Your data matches 35 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001486: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1] => 2 = 0 + 2
[2] => 2 = 0 + 2
[1,1,1] => 2 = 0 + 2
[1,2] => 3 = 1 + 2
[2,1] => 3 = 1 + 2
[3] => 2 = 0 + 2
[1,1,1,1] => 2 = 0 + 2
[1,1,2] => 3 = 1 + 2
[1,2,1] => 4 = 2 + 2
[1,3] => 3 = 1 + 2
[2,1,1] => 3 = 1 + 2
[2,2] => 4 = 2 + 2
[3,1] => 3 = 1 + 2
[4] => 2 = 0 + 2
[1,1,1,1,1] => 2 = 0 + 2
[1,1,1,2] => 3 = 1 + 2
[1,1,2,1] => 4 = 2 + 2
[1,1,3] => 3 = 1 + 2
[1,2,1,1] => 4 = 2 + 2
[1,2,2] => 5 = 3 + 2
[1,3,1] => 4 = 2 + 2
[1,4] => 3 = 1 + 2
[2,1,1,1] => 3 = 1 + 2
[2,1,2] => 4 = 2 + 2
[2,2,1] => 5 = 3 + 2
[2,3] => 4 = 2 + 2
[3,1,1] => 3 = 1 + 2
[3,2] => 4 = 2 + 2
[4,1] => 3 = 1 + 2
[5] => 2 = 0 + 2
[1,1,1,1,1,1] => 2 = 0 + 2
[1,1,1,1,2] => 3 = 1 + 2
[1,1,1,2,1] => 4 = 2 + 2
[1,1,1,3] => 3 = 1 + 2
[1,1,2,1,1] => 4 = 2 + 2
[1,1,2,2] => 5 = 3 + 2
[1,1,3,1] => 4 = 2 + 2
[1,1,4] => 3 = 1 + 2
[1,2,1,1,1] => 4 = 2 + 2
[1,2,1,2] => 5 = 3 + 2
[1,2,2,1] => 6 = 4 + 2
[1,2,3] => 5 = 3 + 2
[1,3,1,1] => 4 = 2 + 2
[1,3,2] => 5 = 3 + 2
[1,4,1] => 4 = 2 + 2
[1,5] => 3 = 1 + 2
[2,1,1,1,1] => 3 = 1 + 2
[2,1,1,2] => 4 = 2 + 2
[2,1,2,1] => 5 = 3 + 2
[2,1,3] => 4 = 2 + 2
Description
The number of corners of the ribbon associated with an integer composition. We associate a ribbon shape to a composition $c=(c_1,\dots,c_n)$ with $c_i$ cells in the $i$-th row from bottom to top, such that the cells in two rows overlap in precisely one cell. This statistic records the total number of corners of the ribbon shape.
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001035: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 3
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
Description
The convexity degree of the parallelogram polyomino associated with the Dyck path. A parallelogram polyomino is $k$-convex if $k$ is the maximal number of turns an axis-parallel path must take to connect two cells of the polyomino. For example, any rotation of a Ferrers shape has convexity degree at most one. The (bivariate) generating function is given in Theorem 2 of [1].
