Your data matches 45 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00133: Integer compositions delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1,2] => [3,1] => [1,3] => [1,1,2] => 1
[1,1,2,1] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,1,1,2] => [4,1] => [1,4] => [1,1,1,2] => 1
[1,1,1,2,1] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,3] => [3,1] => [1,3] => [1,1,2] => 1
[1,1,2,1,1] => [2,1,2] => [2,2,1] => [2,2,1] => 2
[1,1,3,1] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,1,1,1,2] => [5,1] => [1,5] => [1,1,1,1,2] => 1
[1,1,1,1,2,1] => [4,1,1] => [1,4,1] => [2,1,1,2] => 2
[1,1,1,1,3] => [4,1] => [1,4] => [1,1,1,2] => 1
[1,1,1,2,1,1] => [3,1,2] => [2,3,1] => [2,1,2,1] => 2
[1,1,1,2,2] => [3,2] => [2,3] => [1,1,2,1] => 1
[1,1,1,3,1] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,4] => [3,1] => [1,3] => [1,1,2] => 1
[1,1,2,1,1,1] => [2,1,3] => [3,2,1] => [2,2,1,1] => 2
[1,1,2,1,2] => [2,1,1,1] => [1,2,1,1] => [3,2] => 3
[1,1,2,2,1] => [2,2,1] => [1,2,2] => [1,2,2] => 1
[1,1,2,3] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,3,1,1] => [2,1,2] => [2,2,1] => [2,2,1] => 2
[1,1,3,2] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,4,1] => [2,1,1] => [1,2,1] => [2,2] => 2
[2,1,1,1,2] => [1,3,1] => [1,1,3] => [1,1,3] => 1
[2,1,1,2,1] => [1,2,1,1] => [1,1,2,1] => [2,3] => 2
[2,2,1,2] => [2,1,1] => [1,2,1] => [2,2] => 2
[2,2,2,1] => [3,1] => [1,3] => [1,1,2] => 1
[1,1,1,1,1,1,2] => [6,1] => [1,6] => [1,1,1,1,1,2] => 1
[1,1,1,1,1,2,1] => [5,1,1] => [1,5,1] => [2,1,1,1,2] => 2
[1,1,1,1,1,3] => [5,1] => [1,5] => [1,1,1,1,2] => 1
[1,1,1,1,2,1,1] => [4,1,2] => [2,4,1] => [2,1,1,2,1] => 2
[1,1,1,1,2,2] => [4,2] => [2,4] => [1,1,1,2,1] => 1
[1,1,1,1,3,1] => [4,1,1] => [1,4,1] => [2,1,1,2] => 2
[1,1,1,1,4] => [4,1] => [1,4] => [1,1,1,2] => 1
[1,1,1,2,1,1,1] => [3,1,3] => [3,3,1] => [2,1,2,1,1] => 2
[1,1,1,2,1,2] => [3,1,1,1] => [1,3,1,1] => [3,1,2] => 3
[1,1,1,2,2,1] => [3,2,1] => [1,3,2] => [1,2,1,2] => 1
[1,1,1,2,3] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,3,1,1] => [3,1,2] => [2,3,1] => [2,1,2,1] => 2
[1,1,1,3,2] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,4,1] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,5] => [3,1] => [1,3] => [1,1,2] => 1
[1,1,2,1,1,1,1] => [2,1,4] => [4,2,1] => [2,2,1,1,1] => 2
[1,1,2,1,1,2] => [2,1,2,1] => [1,2,1,2] => [1,3,2] => 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [1,2,1,1,1] => [4,2] => 4
[1,1,2,1,3] => [2,1,1,1] => [1,2,1,1] => [3,2] => 3
[1,1,2,2,1,1] => [2,2,2] => [2,2,2] => [1,2,2,1] => 1
[1,1,2,3,1] => [2,1,1,1] => [1,2,1,1] => [3,2] => 3
[1,1,2,4] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,3,1,1,1] => [2,1,3] => [3,2,1] => [2,2,1,1] => 2
[1,1,3,1,2] => [2,1,1,1] => [1,2,1,1] => [3,2] => 3
[1,1,3,2,1] => [2,1,1,1] => [1,2,1,1] => [3,2] => 3
Description
The first part of an integer composition.
