,4],[5],[6],[7],[8]]
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,3,5,8,7,6] => [[1,2,3,5,6],[4,7],[8]]
=> {{1,2,3,5,6},{4,7},{8}}
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,8,7] => [[1,2,3,5,7],[4,6,8]]
=> {{1,2,3,5,7},{4,6,8}}
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,2,4,3,6,8,7,5] => [[1,2,3,5,6],[4,7],[8]]
=> {{1,2,3,5,6},{4,7},{8}}
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,7,6,5,8] => ?
=> ?
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,2,4,3,7,6,8,5] => [[1,2,3,5,7],[4,6],[8]]
=> {{1,2,3,5,7},{4,6},{8}}
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,2,4,3,7,8,6,5] => [[1,2,3,5,6],[4,7],[8]]
=> {{1,2,3,5,6},{4,7},{8}}
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,8,7,6,5] => [[1,2,3,5],[4,6],[7],[8]]
=> {{1,2,3,5},{4,6},{7},{8}}
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8] => ?
=> ?
=> ? = 5
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6,8,7] => ?
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,2,4,5,3,8,7,6] => [[1,2,3,4,6],[5,7],[8]]
=> {{1,2,3,4,6},{5,7},{8}}
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,6,8,7,3] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,2,4,5,7,6,3,8] => ?
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,2,4,5,7,6,8,3] => ?
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,2,4,5,7,8,6,3] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,2,4,5,8,7,6,3] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,2,4,6,5,3,7,8] => [[1,2,3,4,7,8],[5],[6]]
=> {{1,2,3,4,7,8},{5},{6}}
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,2,4,6,5,3,8,7] => ?
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,2,4,6,5,7,3,8] => ?
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,2,4,6,5,7,8,3] => ?
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,2,4,6,5,8,7,3] => ?
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,2,4,6,7,5,3,8] => [[1,2,3,4,5,8],[6],[7]]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,2,4,6,7,5,8,3] => ?
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,2,4,6,7,8,5,3] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,2,4,6,8,7,5,3] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
Description
The number of successions of a set partitions. This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
Matching statistic: St000504
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
St000504: Set partitions ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,3,4,5},{2}}
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,5},{2,4},{3}}
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> {{1,3,4},{2,5}}
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,4,5},{3}}
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1,3,4},{2},{5}}
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,5},{4}}
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,5},{3}}
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> {{1,4,5},{2,3}}
=> {{1,3,5},{2,4}}
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> 4 = 3 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> {{1,3},{2,4},{5}}
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,5,6,7,8},{2,4},{3}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,5,6,7,8},{2},{3,4}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,3,4,5,6,7},{2},{8}}
=> {{1,4,5,6,7},{2,3},{8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> {{1,2,3,4,5,6},{7},{8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2},{3},{4,5,6,7,8}}
=> {{1,5,6,7,8},{2},{3},{4}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1,3,6,7,8},{2,5},{4}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,6,7,8},{2,3,5},{4}}
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,4,5,6,7},{3},{8}}
=> {{1,2,5,6,7},{3,4},{8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> {{1},{2},{3,5,6,7,8},{4}}
=> {{1,6,7,8},{2,5},{3},{4}}
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> {{1},{2,8},{3,4,5,6,7}}
=> {{1,4,5,6,7},{2,8},{3}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> {{1,8},{2},{3,4,5,6,7}}
=> {{1,4,5,6,7},{2},{3,8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> {{1,7},{2,3,4,5,6},{8}}
=> {{1,3,4,5,6},{2,7},{8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2},{3},{4,5,6,7,8}}
=> {{1,2,5,6,7,8},{3},{4}}
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1},{2},{3,4,5,6,7},{8}}
=> {{1,4,5,6,7},{2},{3},{8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,5,6,7,8},{3},{4}}
=> {{1,2,6,7,8},{3},{4,5}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> {{1},{2,5,6,7,8},{3},{4}}
=> {{1,6,7,8},{2},{3,5},{4}}
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0]
=> {{1,8},{2,4,5,6,7},{3}}
=> {{1,5,6,7},{2,4},{3,8}}
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> {{1,2},{3,5,6,7,8},{4}}
=> {{1,2,6,7,8},{3,5},{4}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> {{1},{2,4,5,6,7},{3},{8}}
=> ?
