Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00234: Binary words valleys-to-peaksBinary words
St000983: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 1 => 1
1 => 1 => 1
00 => 01 => 2
01 => 10 => 2
10 => 11 => 1
11 => 11 => 1
000 => 001 => 2
001 => 010 => 3
010 => 101 => 3
011 => 101 => 3
100 => 101 => 3
101 => 110 => 2
110 => 111 => 1
111 => 111 => 1
0000 => 0001 => 2
0001 => 0010 => 3
0010 => 0101 => 4
0011 => 0101 => 4
0100 => 1001 => 2
0101 => 1010 => 4
0110 => 1011 => 3
0111 => 1011 => 3
1000 => 1001 => 2
1001 => 1010 => 4
1010 => 1101 => 3
1011 => 1101 => 3
1100 => 1101 => 3
1101 => 1110 => 2
1110 => 1111 => 1
1111 => 1111 => 1
00000 => 00001 => 2
00001 => 00010 => 3
00010 => 00101 => 4
00011 => 00101 => 4
00100 => 01001 => 3
00101 => 01010 => 5
00110 => 01011 => 4
00111 => 01011 => 4
01000 => 10001 => 2
01001 => 10010 => 3
01010 => 10101 => 5
01011 => 10101 => 5
01100 => 10101 => 5
01101 => 10110 => 3
01110 => 10111 => 3
01111 => 10111 => 3
10000 => 10001 => 2
10001 => 10010 => 3
10010 => 10101 => 5
10011 => 10101 => 5
Description
The length of the longest alternating subword. This is the length of the longest consecutive subword of the form $010...$ or of the form $101...$.
Mp00234: Binary words valleys-to-peaksBinary words
Mp00158: Binary words alternating inverseBinary words
Mp00104: Binary words reverseBinary words
St000982: Binary words ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
0 => 1 => 1 => 1 => 1
1 => 1 => 1 => 1 => 1
00 => 01 => 00 => 00 => 2
01 => 10 => 11 => 11 => 2
10 => 11 => 10 => 01 => 1
11 => 11 => 10 => 01 => 1
000 => 001 => 011 => 110 => 2
001 => 010 => 000 => 000 => 3
010 => 101 => 111 => 111 => 3
011 => 101 => 111 => 111 => 3
100 => 101 => 111 => 111 => 3
101 => 110 => 100 => 001 => 2
110 => 111 => 101 => 101 => 1
111 => 111 => 101 => 101 => 1
0000 => 0001 => 0100 => 0010 => 2
0001 => 0010 => 0111 => 1110 => 3
0010 => 0101 => 0000 => 0000 => 4
0011 => 0101 => 0000 => 0000 => 4
0100 => 1001 => 1100 => 0011 => 2
0101 => 1010 => 1111 => 1111 => 4
0110 => 1011 => 1110 => 0111 => 3
0111 => 1011 => 1110 => 0111 => 3
1000 => 1001 => 1100 => 0011 => 2
1001 => 1010 => 1111 => 1111 => 4
1010 => 1101 => 1000 => 0001 => 3
1011 => 1101 => 1000 => 0001 => 3
1100 => 1101 => 1000 => 0001 => 3
1101 => 1110 => 1011 => 1101 => 2
1110 => 1111 => 1010 => 0101 => 1
1111 => 1111 => 1010 => 0101 => 1
00000 => 00001 => 01011 => 11010 => 2
00001 => 00010 => 01000 => 00010 => 3
00010 => 00101 => 01111 => 11110 => 4
00011 => 00101 => 01111 => 11110 => 4
00100 => 01001 => 00011 => 11000 => 3
00101 => 01010 => 00000 => 00000 => 5
00110 => 01011 => 00001 => 10000 => 4
00111 => 01011 => 00001 => 10000 => 4
01000 => 10001 => 11011 => 11011 => 2
01001 => 10010 => 11000 => 00011 => 3
01010 => 10101 => 11111 => 11111 => 5
01011 => 10101 => 11111 => 11111 => 5
01100 => 10101 => 11111 => 11111 => 5