Matching statistic: St000993
Mp00133: Integer compositions delta morphismInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,1,1,1,2] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,3] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,2,2] => [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,3,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,4] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1,1] => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,2,3] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,4,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,1,1,1,2] => [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[2,1,1,2,1] => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[2,2,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,2,2,1] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,1,1,1,1,2] => [6,1] => [[6,6],[5]]
=> [5]
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> 2
[1,1,1,1,1,3] => [5,1] => [[5,5],[4]]
=> [4]
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [[5,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,2,2] => [4,2] => [[5,4],[3]]
=> [3]
=> 1
[1,1,1,1,3,1] => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 2
[1,1,1,1,4] => [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 3
[1,1,1,2,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 1
[1,1,1,2,3] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,3,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,3,2] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,4,1] => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,5] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 4
[1,1,2,1,3] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,2,2,1,1] => [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,2,3,1] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,2,4] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,1,1] => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,3,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,3,2,1] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000678
Mp00133: Integer compositions delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000678: Dyck paths ⟶ ℤResult quality: 83% values known / values provided: 98%distinct values known / distinct values provided: 83%
Values
[1,1,1,2] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,2] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1] => [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,2] => [5,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,2,1] => [4,1,1] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,3] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1,1] => [3,1,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,2,2] => [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,3,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,4] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1,1] => [2,1,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,2,1,2] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,2,1] => [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,2,3] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,1] => [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,2] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,4,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,1,1,1,2] => [1,3,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,1,1,2,1] => [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[2,2,1,2] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,2,2,1] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1,1,2] => [6,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[1,1,1,1,1,3] => [5,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,2,2] => [4,2] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,3,1] => [4,1,1] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,4] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,2,2,1] => [3,2,1] => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,1,2,3] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3,1,1] => [3,1,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3,2] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,4,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,5] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,2,1,3] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,2,1,1] => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,2,3,1] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,4] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,1,1] => [2,1,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,2] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,3,2,1] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,1,2,1,1,1] => [4,1,3] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,1,2] => [8,1] => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,3,1,1,1] => [4,1,3] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,2,2,1,1,1] => [3,2,3] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[2,1,1,1,2,1,1,1] => [1,3,1,3] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,1,1,2,2,2,2] => [4,4] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,2,1,1,2,2,2] => [2,1,2,3] => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[2,2,2,2,1,1,1,1] => [4,4] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[2,1,1,1,1,2,2,2] => [1,4,3] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,2] => [9,1] => [1,9] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[1,2,1,1,1,2,2,2] => [1,1,3,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,2,1,2,2,2] => [3,1,1,3] => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,2,1,2,1,2,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[2,2,2,1,2,1,1,1] => [3,1,1,3] => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[2,2,1,2,2,1,1,1] => [2,1,2,3] => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[2,1,2,2,2,1,1,1] => [1,1,3,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,2,2,2,2,1,1,1] => [1,4,3] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,3,1] => [7,1,1] => [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,5,1] => [7,1,1] => [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,3,1,2,1,2,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,1,1,2,1,2,1,3,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,1,1,2,1,3,1,2,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,1,1,1,1,1,1,1,3] => [8,1] => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,1,2,2,2,1,1,1] => [2,3,3] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000383