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> {{1,8},{2,3,4,5,6},{7}}
=> {{1,3,4,5,6},{2},{7,8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,3},{2},{4,5,6,7,8}}
=> {{1,5,6,7,8},{2,3},{4}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2},{3,4,5,6,7},{8}}
=> {{1,2,4,5,6,7},{3},{8}}
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> {{1},{2,3,4,5,6},{7},{8}}
=> {{1,3,4,5,6},{2},{7},{8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> {{1,5,6,7,8},{2},{3},{4}}
=> {{1,6,7,8},{2},{3},{4,5}}
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,4,5,6,7},{2},{3},{8}}
=> {{1,5,6,7},{2},{3,4},{8}}
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> {{1,3,4,5,6},{2},{7},{8}}
=> {{1,4,5,6},{2,3},{7},{8}}
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> {{1,2,3,4,5},{6},{7},{8}}
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> {{1,6,7,8},{2},{3},{4},{5}}
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,3,4,7,8},{2,6},{5}}
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,3,4,6,7,8},{2},{5}}
=> {{1,4,7,8},{2,3,6},{5}}
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,5,6,7},{4},{8}}
=> {{1,2,3,6,7},{4,5},{8}}
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> {{1},{2},{3,4,6,7,8},{5}}
=> ?
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,4,6,7,8},{3},{5}}
=> {{1,2,7,8},{3,4,6},{5}}
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> {{1},{2,4,6,7,8},{3},{5}}
=> {{1,7,8},{2,4,6},{3},{5}}
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> {{1,8},{2,3,5,6,7},{4}}
=> {{1,3,6,7},{2,5},{4,8}}
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> {{1,2},{3,4,6,7,8},{5}}
=> {{1,2,4,7,8},{3,6},{5}}
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> {{1},{2,3,5,6,7},{4},{8}}
=> {{1,3,6,7},{2,5},{4},{8}}
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> {{1,4,6,7,8},{2},{3},{5}}
=> ?
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> {{1,3,5,6,7},{2},{4},{8}}
=> ?
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0]
=> {{1,2,4,5,6},{3},{7},{8}}
=> ?
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4,6,7,8},{5}}
=> {{1,7,8},{2,6},{3},{4},{5}}
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> {{1},{2,3,8},{4,5,6,7}}
=> ?
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> {{1,3,8},{2},{4,5,6,7}}
=> ?
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> {{1,2,7},{3,4,5,6},{8}}
=> {{1,2,4,5,6},{3,7},{8}}
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> {{1},{2},{3,8},{4,5,6,7}}
=> {{1,5,6,7},{2,8},{3},{4}}
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> {{1},{2,5,6,7,8},{3,4}}
=> {{1,4,6,7,8},{2,5},{3}}
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1},{2,3,4,5,6},{7,8}}
=> {{1,3,4,5,6,8},{2},{7}}
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> {{1,5,6,7,8},{2},{3,4}}
=> ?
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,4,5,6,7},{2,3},{8}}
=> {{1,3,5,6,7},{2,4},{8}}
=> ? = 4 + 1
Description
The cardinality of the first block of a set partition. The number of partitions of $\{1,\ldots,n\}$ into $k$ blocks in which the first block has cardinality $j+1$ is given by $\binom{n-1}{j}S(n-j-1,k-1)$, see [1, Theorem 1.1] and the references therein. Here, $S(n,k)$ are the ''Stirling numbers of the second kind'' counting all set partitions of $\{1,\ldots,n\}$ into $k$ blocks [2].
Mp00030: Dyck paths zeta mapDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 88%
Values
[1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 3
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Mp00028: Dyck paths reverseDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St000445: Dyck paths ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> ? = 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 3
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 3
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0,1,0]
=> ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0,1,0]
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 0
Description
The number of rises of length 1 of a Dyck path.