01101 => 10110 => 11100 => 00111 => 3
01110 => 10111 => 11101 => 10111 => 3
01111 => 10111 => 11101 => 10111 => 3
10000 => 10001 => 11011 => 11011 => 2
10001 => 10010 => 11000 => 00011 => 3
10010 => 10101 => 11111 => 11111 => 5
10011 => 10101 => 11111 => 11111 => 5
0000000001 => 0000000010 => 0101010111 => 1110101010 => ? = 3
0001100111 => 0010101011 => 0111111110 => 0111111110 => ? = 8
0001010111 => 0010101011 => 0111111110 => 0111111110 => ? = 8
0001001111 => 0010010111 => 0111000010 => 0100001110 => ? = 4
0000111101 => 0001011110 => 0100001011 => 1101000010 => ? = 4
0000110111 => 0001011011 => 0100001110 => 0111000010 => ? = 4
0000011111 => 0000101111 => 0101111010 => 0101111010 => ? = 4
0000000110 => 0000001011 => 0101011110 => 0111101010 => ? = 4
0000011000 => 0000101001 => ? => ? => ? = 5
0000011110 => 0000101111 => 0101111010 => 0101111010 => ? = 4
0001100000 => 0010100001 => ? => ? => ? = 5
0001100110 => 0010101011 => 0111111110 => 0111111110 => ? = 8
0001001000 => 0010010001 => ? => ? => ? = 3
0001001110 => 0010010111 => 0111000010 => 0100001110 => ? = 4
0001000010 => 0010000101 => ? => ? => ? = 4
0001010100 => 0010101001 => 0111111100 => ? => ? = 7
0000010100 => 0000101001 => ? => ? => ? = 5
0000001110 => 0000010111 => 0101000010 => 0100001010 => ? = 4
0000111110 => 0001011111 => 0100001010 => 0101000010 => ? = 4
0000010110 => 0000101011 => 0101111110 => 0111111010 => ? = 6
0001011110 => 0010101111 => 0111111010 => 0101111110 => ? = 6
0000000101 => 0000001010 => 0101011111 => 1111101010 => ? = 5
0000001101 => 0000010110 => 0101000011 => 1100001010 => ? = 4
0000011101 => 0000101110 => 0101111011 => 1101111010 => ? = 4
0000010101 => 0000101010 => 0101111111 => 1111111010 => ? = 7
0000101101 => 0001010110 => 0100000011 => ? => ? = 6
Description
The length of the longest constant subword.
Mp00234: Binary words valleys-to-peaksBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
0 => 1 => [1] => [1] => 1
1 => 1 => [1] => [1] => 1
00 => 01 => [1,1] => [2] => 2
01 => 10 => [1,1] => [2] => 2
10 => 11 => [2] => [1,1] => 1
11 => 11 => [2] => [1,1] => 1
000 => 001 => [2,1] => [2,1] => 2
001 => 010 => [1,1,1] => [3] => 3
010 => 101 => [1,1,1] => [3] => 3
011 => 101 => [1,1,1] => [3] => 3
100 => 101 => [1,1,1] => [3] => 3
101 => 110 => [2,1] => [2,1] => 2
110 => 111 => [3] => [1,1,1] => 1
111 => 111 => [3] => [1,1,1] => 1
0000 => 0001 => [3,1] => [2,1,1] => 2
0001 => 0010 => [2,1,1] => [3,1] => 3
0010 => 0101 => [1,1,1,1] => [4] => 4
0011 => 0101 => [1,1,1,1] => [4] => 4
0100 => 1001 => [1,2,1] => [2,2] => 2
0101 => 1010 => [1,1,1,1] => [4] => 4
0110 => 1011 => [1,1,2] => [1,3] => 3
0111 => 1011 => [1,1,2] => [1,3] => 3
1000 => 1001 => [1,2,1] => [2,2] => 2
1001 => 1010 => [1,1,1,1] => [4] => 4
1010 => 1101 => [2,1,1] => [3,1] => 3
1011 => 1101 => [2,1,1] => [3,1] => 3
1100 => 1101 => [2,1,1] => [3,1] => 3
1101 => 1110 => [3,1] => [2,1,1] => 2