Mp00133: Integer compositions delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00039: Integer compositions complementInteger compositions
St000383: Integer compositions ⟶ ℤResult quality: 83% values known / values provided: 96%distinct values known / distinct values provided: 83%
Values
[1,1,1,2] => [3,1] => [1,3] => [2,1,1] => 1
[1,1,2,1] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,1,1,2] => [4,1] => [1,4] => [2,1,1,1] => 1
[1,1,1,2,1] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,3] => [3,1] => [1,3] => [2,1,1] => 1
[1,1,2,1,1] => [2,1,2] => [2,2,1] => [1,2,2] => 2
[1,1,3,1] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,1,1,1,2] => [5,1] => [1,5] => [2,1,1,1,1] => 1
[1,1,1,1,2,1] => [4,1,1] => [1,4,1] => [2,1,1,2] => 2
[1,1,1,1,3] => [4,1] => [1,4] => [2,1,1,1] => 1
[1,1,1,2,1,1] => [3,1,2] => [2,3,1] => [1,2,1,2] => 2
[1,1,1,2,2] => [3,2] => [2,3] => [1,2,1,1] => 1
[1,1,1,3,1] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,4] => [3,1] => [1,3] => [2,1,1] => 1
[1,1,2,1,1,1] => [2,1,3] => [3,2,1] => [1,1,2,2] => 2
[1,1,2,1,2] => [2,1,1,1] => [1,2,1,1] => [2,3] => 3
[1,1,2,2,1] => [2,2,1] => [1,2,2] => [2,2,1] => 1
[1,1,2,3] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,3,1,1] => [2,1,2] => [2,2,1] => [1,2,2] => 2
[1,1,3,2] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,4,1] => [2,1,1] => [1,2,1] => [2,2] => 2
[2,1,1,1,2] => [1,3,1] => [1,1,3] => [3,1,1] => 1
[2,1,1,2,1] => [1,2,1,1] => [1,1,2,1] => [3,2] => 2
[2,2,1,2] => [2,1,1] => [1,2,1] => [2,2] => 2
[2,2,2,1] => [3,1] => [1,3] => [2,1,1] => 1
[1,1,1,1,1,1,2] => [6,1] => [1,6] => [2,1,1,1,1,1] => 1
[1,1,1,1,1,2,1] => [5,1,1] => [1,5,1] => [2,1,1,1,2] => 2
[1,1,1,1,1,3] => [5,1] => [1,5] => [2,1,1,1,1] => 1
[1,1,1,1,2,1,1] => [4,1,2] => [2,4,1] => [1,2,1,1,2] => 2
[1,1,1,1,2,2] => [4,2] => [2,4] => [1,2,1,1,1] => 1
[1,1,1,1,3,1] => [4,1,1] => [1,4,1] => [2,1,1,2] => 2
[1,1,1,1,4] => [4,1] => [1,4] => [2,1,1,1] => 1
[1,1,1,2,1,1,1] => [3,1,3] => [3,3,1] => [1,1,2,1,2] => 2
[1,1,1,2,1,2] => [3,1,1,1] => [1,3,1,1] => [2,1,3] => 3
[1,1,1,2,2,1] => [3,2,1] => [1,3,2] => [2,1,2,1] => 1
[1,1,1,2,3] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,3,1,1] => [3,1,2] => [2,3,1] => [1,2,1,2] => 2
[1,1,1,3,2] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,4,1] => [3,1,1] => [1,3,1] => [2,1,2] => 2
[1,1,1,5] => [3,1] => [1,3] => [2,1,1] => 1
[1,1,2,1,1,1,1] => [2,1,4] => [4,2,1] => [1,1,1,2,2] => 2
[1,1,2,1,1,2] => [2,1,2,1] => [1,2,1,2] => [2,3,1] => 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [1,2,1,1,1] => [2,4] => 4
[1,1,2,1,3] => [2,1,1,1] => [1,2,1,1] => [2,3] => 3
[1,1,2,2,1,1] => [2,2,2] => [2,2,2] => [1,2,2,1] => 1
[1,1,2,3,1] => [2,1,1,1] => [1,2,1,1] => [2,3] => 3
[1,1,2,4] => [2,1,1] => [1,2,1] => [2,2] => 2
[1,1,3,1,1,1] => [2,1,3] => [3,2,1] => [1,1,2,2] => 2
[1,1,3,1,2] => [2,1,1,1] => [1,2,1,1] => [2,3] => 3
[1,1,3,2,1] => [2,1,1,1] => [1,2,1,1] => [2,3] => 3
[1,1,1,1,1,1,1,2] => [7,1] => [1,7] => [2,1,1,1,1,1,1] => ? = 1
[1,1,1,1,1,1,1,1,2] => [8,1] => [1,8] => [2,1,1,1,1,1,1,1] => ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => [1,7,1] => [2,1,1,1,1,1,2] => ? = 2
[1,1,1,1,1,1,1,3] => [7,1] => [1,7] => [2,1,1,1,1,1,1] => ? = 1
[1,1,1,1,1,2,1,2] => [5,1,1,1] => [1,5,1,1] => [2,1,1,1,3] => ? = 3
[1,1,1,1,2,1,2,1] => [4,1,1,1,1] => [1,4,1,1,1] => [2,1,1,4] => ? = 4
[1,1,1,1,2,1,2,3] => [4,1,1,1,1] => [1,4,1,1,1] => [2,1,1,4] => ? = 4
[1,1,1,1,3,2,1,2] => [4,1,1,1,1] => [1,4,1,1,1] => [2,1,1,4] => ? = 4
[1,1,2,1,2,3,1,1] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => [1,2,5] => ? = 5
[1,1,2,1,2,1,1,3] => [2,1,1,1,2,1] => [1,2,1,1,1,2] => [2,5,1] => ? = 1
[1,1,3,2,1,2,1,1] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => [1,2,5] => ? = 5
[1,1,3,2,1,1,1,2] => [2,1,1,3,1] => [1,2,1,1,3] => [2,4,1,1] => ? = 1
[2,1,2,2,1,1,1,2] => [1,1,2,3,1] => [1,1,1,2,3] => [4,2,1,1] => ? = 1
[2,1,2,1,1,2,1,2] => [1,1,1,2,1,1,1] => [1,1,1,1,2,1,1] => [5,3] => ? = 3
[3,1,1,2,1,2,1,1] => [1,2,1,1,1,2] => [2,1,2,1,1,1] => [1,3,4] => ? = 4
[1,1,1,1,1,1,1,1,1,2] => [9,1] => [1,9] => [2,1,1,1,1,1,1,1,1] => ? = 1
[2,2,1,1,2,1,2,1] => [2,2,1,1,1,1] => [1,2,2,1,1,1] => [2,2,4] => ? = 4
[2,1,2,2,1,1,2,1] => [1,1,2,2,1,1] => [1,1,1,2,2,1] => [4,2,2] => ? = 2
[2,1,1,2,1,2,1,2] => [1,2,1,1,1,1,1] => [1,1,2,1,1,1,1] => [3,5] => ? = 5
[2,1,1,1,2,2,2,1] => [1,3,3,1] => [1,1,3,3] => [3,1,2,1,1] => ? = 1
[1,2,1,2,2,1,2,1] => [1,1,1,2,1,1,1] => [1,1,1,1,2,1,1] => [5,3] => ? = 3
[1,2,1,1,2,2,1,2] => [1,1,2,2,1,1] => [1,1,1,2,2,1] => [4,2,2] => ? = 2
[1,2,1,1,2,2,2,1] => [1,1,2,3,1] => [1,1,1,2,3] => [4,2,1,1] => ? = 1
[1,2,1,1,1,2,2,2] => [1,1,3,3] => [3,1,1,3] => [1,1,4,1,1] => ? = 1
[1,2,2,1,2,1,2,1] => [1,2,1,1,1,1,1] => [1,1,2,1,1,1,1] => [3,5] => ? = 5
[1,1,2,2,1,2,1,2] => [2,2,1,1,1,1] => [1,2,2,1,1,1] => [2,2,4] => ? = 4
[1,1,2,1,2,1,2,2] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => [1,2,5] => ? = 5
[1,1,2,1,2,2,2,1] => [2,1,1,3,1] => [1,2,1,1,3] => [2,4,1,1] => ? = 1
[1,1,1,2,1,2,2,2] => [3,1,1,3] => [3,3,1,1] => [1,1,2,1,3] => ? = 3
[1,1,1,2,1,2,1,2,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [2,1,6] => ? = 6