Matching statistic: St000475
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00079: Set partitions shapeInteger partitions
St000475: Integer partitions ⟶ ℤResult quality: 40% values known / values provided: 40%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> [2,1]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> [3]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> [2,1,1]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> [3,1]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> [2,2]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> [3,1]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> [4]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> [3,1,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> [2,2,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> [3,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> [4,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> [2,2,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> {{1,4,5},{2,3}}
=> [3,2]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> [2,2,1]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> [3,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> {{1,2,4,5},{3}}
=> [4,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> [3,2]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> [3,2]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> [4,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> [5]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,6},{2},{3},{4},{5}}
=> [2,1,1,1,1]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> {{1,5,6},{2},{3},{4}}
=> [3,1,1,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> {{1,6},{2},{3},{4,5}}
=> [2,2,1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> {{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> {{1,4,5,6},{2},{3}}
=> [4,1,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> {{1,6},{2},{3,4},{5}}
=> [2,2,1,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> {{1,5,6},{2},{3,4}}
=> [3,2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> {{1,6},{2},{3,5},{4}}
=> [2,2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> {{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> {{1,3,5,6},{2},{4}}
=> [4,1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> {{1,6},{2},{3,4,5}}
=> [3,2,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> {{1,3,6},{2},{4,5}}
=> [3,2,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> {{1,3,4,6},{2},{5}}
=> [4,1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> {{1,3,4,5,6},{2}}
=> [5,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> {{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> {{1,5,6},{2,3},{4}}
=> [3,2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> {{1,6},{2,3},{4,5}}
=> [2,2,2]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> {{1,4,6},{2,3},{5}}
=> [3,2,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> {{1,4,5,6},{2,3}}
=> [4,2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> {{1,6},{2,4},{3},{5}}
=> [2,2,1,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> {{1,5,6},{2,4},{3}}
=> [3,2,1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> {{1,6},{2,5},{3},{4}}
=> [2,2,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> {{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> {{1,2,5,6},{3},{4}}
=> [4,1,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> {{1,6},{2,4,5},{3}}
=> [3,2,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> {{1,2,6},{3},{4,5}}
=> [3,2,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> {{1,2,4,6},{3},{5}}
=> [4,1,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> {{1,2,4,5,6},{3}}
=> [5,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> {{1,6},{2,3,4},{5}}
=> [3,2,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4},{5,6},{7}}
=> ?
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> {{1,7,8},{2},{3},{4},{5,6}}
=> ?
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2},{3},{4},{6},{7}}
=> ?
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> {{1,5,8},{2},{3},{4},{6,7}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2},{3},{4,5},{6}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> {{1,8},{2},{3},{4,5},{6,7}}
=> ?
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> {{1,6,8},{2},{3},{4,5},{7}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4,6},{5},{7}}
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> {{1,7,8},{2},{3},{4,6},{5}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> {{1,8},{2},{3},{4,7},{5},{6}}
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> {{1,4,8},{2},{3},{5},{6},{7}}
=> ?
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> {{1,4,7,8},{2},{3},{5},{6}}
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> {{1,8},{2},{3},{4,6,7},{5}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> {{1,4,8},{2},{3},{5},{6,7}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> {{1,4,6,7,8},{2},{3},{5}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4,5,6},{7}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> {{1,7,8},{2},{3},{4,5,6}}
=> ?
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> {{1,8},{2},{3},{4,7},{5,6}}
=> ?
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> {{1,8},{2},{3},{4,5,7},{6}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> {{1,4,8},{2},{3},{5,7},{6}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> {{1,4,5,7,8},{2},{3},{6}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> {{1,8},{2},{3},{4,5,6,7}}
=> ?
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> ?
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2},{3,4},{5},{6}}
=> ?
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> {{1,8},{2},{3,4},{5},{6,7}}
=> ?
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> {{1,6,8},{2},{3,4},{5},{7}}
=> ?
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3,4},{5,6},{7}}
=> ?
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> {{1,8},{2},{3,4},{5,7},{6}}
=> ?
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2},{3,4},{6},{7}}
=> ?
=> ? = 3
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> {{1,5,6,7,8},{2},{3,4}}
=> ?
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2},{3,5},{4},{6}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> {{1,8},{2},{3,5},{4},{6,7}}
=> ?
