searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000940
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
Description
The number of characters of the symmetric group whose value on the partition is zero.
The maximal value for any given size is recorded in [2].
Matching statistic: St001645
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Values
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 7
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? = 0 + 7
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 7
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 7
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 7
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 7
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 7
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 7
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 7
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 7
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 7
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 7
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0 + 7
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? = 0 + 7
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 7
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 0 + 7
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 7
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,3,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,3,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> [1,1,1,3,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,2,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
Description
The pebbling number of a connected graph.
Matching statistic: St001330
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 6%
Values
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
([(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!