[2,1,1,1,1,2,2,1] => [1,4,2,1] => [1,1,4,2] => [3,1,1,2,1] => ? = 1
[2,2,1,2,1,2,1,1] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => [1,2,5] => ? = 5
[2,2,2,1,2,1,1,1] => [3,1,1,3] => [3,3,1,1] => [1,1,2,1,3] => ? = 3
[2,1,2,2,2,1,1,1] => [1,1,3,3] => [3,1,1,3] => [1,1,4,1,1] => ? = 1
[1,1,1,1,1,1,1,3,1] => [7,1,1] => [1,7,1] => [2,1,1,1,1,1,2] => ? = 2
[1,1,1,1,1,1,1,5,1] => [7,1,1] => [1,7,1] => [2,1,1,1,1,1,2] => ? = 2
[1,1,1,3,1,2,1,2,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [2,1,6] => ? = 6
[1,1,1,2,1,2,1,3,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [2,1,6] => ? = 6
[1,1,1,2,1,3,1,2,1] => [3,1,1,1,1,1,1] => [1,3,1,1,1,1,1] => [2,1,6] => ? = 6
[1,1,1,1,1,1,1,1,3] => [8,1] => [1,8] => [2,1,1,1,1,1,1,1] => ? = 1
[1,2,2,2,1,1,1,2] => [1,3,3,1] => [1,1,3,3] => [3,1,2,1,1] => ? = 1
[2,2,1,2,1,1,1,2] => [2,1,1,3,1] => [1,2,1,1,3] => [2,4,1,1] => ? = 1
Description
The last part of an integer composition.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000773: Graphs ⟶ ℤResult quality: 83% values known / values provided: 89%distinct values known / distinct values provided: 83%
Values
[1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,1,1,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,1,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,2,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
[1,1,1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,4] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,2,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,2,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,3,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,4,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,1,1,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,2,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,1,1,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1
[1,1,1,1,3,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,2,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,2,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,5] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1,3] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,1,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,2,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,2,4] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,3,1,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,3,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,2,1] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,2,1,1,1] => [4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,1,2] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,3] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,3,1] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,2,1,2] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[1,1,1,1,2,1,1,2] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,2,2,1,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,3,1,1,1] => [4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,2,1,1,1,2] => [3,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,2,1,1,2,1] => [3,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,2,2,1,1,1] => [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,1,2,1] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,2,1,1,2,1,1] => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,2,1,1,1,2,1,1] => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[2,1,1,1,1,2,1,1] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[2,1,1,1,2,1,1,1] => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,2,2,2,2] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,3,3,1,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,3,1,1,3] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,2,1,1,2,2] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,2,2,2,1,1] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,2,2,1,1,2] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,2,2,2] => [2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,1,2,3] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,2,1,2,3,1,1] => [2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 5
[1,1,2,1,2,2,1,2] => [2,1,1,2,1,1] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,2,1,2,1,1,3] => [2,1,1,1,2,1] => ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,3,2,1,2,1,1] => [2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 5
[1,1,3,2,1,1,1,2] => [2,1,1,3,1] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,3,1,1,3,1,1] => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,3,1,1,2,1,2] => [2,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[2,2,1,1,1,1,2,2] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,2,1,1,2,2,1,1] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,2,1,1,2,1,1,2] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,2,2,2,1,1,1,1] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,2,2,1,1,2,1,1] => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[2,2,2,1,1,1,1,2] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,1,2,1,1,2,2] => [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,1,2,2,2,1,1] => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,1,2,2,1,1,2] => [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,1,1,1,2,2,2] => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,1,1,2,3,1,1] => [1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[2,1,1,1,2,2,1,2] => [1,3,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[2,1,1,1,2,1,1,3] => [1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,2,2,1,2,1,1] => [1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[2,1,2,2,1,1,1,2] => [1,1,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,2,1,1,3,1,1] => [1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
Description
The multiplicity of the largest Laplacian eigenvalue in a graph.
Matching statistic: St001135
Mp00133: Integer compositions delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001135: Dyck paths ⟶ ℤResult quality: 83% values known / values provided: 88%distinct values known / distinct values provided: 83%
Values
[1,1,1,2] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,2] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1] => [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,2] => [5,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,2,1] => [4,1,1] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,3] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1,1] => [3,1,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,2,2] => [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,3,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,4] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1,1] => [2,1,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,2,1,2] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,2,1] => [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,2,3] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,1] => [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,2] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,4,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,1,1,1,2] => [1,3,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,1,1,2,1] => [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[2,2,1,2] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,2,2,1] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1,1,2] => [6,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[1,1,1,1,1,3] => [5,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,2,2] => [4,2] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,3,1] => [4,1,1] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,4] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,2,2,1] => [3,2,1] => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,1,2,3] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3,1,1] => [3,1,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3,2] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,4,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,5] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,2,1,3] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,2,1,1] => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,2,3,1] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,4] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,1,1] => [2,1,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,2] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,3,2,1] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,1,1,1,1,2] => [7,1] => [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,2,1] => [6,1,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,2,1,1,1] => [4,1,3] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,1,2] => [8,1] => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,3] => [7,1] => [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,3,1] => [6,1,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,2,1,2] => [5,1,1,1] => [1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,2,1,1,2] => [4,1,2,1] => [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,2,1,2,1] => [4,1,1,1,1] => [1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,1,2,2,1,1] => [4,2,2] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,1,3,1,1,1] => [4,1,3] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,2,1,1,1,2] => [3,1,3,1] => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,2,1,1,2,1] => [3,1,2,1,1] => [1,3,1,2,1] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,2,2,1,1,1] => [3,2,3] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[1,1,2,1,1,1,2,1] => [2,1,3,1,1] => [1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,2,1,1,2,1,1] => [2,1,2,1,2] => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,2,1,1,1,2,1,1] => [1,1,3,1,2] => [2,1,1,3,1] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[2,1,1,1,1,2,1,1] => [1,4,1,2] => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[2,1,1,1,2,1,1,1] => [1,3,1,3] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,1,1,2,2,2,2] => [4,4] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,2,1,2,3] => [4,1,1,1,1] => [1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,1,3,3,1,1] => [4,2,2] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,1,3,2,1,2] => [4,1,1,1,1] => [1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,1,3,1,1,3] => [4,1,2,1] => [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,2,2,1,1,2,2] => [2,2,2,2] => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,1,2,2,2,2,1,1] => [2,4,2] => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,2,2,2,1,1,2] => [2,3,2,1] => [1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[1,1,2,1,1,2,2,2] => [2,1,2,3] => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,2,1,1,1,2,3] => [2,1,3,1,1] => [1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,2,1,2,3,1,1] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,2,1,2,2,1,2] => [2,1,1,2,1,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,2,1,2,1,1,3] => [2,1,1,1,2,1] => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,3,2,1,2,1,1] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,3,2,1,1,1,2] => [2,1,1,3,1] => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,3,1,1,3,1,1] => [2,1,2,1,2] => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,3,1,1,2,1,2] => [2,1,2,1,1,1] => [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
[2,2,1,1,1,1,2,2] => [2,4,2] => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[2,2,1,1,2,2,1,1] => [2,2,2,2] => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1
[2,2,1,1,2,1,1,2] => [2,2,1,2,1] => [1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[2,2,2,2,1,1,1,1] => [4,4] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[2,2,2,1,1,2,1,1] => [3,2,1,2] => [2,3,2,1] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2
[2,2,2,1,1,1,1,2] => [3,4,1] => [1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[2,1,1,2,1,1,2,2] => [1,2,1,2,2] => [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[2,1,1,2,2,2,1,1] => [1,2,3,2] => [2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[2,1,1,2,2,1,1,2] => [1,2,2,2,1] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1
[2,1,1,1,1,2,2,2] => [1,4,3] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[2,1,1,1,2,3,1,1] => [1,3,1,1,2] => [2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[2,1,1,1,2,2,1,2] => [1,3,2,1,1] => [1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2
[2,1,1,1,2,1,1,3] => [1,3,1,2,1] => [1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
Description
The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001368
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001368: Graphs ⟶ ℤResult quality: 67% values known / values provided: 82%distinct values known / distinct values provided: 67%
Values
[1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,1,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,2,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,2,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,4] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,2,1,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,2,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,4,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,1,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,1,1,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,1,2,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,1,3,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,2,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,2,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,5] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,3] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,2,1,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,2,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,4] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,3,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,1,1,2,1] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,2,1,1,1] => [4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,1,1,1,2] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[1,1,1,1,1,1,1,3] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