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3,6},{4},{5},{7}}
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> {{1,7,8},{2},{3,6},{4},{5}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> {{1,8},{2},{3,7},{4},{5},{6}}
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> {{1,8},{2},{3,6,7},{4},{5}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5},{6,7}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> {{1,3,6,8},{2},{4},{5},{7}}
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> {{1,3,6,7,8},{2},{4},{5}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> {{1,8},{2},{3,5,6},{4},{7}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> {{1,8},{2},{3,7},{4},{5,6}}
=> ?
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5,6},{7}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> {{1,3,7,8},{2},{4},{5,6}}
=> ?
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> {{1,8},{2},{3,5,7},{4},{6}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5,7},{6}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> {{1,8},{2},{3,5,6,7},{4}}
=> ?
=> ? = 2
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> ?
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> {{1,6,7,8},{2},{3,4,5}}
=> ?
=> ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3,6},{4,5},{7}}
=> ?
=> ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> {{1,8},{2},{3,7},{4,5},{6}}
=> ?
=> ? = 2
Description
The number of parts equal to 1 in a partition.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000441: Permutations ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [[1,2]]
=> [1,2] => 1
[1,1,0,0]
=> [2,1] => [[1],[2]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> [1,2,3] => 2
[1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> [3,1,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> [3,1,2] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> [1,2,3,4] => 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> [4,1,2,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> [3,1,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> [4,1,2,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> [2,4,1,3] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> [3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> [4,1,2,3] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> [3,2,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> [4,2,1,3] => 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> [1,2,3,4,5] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> [3,1,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> [3,5,1,2,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> [2,5,1,3,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> [2,5,1,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> [3,1,2,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> [3,5,1,2,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [[1,2,3,4,6],[5,7]]
=> [5,7,1,2,3,4,6] => ? = 3
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [[1,2,3,4,7],[5],[6]]
=> [6,5,1,2,3,4,7] => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [[1,2,3,5,6],[4,7]]
=> [4,7,1,2,3,5,6] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [[1,2,3,5,6],[4,7]]
=> [4,7,1,2,3,5,6] => ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [[1,2,3,5],[4,6],[7]]
=> [7,4,6,1,2,3,5] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [[1,2,3,4,6],[5,7]]
=> [5,7,1,2,3,4,6] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,5,1,2,3,4,7] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [[1,2,3,6],[4,7],[5]]
=> [5,4,7,1,2,3,6] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [[1,2,3,5,7],[4],[6]]
=> [6,4,1,2,3,5,7] => ? = 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [[1,2,3,5],[4,6],[7]]
=> [7,4,6,1,2,3,5] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,5,1,2,3,4,7] => ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [[1,2,3,7],[4],[5],[6]]
=> [6,5,4,1,2,3,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [[1,2,3,6],[4],[5],[7]]
=> [7,5,4,1,2,3,6] => ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [[1,2,3,5],[4],[6],[7]]
=> [7,6,4,1,2,3,5] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [[1,2,4,5,6],[3,7]]
=> [3,7,1,2,4,5,6] => ? = 3
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [[1,2,4,5,6],[3,7]]
=> [3,7,1,2,4,5,6] => ? = 3
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [[1,2,4,5],[3,6],[7]]
=> [7,3,6,1,2,4,5] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [[1,2,4,6,7],[3,5]]
=> [3,5,1,2,4,6,7] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [[1,2,4,6],[3,5,7]]
=> [3,5,7,1,2,4,6] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [[1,2,4,5,6],[3,7]]
=> [3,7,1,2,4,5,6] => ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,6,4] => [[1,2,4,5],[3,6],[7]]
=> [7,3,6,1,2,4,5] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => [[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,5,7,4] => [[1,2,4,6],[3,5],[7]]
=> [7,3,5,1,2,4,6] => ? = 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,6,7,5,4] => [[1,2,4,5],[3,6],[7]]
=> [7,3,6,1,2,4,5] => ? = 2