Mp00094: Integer compositions to binary wordBinary words
Mp00105: Binary words complementBinary words
Mp00280: Binary words path rowmotionBinary words
St000691: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1] => 11 => 00 => 01 => 1 = 0 + 1
[2] => 10 => 01 => 10 => 1 = 0 + 1
[1,1,1] => 111 => 000 => 001 => 1 = 0 + 1
[1,2] => 110 => 001 => 010 => 2 = 1 + 1
[2,1] => 101 => 010 => 101 => 2 = 1 + 1
[3] => 100 => 011 => 100 => 1 = 0 + 1
[1,1,1,1] => 1111 => 0000 => 0001 => 1 = 0 + 1
[1,1,2] => 1110 => 0001 => 0010 => 2 = 1 + 1
[1,2,1] => 1101 => 0010 => 0101 => 3 = 2 + 1
[1,3] => 1100 => 0011 => 0100 => 2 = 1 + 1
[2,1,1] => 1011 => 0100 => 1001 => 2 = 1 + 1
[2,2] => 1010 => 0101 => 1010 => 3 = 2 + 1
[3,1] => 1001 => 0110 => 1011 => 2 = 1 + 1
[4] => 1000 => 0111 => 1000 => 1 = 0 + 1
[1,1,1,1,1] => 11111 => 00000 => 00001 => 1 = 0 + 1
[1,1,1,2] => 11110 => 00001 => 00010 => 2 = 1 + 1
[1,1,2,1] => 11101 => 00010 => 00101 => 3 = 2 + 1
[1,1,3] => 11100 => 00011 => 00100 => 2 = 1 + 1
[1,2,1,1] => 11011 => 00100 => 01001 => 3 = 2 + 1
[1,2,2] => 11010 => 00101 => 01010 => 4 = 3 + 1
[1,3,1] => 11001 => 00110 => 01011 => 3 = 2 + 1
[1,4] => 11000 => 00111 => 01000 => 2 = 1 + 1
[2,1,1,1] => 10111 => 01000 => 10001 => 2 = 1 + 1
[2,1,2] => 10110 => 01001 => 10010 => 3 = 2 + 1
[2,2,1] => 10101 => 01010 => 10101 => 4 = 3 + 1
[2,3] => 10100 => 01011 => 10100 => 3 = 2 + 1
[3,1,1] => 10011 => 01100 => 10011 => 2 = 1 + 1
[3,2] => 10010 => 01101 => 10110 => 3 = 2 + 1
[4,1] => 10001 => 01110 => 10111 => 2 = 1 + 1
[5] => 10000 => 01111 => 10000 => 1 = 0 + 1
[1,1,1,1,1,1] => 111111 => 000000 => 000001 => 1 = 0 + 1
[1,1,1,1,2] => 111110 => 000001 => 000010 => 2 = 1 + 1
[1,1,1,2,1] => 111101 => 000010 => 000101 => 3 = 2 + 1
[1,1,1,3] => 111100 => 000011 => 000100 => 2 = 1 + 1
[1,1,2,1,1] => 111011 => 000100 => 001001 => 3 = 2 + 1
[1,1,2,2] => 111010 => 000101 => 001010 => 4 = 3 + 1
[1,1,3,1] => 111001 => 000110 => 001011 => 3 = 2 + 1
[1,1,4] => 111000 => 000111 => 001000 => 2 = 1 + 1
[1,2,1,1,1] => 110111 => 001000 => 010001 => 3 = 2 + 1
[1,2,1,2] => 110110 => 001001 => 010010 => 4 = 3 + 1
[1,2,2,1] => 110101 => 001010 => 010101 => 5 = 4 + 1
[1,2,3] => 110100 => 001011 => 010100 => 4 = 3 + 1
[1,3,1,1] => 110011 => 001100 => 010011 => 3 = 2 + 1
[1,3,2] => 110010 => 001101 => 010110 => 4 = 3 + 1
[1,4,1] => 110001 => 001110 => 010111 => 3 = 2 + 1
[1,5] => 110000 => 001111 => 010000 => 2 = 1 + 1
[2,1,1,1,1] => 101111 => 010000 => 100001 => 2 = 1 + 1
[2,1,1,2] => 101110 => 010001 => 100010 => 3 = 2 + 1
[2,1,2,1] => 101101 => 010010 => 100101 => 4 = 3 + 1
[2,1,3] => 101100 => 010011 => 100100 => 3 = 2 + 1
Description
The number of changes of a binary word. This is the number of indices $i$ such that $w_i \neq w_{i+1}$.
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001036: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 3
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,2,4] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3
Description
The number of inner corners of the parallelogram polyomino associated with the Dyck path.