1110 => 1111 => [4] => [1,1,1,1] => 1
1111 => 1111 => [4] => [1,1,1,1] => 1
00000 => 00001 => [4,1] => [2,1,1,1] => 2
00001 => 00010 => [3,1,1] => [3,1,1] => 3
00010 => 00101 => [2,1,1,1] => [4,1] => 4
00011 => 00101 => [2,1,1,1] => [4,1] => 4
00100 => 01001 => [1,1,2,1] => [2,3] => 3
00101 => 01010 => [1,1,1,1,1] => [5] => 5
00110 => 01011 => [1,1,1,2] => [1,4] => 4
00111 => 01011 => [1,1,1,2] => [1,4] => 4
01000 => 10001 => [1,3,1] => [2,1,2] => 2
01001 => 10010 => [1,2,1,1] => [3,2] => 3
01010 => 10101 => [1,1,1,1,1] => [5] => 5
01011 => 10101 => [1,1,1,1,1] => [5] => 5
01100 => 10101 => [1,1,1,1,1] => [5] => 5
01101 => 10110 => [1,1,2,1] => [2,3] => 3
01110 => 10111 => [1,1,3] => [1,1,3] => 3
01111 => 10111 => [1,1,3] => [1,1,3] => 3
10000 => 10001 => [1,3,1] => [2,1,2] => 2
10001 => 10010 => [1,2,1,1] => [3,2] => 3
10010 => 10101 => [1,1,1,1,1] => [5] => 5
10011 => 10101 => [1,1,1,1,1] => [5] => 5
0000000001 => 0000000010 => [8,1,1] => [3,1,1,1,1,1,1,1] => ? = 3
0001011011 => 0010101101 => ? => ? => ? = 6
0001001111 => 0010010111 => [2,1,2,1,1,3] => [1,1,4,3,1] => ? = 4
0000111101 => 0001011110 => [3,1,1,4,1] => [2,1,1,4,1,1] => ? = 4
0000111011 => 0001011101 => [3,1,1,3,1,1] => [3,1,4,1,1] => ? = 4
0000110111 => 0001011011 => ? => ? => ? = 4
0000101111 => 0001010111 => [3,1,1,1,1,3] => [1,1,6,1,1] => ? = 6
0000011111 => 0000101111 => [4,1,1,4] => [1,1,1,4,1,1,1] => ? = 4
0000000000 => 0000000001 => [9,1] => [2,1,1,1,1,1,1,1,1] => ? = 2
0000000110 => 0000001011 => [6,1,1,2] => [1,4,1,1,1,1,1] => ? = 4
0000011000 => 0000101001 => ? => ? => ? = 5
0000011110 => 0000101111 => [4,1,1,4] => [1,1,1,4,1,1,1] => ? = 4
0000010010 => 0000100101 => ? => ? => ? = 4
0001100000 => 0010100001 => ? => ? => ? = 5
0001001000 => 0010010001 => ? => ? => ? = 3
0001001110 => 0010010111 => [2,1,2,1,1,3] => [1,1,4,3,1] => ? = 4
0001000010 => 0010000101 => ? => ? => ? = 4
0001011010 => 0010101101 => ? => ? => ? = 6
0001010100 => 0010101001 => ? => ? => ? = 7
0000010100 => 0000101001 => ? => ? => ? = 5
0000000010 => 0000000101 => [7,1,1,1] => [4,1,1,1,1,1,1] => ? = 4
0000001110 => 0000010111 => [5,1,1,3] => [1,1,4,1,1,1,1] => ? = 4
0000111110 => 0001011111 => [3,1,1,5] => [1,1,1,1,4,1,1] => ? = 4
0000000100 => 0000001001 => [6,1,2,1] => [2,3,1,1,1,1,1] => ? = 3
0000001010 => 0000010101 => [5,1,1,1,1,1] => [6,1,1,1,1] => ? = 6
0000010110 => 0000101011 => ? => ? => ? = 6
0000101110 => 0001010111 => [3,1,1,1,1,3] => [1,1,6,1,1] => ? = 6
0001011110 => 0010101111 => ? => ? => ? = 6
0000000101 => 0000001010 => [6,1,1,1,1] => [5,1,1,1,1,1] => ? = 5
0000001101 => 0000010110 => [5,1,1,2,1] => [2,4,1,1,1,1] => ? = 4
0000011101 => 0000101110 => [4,1,1,3,1] => [2,1,4,1,1,1] => ? = 4
0000001001 => 0000010010 => ? => ? => ? = 3
0000010101 => 0000101010 => ? => ? => ? = 7
0000101101 => 0001010110 => ? => ? => ? = 6
Description
The largest part of an integer composition.
Mp00234: Binary words valleys-to-peaksBinary words
Mp00097: Binary words delta morphismInteger compositions
St001235: Integer compositions ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 67%
Values
0 => 1 => [1] => 1
1 => 1 => [1] => 1
00 => 01 => [1,1] => 2
01 => 10 => [1,1] => 2
10 => 11 => [2] => 1
11 => 11 => [2] => 1
000 => 001 => [2,1] => 2
001 => 010 => [1,1,1] => 3
010 => 101 => [1,1,1] => 3
011 => 101 => [1,1,1] => 3
100 => 101 => [1,1,1] => 3
101 => 110 => [2,1] => 2
110 => 111 => [3] => 1
111 => 111 => [3] => 1
0000 => 0001 => [3,1] => 2
0001 => 0010 => [2,1,1] => 3
0010 => 0101 => [1,1,1,1] => 4
0011 => 0101 => [1,1,1,1] => 4
0100 => 1001 => [1,2,1] => 2
0101 => 1010 => [1,1,1,1] => 4
0110 => 1011 => [1,1,2] => 3
0111 => 1011 => [1,1,2] => 3
1000 => 1001 => [1,2,1] => 2
1001 => 1010 => [1,1,1,1] => 4
1010 => 1101 => [2,1,1] => 3
1011 => 1101 => [2,1,1] => 3
1100 => 1101 => [2,1,1] => 3
1101 => 1110 => [3,1] => 2
1110 => 1111 => [4] => 1
1111 => 1111 => [4] => 1
00000 => 00001 => [4,1] => 2
00001 => 00010 => [3,1,1] => 3
00010 => 00101 => [2,1,1,1] => 4
00011 => 00101 => [2,1,1,1] => 4
00100 => 01001 => [1,1,2,1] => 3
00101 => 01010 => [1,1,1,1,1] => 5
00110 => 01011 => [1,1,1,2] => 4
00111 => 01011 => [1,1,1,2] => 4
01000 => 10001 => [1,3,1] => 2
01001 => 10010 => [1,2,1,1] => 3
01010 => 10101 => [1,1,1,1,1] => 5
01011 => 10101 => [1,1,1,1,1] => 5
01100 => 10101 => [1,1,1,1,1] => 5
01101 => 10110 => [1,1,2,1] => 3
01110 => 10111 => [1,1,3] => 3
01111 => 10111 => [1,1,3] => 3
10000 => 10001 => [1,3,1] => 2
10001 => 10010 => [1,2,1,1] => 3
10010 => 10101 => [1,1,1,1,1] => 5
10011 => 10101 => [1,1,1,1,1] => 5
0000000 => 0000001 => [6,1] => ? = 2
0000001 => 0000010 => [5,1,1] => ? = 3
0000010 => 0000101 => [4,1,1,1] => ? = 4
0000011 => 0000101 => [4,1,1,1] => ? = 4
0000100 => 0001001 => [3,1,2,1] => ? = 3
0000101 => 0001010 => [3,1,1,1,1] => ? = 5
0000110 => 0001011 => [3,1,1,2] => ? = 4
0000111 => 0001011 => [3,1,1,2] => ? = 4
0001000 => 0010001 => [2,1,3,1] => ? = 3
0001001 => 0010010 => [2,1,2,1,1] => ? = 3
0001010 => 0010101 => [2,1,1,1,1,1] => ? = 6
0001011 => 0010101 => [2,1,1,1,1,1] => ? = 6
0001100 => 0010101 => [2,1,1,1,1,1] => ? = 6
0001101 => 0010110 => [2,1,1,2,1] => ? = 4
0001110 => 0010111 => [2,1,1,3] => ? = 4
0001111 => 0010111 => [2,1,1,3] => ? = 4
0010000 => 0100001 => [1,1,4,1] => ? = 3
0010001 => 0100010 => [1,1,3,1,1] => ? = 3
0010010 => 0100101 => [1,1,2,1,1,1] => ? = 4
0010011 => 0100101 => [1,1,2,1,1,1] => ? = 4
0010100 => 0101001 => [1,1,1,1,2,1] => ? = 5
0010101 => 0101010 => [1,1,1,1,1,1,1] => ? = 7
0010110 => 0101011 => [1,1,1,1,1,2] => ? = 6
0010111 => 0101011 => [1,1,1,1,1,2] => ? = 6
0011000 => 0101001 => [1,1,1,1,2,1] => ? = 5
0011001 => 0101010 => [1,1,1,1,1,1,1] => ? = 7
0011010 => 0101101 => [1,1,1,2,1,1] => ? = 4
0011011 => 0101101 => [1,1,1,2,1,1] => ? = 4
0011100 => 0101101 => [1,1,1,2,1,1] => ? = 4
0011101 => 0101110 => [1,1,1,3,1] => ? = 4
0011110 => 0101111 => [1,1,1,4] => ? = 4
0011111 => 0101111 => [1,1,1,4] => ? = 4
0100000 => 1000001 => [1,5,1] => ? = 2
0100001 => 1000010 => [1,4,1,1] => ? = 3
0100010 => 1000101 => [1,3,1,1,1] => ? = 4
0100011 => 1000101 => [1,3,1,1,1] => ? = 4
0100100 => 1001001 => [1,2,1,2,1] => ? = 3
0100101 => 1001010 => [1,2,1,1,1,1] => ? = 5
0100110 => 1001011 => [1,2,1,1,2] => ? = 4
0100111 => 1001011 => [1,2,1,1,2] => ? = 4
0101000 => 1010001 => [1,1,1,3,1] => ? = 4
0101001 => 1010010 => [1,1,1,2,1,1] => ? = 4
0101010 => 1010101 => [1,1,1,1,1,1,1] => ? = 7
0101011 => 1010101 => [1,1,1,1,1,1,1] => ? = 7
0101100 => 1010101 => [1,1,1,1,1,1,1] => ? = 7
0101101 => 1010110 => [1,1,1,1,2,1] => ? = 5
0101110 => 1010111 => [1,1,1,1,3] => ? = 5
0101111 => 1010111 => [1,1,1,1,3] => ? = 5
0110000 => 1010001 => [1,1,1,3,1] => ? = 4
0110001 => 1010010 => [1,1,1,2,1,1] => ? = 4
Description
The global dimension of the corresponding Comp-Nakayama algebra. We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Matching statistic: St001330
Mp00234: Binary words valleys-to-peaksBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001330: Graphs ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 89%
Values
0 => 1 => [1] => ([],1)
=> 1
1 => 1 => [1] => ([],1)
=> 1
00 => 01 => [1,1] => ([(0,1)],2)
=> 2
01 => 10 => [1,1] => ([(0,1)],2)
=> 2
10 => 11 => [2] => ([],2)
=> 1
11 => 11 => [2] => ([],2)
=> 1
000 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
001 => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
010 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
011 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
100 => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
101 => 110 => [2,1] => ([(0,2),(1,2)],3)
=> 2
110 => 111 => [3] => ([],3)
=> 1
111 => 111 => [3] => ([],3)
=> 1
0000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0001 => 0010 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
0010 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
0011 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
0100 => 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
0101 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
0110 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
0111 => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
1000 => 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
1001 => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
1010 => 1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
1011 => 1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
1100 => 1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
1101 => 1110 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
1110 => 1111 => [4] => ([],4)
=> 1
1111 => 1111 => [4] => ([],4)
=> 1
00000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
00001 => 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
00010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
00011 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
00100 => 01001 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
00101 => 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
00110 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00111 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
01000 => 10001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
01001 => 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
01010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
01011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
01100 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
01101 => 10110 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
01110 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
01111 => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
10000 => 10001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
10001 => 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
10010 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
10011 => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
10100 => 11001 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
10101 => 11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
10110 => 11011 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
10111 => 11011 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
11000 => 11001 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
11001 => 11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
11010 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
11011 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
11100 => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
11101 => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
11110 => 11111 => [5] => ([],5)
=> 1
11111 => 11111 => [5] => ([],5)
=> 1
000000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
000001 => 000010 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
000010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
000011 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
000100 => 001001 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
000101 => 001010 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
000110 => 001011 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
000111 => 001011 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
001000 => 010001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
001001 => 010010 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
001010 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
001011 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
001100 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
001101 => 010110 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
001110 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
001111 => 010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
010000 => 100001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
010001 => 100010 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
010010 => 100101 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
010011 => 100101 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
010100 => 101001 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
010101 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
010110 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
010111 => 101011 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
011000 => 101001 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
011001 => 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
011010 => 101101 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
011011 => 101101 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
011100 => 101101 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
011101 => 101110 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
011110 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 3
011111 => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 3
100000 => 100001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
100001 => 100010 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
100010 => 100101 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
100011 => 100101 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
100100 => 101001 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
101000 => 110001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000307
Mp00234: Binary words valleys-to-peaksBinary words
Mp00262: Binary words poset of factorsPosets
St000307: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 33%
Values
0 => 1 => ([(0,1)],2)
=> 1
1 => 1 => ([(0,1)],2)
=> 1
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
01 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
10 => 11 => ([(0,2),(2,1)],3)
=> 1
11 => 11 => ([(0,2),(2,1)],3)
=> 1
000 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
001 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3
010 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3
011 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3
100 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3
101 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
110 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
111 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
0000 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
0001 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
0010 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4
0011 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4
0100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2
0101 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4
0110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
0111 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
1000 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2
1001 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4
1010 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
1011 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
1100 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3
1101 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
1110 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
1111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
00000 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
00001 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
00010 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
00011 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
00100 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
00101 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5
00110 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
00111 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
01000 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
01001 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
01010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5
01011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5
01100 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5
01101 => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
01110 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
01111 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
10000 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
10001 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
10010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5
10011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5
10100 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
10101 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
10110 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3
10111 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3
11000 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
11001 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4
11010 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11011 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11100 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
11101 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
11110 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
11111 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
000000 => 000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
000001 => 000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 3
000010 => 000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4
000011 => 000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4
000100 => 001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 3
000101 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5
111110 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
111111 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The number of rowmotion orbits of a poset. Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Matching statistic: St000632
Mp00234: Binary words valleys-to-peaksBinary words
Mp00262: Binary words poset of factorsPosets
St000632: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 33%
Values
0 => 1 => ([(0,1)],2)
=> 0 = 1 - 1
1 => 1 => ([(0,1)],2)
=> 0 = 1 - 1
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
01 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
10 => 11 => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
11 => 11 => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
000 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
001 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
010 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
011 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
100 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 3 - 1
101 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
110 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
111 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
0000 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
0001 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
0010 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4 - 1
0011 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4 - 1
0100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 - 1
0101 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4 - 1
0110 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
0111 => 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
1000 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2 - 1
1001 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 4 - 1
1010 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
1011 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
1100 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 3 - 1
1101 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
1110 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
1111 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
00000 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
00001 => 00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
00010 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
00011 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
00100 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
00101 => 01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5 - 1
00110 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
00111 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
01000 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2 - 1
01001 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
01010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5 - 1
01011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5 - 1
01100 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5 - 1
01101 => 10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
01110 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
01111 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
10000 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2 - 1
10001 => 10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
10010 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5 - 1
10011 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 5 - 1
10100 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 - 1
10101 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
10110 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3 - 1
10111 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3 - 1
11000 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 - 1
11001 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 4 - 1
11010 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
11011 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
11100 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
11101 => 11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
11110 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
11111 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
000000 => 000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2 - 1
000001 => 000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 3 - 1
000010 => 000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4 - 1
000011 => 000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 4 - 1
000100 => 001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 3 - 1
000101 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 5 - 1
111110 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
111111 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
Description
The jump number of the poset. A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.