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => [[1,2,4],[3,5],[6],[7]]
=> [7,6,3,5,1,2,4] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5,7,6] => [[1,2,3,5,6],[4,7]]
=> [4,7,1,2,3,5,6] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => [[1,2,3,5,6],[4,7]]
=> [4,7,1,2,3,5,6] => ? = 3
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,3,4,2,7,6,5] => [[1,2,3,5],[4,6],[7]]
=> [7,4,6,1,2,3,5] => ? = 2
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [[1,2,3,4,6],[5,7]]
=> [5,7,1,2,3,4,6] => ? = 3
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [[1,2,3,4,7],[5],[6]]
=> [6,5,1,2,3,4,7] => ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => [[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,4,2,7,6] => [[1,2,3,6],[4,7],[5]]
=> [5,4,7,1,2,3,6] => ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,4,6,2,7] => [[1,2,3,5,7],[4],[6]]
=> [6,4,1,2,3,5,7] => ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,4,7,6,2] => [[1,2,3,5],[4,6],[7]]
=> [7,4,6,1,2,3,5] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,5,6,4,2,7] => [[1,2,3,4,7],[5],[6]]
=> [6,5,1,2,3,4,7] => ? = 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [[1,2,3,7],[4],[5],[6]]
=> [6,5,4,1,2,3,7] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,5,4,7,2] => [[1,2,3,6],[4],[5],[7]]
=> [7,5,4,1,2,3,6] => ? = 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,5,7,4,2] => [[1,2,3,5],[4],[6],[7]]
=> [7,6,4,1,2,3,5] => ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,4,3,2,5,6,7] => [[1,2,5,6,7],[3],[4]]
=> [4,3,1,2,5,6,7] => ? = 3
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,4,3,2,5,7,6] => [[1,2,5,6],[3,7],[4]]
=> [4,3,7,1,2,5,6] => ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,4,3,2,6,5,7] => [[1,2,5,7],[3,6],[4]]
=> [4,3,6,1,2,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,4,3,2,6,7,5] => [[1,2,5,6],[3,7],[4]]
=> [4,3,7,1,2,5,6] => ? = 2
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,4,3,2,7,6,5] => [[1,2,5],[3,6],[4,7]]
=> [4,7,3,6,1,2,5] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => [[1,2,4,6,7],[3],[5]]
=> [5,3,1,2,4,6,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,3,5,2,7,6] => [[1,2,4,6],[3,7],[5]]
=> [5,3,7,1,2,4,6] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,3,5,6,2,7] => [[1,2,4,5,7],[3],[6]]
=> [6,3,1,2,4,5,7] => ? = 2
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,3,5,7,6,2] => [[1,2,4,5],[3,6],[7]]
=> [7,3,6,1,2,4,5] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,3,6,5,2,7] => [[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,3,6,5,7,2] => [[1,2,4,6],[3,5],[7]]
=> [7,3,5,1,2,4,6] => ? = 1
Description
The number of successions of a permutation. A succession of a permutation $\pi$ is an index $i$ such that $\pi(i)+1 = \pi(i+1)$. Successions are also known as ''small ascents'' or ''1-rises''.
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001223: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 75%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1,1]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,1]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 4
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 2
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
The following 41 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000931The number of occurrences of the pattern UUU in a Dyck path. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001061The number of indices that are both descents and recoils of a permutation. St000214The number of adjacencies of a permutation. St000237The number of small exceedances. St000247The number of singleton blocks of a set partition. St000925The number of topologically connected components of a set partition. St000248The number of anti-singletons of a set partition. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St000365The number of double ascents of a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001948The number of augmented double ascents of a permutation. St000022The number of fixed points of a permutation. St000366The number of double descents of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000374The number of exclusive right-to-left minima of a permutation. St000731The number of double exceedences of a permutation. St000153The number of adjacent cycles of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000221The number of strong fixed points of a permutation. St000239The number of small weak excedances. St000732The number of double deficiencies of a permutation. St000989The number of final rises of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000991The number of right-to-left minima of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001461The number of topologically connected components of the chord diagram of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000392The length of the longest run of ones in a binary word. St000982The length of the longest constant subword. St000314The number of left-to-right-maxima of a permutation. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra