Your data matches 10 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00061: Permutations to increasing treeBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
St001067: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 1
[2,1] => [[.,.],.]
=> [1,1,0,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 2
[1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 1
[3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> 0
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Mp00061: Permutations to increasing treeBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
St001223: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 1
[2,1] => [[.,.],.]
=> [1,1,0,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 2
[1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 1
[3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> 0
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
Mp00061: Permutations to increasing treeBinary trees
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
St001233: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 1
[2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 2
[1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 1
[3,1,2] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 0
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
Description
The number of indecomposable 2-dimensional modules with projective dimension one.
Matching statistic: St000214
Mp00061: Permutations to increasing treeBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000214: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1] => [1] => 0
[1,2] => [.,[.,.]]
=> [2,1] => [2,1] => 1
[2,1] => [[.,.],.]
=> [1,2] => [1,2] => 0
[1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 2
[1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => [1,3,2] => 1
[2,1,3] => [[.,.],[.,.]]
=> [3,1,2] => [2,3,1] => 0
[2,3,1] => [[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 1
[3,1,2] => [[.,.],[.,.]]
=> [3,1,2] => [2,3,1] => 0
[3,2,1] => [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,4,3,2] => 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [2,4,3,1] => 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [2,1,4,3] => 2
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [2,4,3,1] => 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,4,3] => 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [3,4,2,1] => 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,1,4,2] => 0
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,2,4,1] => 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 2
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,2,4,1] => 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,3,2,4] => 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [3,4,2,1] => 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,1,4,2] => 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => [2,3,4,1] => 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [3,1,2,4] => [2,3,1,4] => 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,2,4,1] => 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [3,4,2,1] => 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,1,4,2] => 0
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => [2,3,4,1] => 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [3,1,2,4] => [2,3,1,4] => 0
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => [2,3,4,1] => 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 4
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,5,4,3,2] => 3
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [2,5,4,3,1] => 2
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [2,1,5,4,3] => 3
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [2,5,4,3,1] => 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,5,4,3] => 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [3,5,4,2,1] => 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [3,1,5,4,2] => 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [3,2,5,4,1] => 2
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [3,2,1,5,4] => 3
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [3,2,5,4,1] => 2
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,3,2,5,4] => 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [3,5,4,2,1] => 2
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [3,1,5,4,2] => 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [2,3,5,4,1] => 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [2,3,1,5,4] => 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [3,2,5,4,1] => 2
Description
The number of adjacencies of a permutation. An adjacency of a permutation $\pi$ is an index $i$ such that $\pi(i)-1 = \pi(i+1)$. Adjacencies are also known as ''small descents''. This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000931: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,1,0,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 3
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 3
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 3
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
Description
The number of occurrences of the pattern UUU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Mp00061: Permutations to increasing treeBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000932: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> [1,1,0,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [[.,.],.]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 3
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St000986
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00203: Graphs coneGraphs
St000986: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> ([(0,1)],2)
=> 0
[1,2] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 1
[2,1] => [1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,3] => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,2,3,4] => [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,2,3,4,5] => [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The multiplicity of the eigenvalue zero of the adjacency matrix of the graph.
Mp00061: Permutations to increasing treeBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2,1] => [[.,.],.]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000359
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000359: Permutations ⟶ ℤResult quality: 26% values known / values provided: 26%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [2,1] => 0
[1,2] => [2] => [1,1,0,0]
=> [2,3,1] => 1
[2,1] => [1,1] => [1,0,1,0]
=> [3,1,2] => 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 2
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 0
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 0
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 3
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 2
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 2
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 2
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 4
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 3
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 2
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 3
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 2
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 2
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 2
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 3
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 2
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 2
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 2
[1,2,4,3,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,2,4,3,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,2,5,3,4,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,2,5,3,6,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,2,5,4,3,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,2,5,4,6,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,2,6,3,4,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,2,6,3,5,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,2,6,4,3,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,2,6,4,5,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,2,6,5,3,4] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,2,6,5,4,3] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 2
[1,3,2,4,5,6] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 3
[1,3,2,4,6,5] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2
[1,3,2,5,4,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1
[1,3,2,5,6,4] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2
[1,3,2,6,4,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1
[1,3,2,6,5,4] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 1
[1,3,4,2,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,3,4,2,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,3,5,2,4,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,3,5,2,6,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,3,5,4,2,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,3,5,4,6,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,3,6,2,4,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,3,6,2,5,4] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,3,6,4,2,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,3,6,4,5,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,3,6,5,2,4] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,3,6,5,4,2] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 2
[1,4,2,3,5,6] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 3
[1,4,2,3,6,5] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2
[1,4,2,5,3,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1
[1,4,2,5,6,3] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2
[1,4,2,6,3,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1
[1,4,2,6,5,3] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 1
[1,4,3,2,5,6] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 2
[1,4,3,2,6,5] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 1
[1,4,3,5,2,6] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1
[1,4,3,5,6,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2
[1,4,3,6,2,5] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1
[1,4,3,6,5,2] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 1
[1,4,5,2,3,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,4,5,2,6,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,4,5,3,2,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,4,5,3,6,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,4,6,2,3,5] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3
[1,4,6,2,5,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
[1,4,6,3,2,5] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2
[1,4,6,3,5,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2
Description
The number of occurrences of the pattern 23-1. See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $23\!\!-\!\!1$.
St001948: Permutations ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 83%
Values
[1] => ? = 0
[1,2] => 1
[2,1] => 0
[1,2,3] => 2
[1,3,2] => 1
[2,1,3] => 0
[2,3,1] => 1
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 3
[1,2,4,3] => 2
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 1
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 0
[2,3,1,4] => 1
[2,3,4,1] => 2
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 0
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 4
[1,2,3,5,4] => 3
[1,2,4,3,5] => 2
[1,2,4,5,3] => 3
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 2
[1,3,2,5,4] => 1
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 2
[1,3,5,4,2] => 2
[1,4,2,3,5] => 2
[1,4,2,5,3] => 1
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 2
[1,4,5,3,2] => 2
[1,2,3,4,5,6] => ? = 5
[1,2,3,4,6,5] => ? = 4
[1,2,3,5,4,6] => ? = 3
[1,2,3,5,6,4] => ? = 4
[1,2,3,6,4,5] => ? = 3
[1,2,3,6,5,4] => ? = 3
[1,2,4,3,5,6] => ? = 3
[1,2,4,3,6,5] => ? = 2
[1,2,4,5,3,6] => ? = 3
[1,2,4,5,6,3] => ? = 4
[1,2,4,6,3,5] => ? = 3
[1,2,4,6,5,3] => ? = 3
[1,2,5,3,4,6] => ? = 3
[1,2,5,3,6,4] => ? = 2
[1,2,5,4,3,6] => ? = 2
[1,2,5,4,6,3] => ? = 2
[1,2,5,6,3,4] => ? = 3
[1,2,5,6,4,3] => ? = 3
[1,2,6,3,4,5] => ? = 3
[1,2,6,3,5,4] => ? = 2
[1,2,6,4,3,5] => ? = 2
[1,2,6,4,5,3] => ? = 2
[1,2,6,5,3,4] => ? = 2
[1,2,6,5,4,3] => ? = 2
[1,3,2,4,5,6] => ? = 3
[1,3,2,4,6,5] => ? = 2
[1,3,2,5,4,6] => ? = 1
[1,3,2,5,6,4] => ? = 2
[1,3,2,6,4,5] => ? = 1
[1,3,2,6,5,4] => ? = 1
[1,3,4,2,5,6] => ? = 3
[1,3,4,2,6,5] => ? = 2
[1,3,4,5,2,6] => ? = 3
[1,3,4,5,6,2] => ? = 4
[1,3,4,6,2,5] => ? = 3
[1,3,4,6,5,2] => ? = 3
[1,3,5,2,4,6] => ? = 3
[1,3,5,2,6,4] => ? = 2
[1,3,5,4,2,6] => ? = 2
[1,3,5,4,6,2] => ? = 2
[1,3,5,6,2,4] => ? = 3
[1,3,5,6,4,2] => ? = 3
[1,3,6,2,4,5] => ? = 3
[1,3,6,2,5,4] => ? = 2
[1,3,6,4,2,5] => ? = 2
[1,3,6,4,5,2] => ? = 2
[1,3,6,5,2,4] => ? = 2
[1,3,6,5,4,2] => ? = 2
[1,4,2,3,5,6] => ? = 3
Description
The number of augmented double ascents of a permutation. An augmented double ascent of a permutation $\pi$ is a double ascent of the augmented permutation $\tilde\pi$ obtained from $\pi$ by adding an initial $0$. A double ascent of $\tilde\pi$ then is a position $i$ such that $\tilde\pi(i) < \tilde\pi(i+1) < \tilde\pi(i+2)$.