,1,1,3,1] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,2,1,2] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,1,2,1,1,2] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,2,1,2,1] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,2,2,1,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,3,1,1,1] => [4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,2,1,1,1,2] => [3,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,2,1,1,2,1] => [3,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,2,2,1,1,1] => [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,1,2,1] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,1,2,1,1] => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,2,1,2] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,1,1,1,2,1,1] => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,1,1,2,1,2] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[2,1,1,1,1,2,1,1] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,1,1,1,2,1,1,1] => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,1,1,2,1,2,1] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,1,2,1,1,2,1] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,2,2,2,2] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,2,1,2,3] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,3,3,1,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,3,2,1,2] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,3,1,1,3] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,2,1,1,2,2] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,2,2,2,1,1] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,2,2,1,1,2] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,2,2,2] => [2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,1,2,3] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,2,3,1,1] => [2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,1,2,1,2,2,1,2] => [2,1,1,2,1,1] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,2,1,1,3] => [2,1,1,1,2,1] => ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,3,2,1,2,1,1] => [2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,1,3,2,1,1,1,2] => [2,1,1,3,1] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,3,1,1,3,1,1] => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,3,1,1,2,1,2] => [2,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,1,1,1,1,2,2] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,2,1,1,2,2,1,1] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,2,1,1,2,1,1,2] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,2,2,2,1,1,1,1] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[2,2,2,1,1,2,1,1] => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,1,1,1,1,2] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,1,2,1,1,2,2] => [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,1,2,2,2,1,1] => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,1,2,2,1,1,2] => [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
Description
The number of vertices of maximal degree in a graph.
Matching statistic: St001316
Mp00133: Integer compositions delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001316: Graphs ⟶ ℤResult quality: 67% values known / values provided: 82%distinct values known / distinct values provided: 67%
Values
[1,1,1,2] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[1,1,1,2,1] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,3] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1,1] => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3,1] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,1,2] => [5,1] => [1,5] => ([(4,5)],6)
=> 1
[1,1,1,1,2,1] => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,3] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[1,1,1,2,1,1] => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,2,2] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 1
[1,1,1,3,1] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,4] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1,1,1] => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,2] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,2,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,2,3] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,1] => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3,2] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,4,1] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,1,1,2] => [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[2,1,1,2,1] => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1,2] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2,2,1] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,1,1,1,1,2] => [6,1] => [1,6] => ([(5,6)],7)
=> 1
[1,1,1,1,1,2,1] => [5,1,1] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,1,1,3] => [5,1] => [1,5] => ([(4,5)],6)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,1,2,2] => [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 1
[1,1,1,1,3,1] => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,4] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,2,1,2] => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,2,2,1] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,2,3] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,3,1,1] => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,3,2] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,4,1] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,5] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,2,1,1,2] => [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,3] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,2,1,1] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,2,3,1] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,4] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,1,1] => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,3,1,2] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3,2,1] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,1,1,1,2] => [7,1] => [1,7] => ([(6,7)],8)
=> ? = 1
[1,1,1,1,1,1,2,1] => [6,1,1] => [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,2,1,1,1] => [4,1,3] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,1,1,1,2] => [8,1] => [1,8] => ([(7,8)],9)
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => [1,7,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[1,1,1,1,1,1,1,3] => [7,1] => [1,7] => ([(6,7)],8)
=> ? = 1
[1,1,1,1,1,1,3,1] => [6,1,1] => [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,2,1,2] => [5,1,1,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,1,2,1,1,2] => [4,1,2,1] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,2,1,2,1] => [4,1,1,1,1] => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,2,2,1,1] => [4,2,2] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,3,1,1,1] => [4,1,3] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,2,1,1,1,2] => [3,1,3,1] => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,2,1,1,2,1] => [3,1,2,1,1] => [1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,2,2,1,1,1] => [3,2,3] => [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,1,2,1] => [2,1,3,1,1] => [1,2,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,1,2,1,1] => [2,1,2,1,2] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,2,1,2] => [2,1,1,1,1,1] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,1,1,1,2,1,1] => [1,1,3,1,2] => [2,1,1,3,1] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,1,1,2,1,2] => [1,1,2,1,1,1] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[2,1,1,1,1,2,1,1] => [1,4,1,2] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,1,1,1,2,1,1,1] => [1,3,1,3] => [3,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,1,1,2,1,2,1] => [1,2,1,1,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,1,2,1,1,2,1] => [1,1,1,2,1,1] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,2,2,2,2] => [4,4] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,2,1,2,3] => [4,1,1,1,1] => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,3,3,1,1] => [4,2,2] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,3,2,1,2] => [4,1,1,1,1] => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,3,1,1,3] => [4,1,2,1] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,2,1,1,2,2] => [2,2,2,2] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,2,2,2,1,1] => [2,4,2] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,2,2,1,1,2] => [2,3,2,1] => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,2,2,2] => [2,1,2,3] => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,1,2,3] => [2,1,3,1,1] => [1,2,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,2,3,1,1] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,1,2,1,2,2,1,2] => [2,1,1,2,1,1] => [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,2,1,2,1,1,3] => [2,1,1,1,2,1] => [1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,3,2,1,2,1,1] => [2,1,1,1,1,2] => [2,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,1,3,2,1,1,1,2] => [2,1,1,3,1] => [1,2,1,1,3] => ([(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,3,1,1,3,1,1] => [2,1,2,1,2] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,3,1,1,2,1,2] => [2,1,2,1,1,1] => [1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,1,1,1,1,2,2] => [2,4,2] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,2,1,1,2,2,1,1] => [2,2,2,2] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,2,1,1,2,1,1,2] => [2,2,1,2,1] => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,2,2,2,1,1,1,1] => [4,4] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[2,2,2,1,1,2,1,1] => [3,2,1,2] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,1,1,1,1,2] => [3,4,1] => [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,1,2,1,1,2,2] => [1,2,1,2,2] => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,1,2,2,2,1,1] => [1,2,3,2] => [2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,1,2,2,1,1,2] => [1,2,2,2,1] => [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
Description
The domatic number of a graph. This is the maximal size of a partition of the vertices into dominating sets.
Matching statistic: St000286
Mp00133: Integer compositions delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000286: Graphs ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 67%
Values
[1,1,1,2] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[1,1,1,2,1] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,3] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1,1] => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3,1] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,1,2] => [5,1] => [1,5] => ([(4,5)],6)
=> 1
[1,1,1,1,2,1] => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,3] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[1,1,1,2,1,1] => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,2,2] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 1
[1,1,1,3,1] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,4] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1,1,1] => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,2] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,2,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,2,3] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,1] => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3,2] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,4,1] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,1,1,2] => [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[2,1,1,2,1] => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1,2] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2,2,1] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,1,1,1,1,2] => [6,1] => [1,6] => ([(5,6)],7)
=> ? = 1
[1,1,1,1,1,2,1] => [5,1,1] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,1,3] => [5,1] => [1,5] => ([(4,5)],6)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,2,2] => [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 1
[1,1,1,1,3,1] => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,4] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,2,1,2] => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,2,2,1] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,2,3] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,3,1,1] => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,3,2] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,4,1] => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,5] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,2,1,1,2] => [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,3] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,2,1,1] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,2,3,1] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,4] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,1,1] => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,3,1,2] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3,2,1] => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,4,1,1] => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,4,2] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,5,1] => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,2,1,1,1,2] => [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,2,1] => [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1,1,2] => [7,1] => [1,7] => ([(6,7)],8)
=> ? = 1
[1,1,1,1,1,1,2,1] => [6,1,1] => [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,1,3] => [6,1] => [1,6] => ([(5,6)],7)
=> ? = 1
[1,1,1,1,1,2,2] => [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,3,1] => [5,1,1] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,2,1,1,1] => [4,1,3] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,2,1,2] => [4,1,1,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,2,2,1] => [4,2,1] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,3,1,1] => [4,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,2,1,1,2] => [3,1,2,1] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,2,1,2,1] => [3,1,1,1,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,2,2,1,1] => [3,2,2] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,3,1,1,1] => [3,1,3] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,2,1,1,1,2] => [2,1,3,1] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,2,1,1,2,1] => [2,1,2,1,1] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,2,1,2,1,1] => [2,1,1,1,2] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,2,2,1,1,1] => [2,2,3] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,3,1,1,1,1] => [2,1,4] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,2,1,1,1,1,2] => [1,1,4,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,1,1,1,2,1] => [1,1,3,1,1] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,1,1,1,1,1,2] => [1,5,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,1,1,1,2,1] => [1,4,1,1] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,1,1,1,2,1,1] => [1,3,1,2] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,1,1,2,1,1,1] => [1,2,1,3] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,1,1,1,1,2] => [8,1] => [1,8] => ([(7,8)],9)
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => [1,7,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[1,1,1,1,1,1,1,3] => [7,1] => [1,7] => ([(6,7)],8)
=> ? = 1
[1,1,1,1,1,1,3,1] => [6,1,1] => [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,1,1,4] => [6,1] => [1,6] => ([(5,6)],7)
=> ? = 1
[1,1,1,1,1,2,1,2] => [5,1,1,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,1,1,2,3] => [5,1,1] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,1,3,2] => [5,1,1] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,1,4,1] => [5,1,1] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,2,1,1,2] => [4,1,2,1] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,2,1,2,1] => [4,1,1,1,1] => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,2,1,3] => [4,1,1,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,2,2,1,1] => [4,2,2] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,2,2,2] => [4,3] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,2,3,1] => [4,1,1,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,3,1,1,1] => [4,1,3] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,1,3,1,2] => [4,1,1,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,3,2,1] => [4,1,1,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,4,1,1] => [4,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,2,1,1,1,2] => [3,1,3,1] => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
Description
The number of connected components of the complement of a graph. The complement of a graph is the graph on the same vertex set with complementary edges.
Matching statistic: St001201
Mp00133: Integer compositions delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001201: Dyck paths ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 67%
Values
[1,1,1,2] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,2] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1] => [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,2] => [5,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,2,1] => [4,1,1] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,3] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1,1] => [3,1,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,2,2] => [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,3,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,4] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1,1] => [2,1,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,2,1,2] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,2,1] => [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,2,3] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,1] => [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,2] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,4,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,1,1,1,2] => [1,3,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,1,1,2,1] => [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[2,2,1,2] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,2,2,1] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1,1,2] => [6,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,2,1] => [5,1,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,3] => [5,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,2,2] => [4,2] => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,3,1] => [4,1,1] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,4] => [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,2,1,1,1] => [3,1,3] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,1,2,1,2] => [3,1,1,1] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,2,2,1] => [3,2,1] => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,1,2,3] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3,1,1] => [3,1,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,3,2] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,4,1] => [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,5] => [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,2,1,1,1,1] => [2,1,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,2,1,1,2] => [2,1,2,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,2,1,2,1] => [2,1,1,1,1] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,2,1,3] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,2,1,1] => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,2,3,1] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,2,4] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,1,1] => [2,1,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,3,1,2] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,3,2,1] => [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,4,1,1] => [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,4,2] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,5,1] => [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,2,1,1,1,2] => [1,1,3,1] => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,2,1,1,2,1] => [1,1,2,1,1] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,1,1,2] => [7,1] => [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,2,1] => [6,1,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,3] => [6,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,2,2] => [5,2] => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,3,1] => [5,1,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,2,1,1,1] => [4,1,3] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,2,1,2] => [4,1,1,1] => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,2,2,1] => [4,2,1] => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,1,3,1,1] => [4,1,2] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,2,1,1,2] => [3,1,2,1] => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,2,1,2,1] => [3,1,1,1,1] => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,2,2,1,1] => [3,2,2] => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,3,1,1,1] => [3,1,3] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,2,1,1,1,2] => [2,1,3,1] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,2,1,1,2,1] => [2,1,2,1,1] => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,2,1,2,1,1] => [2,1,1,1,2] => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,2,2,1,1,1] => [2,2,3] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,1,3,1,1,1,1] => [2,1,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[1,2,1,1,1,1,2] => [1,1,4,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,2,1,1,1,2,1] => [1,1,3,1,1] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[2,1,1,1,1,1,2] => [1,5,1] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[2,1,1,1,1,2,1] => [1,4,1,1] => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[2,1,1,1,2,1,1] => [1,3,1,2] => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[2,1,1,2,1,1,1] => [1,2,1,3] => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,1,2] => [8,1] => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [7,1,1] => [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,3] => [7,1] => [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,3,1] => [6,1,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,4] => [6,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,2,1,2] => [5,1,1,1] => [1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,1,2,3] => [5,1,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,3,2] => [5,1,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,4,1] => [5,1,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,2,1,1,2] => [4,1,2,1] => [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,2,1,2,1] => [4,1,1,1,1] => [1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,1,2,1,3] => [4,1,1,1] => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,2,2,1,1] => [4,2,2] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,1,2,2,2] => [4,3] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,2,3,1] => [4,1,1,1] => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,3,1,1,1] => [4,1,3] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,3,1,2] => [4,1,1,1] => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,3,2,1] => [4,1,1,1] => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,4,1,1] => [4,1,2] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,1,2,1,1,1,2] => [3,1,3,1] => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
Description
The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path.
The following 35 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000141The maximum drop size of a permutation. St000451The length of the longest pattern of the form k 1 2. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001644The dimension of a graph. St000455The second largest eigenvalue of a graph if it is integral. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001712The number of natural descents of a standard Young tableau. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001462The number of factors of a standard tableaux under concatenation. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000519The largest length of a factor maximising the subword complexity. St000922The minimal number such that all substrings of this length are unique. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001417The length of a longest palindromic subword of a binary word. St001168The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000665The number of rafts of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000871The number of very big ascents of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St000834The number of right outer peaks of a permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St001571The Cartan determinant of the integer partition.