Mp00038: Integer compositions reverseInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
St000071: Posets ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 86%
Values
[1,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2] => [2] => [[2],[]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,2] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 2 = 1 + 1
[3] => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[1,3] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[2,2] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[3,1] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[4] => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,1,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,2] => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,2,1] => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,3] => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,1,1] => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 2 + 1
[1,2,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
[1,3,1] => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 3 = 2 + 1
[1,4] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[2,1,1,1] => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[2,1,2] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 3 = 2 + 1
[2,2,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> 4 = 3 + 1
[2,3] => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1] => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2 = 1 + 1
[3,2] => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 2 + 1
[4,1] => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[5] => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,1,1] => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,2] => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[1,1,1,2,1] => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> 3 = 2 + 1
[1,1,1,3] => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2 = 1 + 1
[1,1,2,1,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> 3 = 2 + 1
[1,1,2,2] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> 4 = 3 + 1
[1,1,3,1] => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,4] => [4,1,1] => [[4,4,4],[3,3]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2 = 1 + 1
[1,2,1,1,1] => [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> 3 = 2 + 1
[1,2,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 3 + 1
[1,2,2,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> 5 = 4 + 1
[1,2,3] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> 4 = 3 + 1
[1,3,1,1] => [1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> 3 = 2 + 1
[1,3,2] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4 = 3 + 1
[1,4,1] => [1,4,1] => [[4,4,1],[3]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> 3 = 2 + 1
[1,5] => [5,1] => [[5,5],[4]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[2,1,1,1,1] => [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2 = 1 + 1
[2,1,1,2] => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> 3 = 2 + 1
[2,1,2,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> 4 = 3 + 1
[2,1,3] => [3,1,2] => [[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,2,4] => [4,2,1,1] => [[5,5,5,4],[4,4,3]]
=> ([(0,6),(0,7),(1,3),(2,4),(3,7),(4,5),(5,6)],8)
=> ? = 3 + 1
[1,1,3,1,1,1] => [1,1,1,3,1,1] => [[3,3,3,1,1,1],[2,2]]
=> ?
=> ? = 2 + 1
[1,1,3,1,2] => [2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]]
=> ([(0,6),(1,4),(2,3),(2,5),(3,7),(4,7),(5,6)],8)
=> ? = 3 + 1
[1,1,3,2,1] => [1,2,3,1,1] => [[4,4,4,2,1],[3,3,1]]
=> ([(0,5),(1,4),(1,6),(2,3),(2,6),(4,7),(5,7)],8)
=> ? = 4 + 1
[1,1,3,3] => [3,3,1,1] => [[5,5,5,3],[4,4,2]]
=> ([(0,3),(1,5),(2,4),(2,6),(3,7),(4,7),(5,6)],8)
=> ? = 3 + 1
[1,1,4,1,1] => [1,1,4,1,1] => [[4,4,4,1,1],[3,3]]
=> ?
=> ? = 2 + 1
[1,1,4,2] => [2,4,1,1] => [[5,5,5,2],[4,4,1]]
=> ([(0,6),(1,3),(2,4),(2,6),(3,7),(4,5),(5,7)],8)
=> ? = 3 + 1
[1,1,5,1] => [1,5,1,1] => [[5,5,5,1],[4,4]]
=> ?
=> ? = 2 + 1
[1,1,6] => [6,1,1] => [[6,6,6],[5,5]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[1,2,1,1,1,1,1] => [1,1,1,1,1,2,1] => [[2,2,1,1,1,1,1],[1]]
=> ([(0,7),(1,6),(1,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 2 + 1
[1,2,1,1,1,2] => [2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]]
=> ([(0,7),(1,6),(2,3),(2,6),(3,5),(4,7),(5,4)],8)
=> ? = 3 + 1
[1,2,1,1,2,1] => [1,2,1,1,2,1] => [[3,3,2,2,2,1],[2,1,1,1]]
=> ([(0,6),(1,4),(1,6),(2,3),(2,7),(4,5),(5,7)],8)
=> ? = 4 + 1
[1,2,1,1,3] => [3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]]
=> ([(0,6),(1,3),(2,4),(2,6),(3,7),(4,5),(5,7)],8)
=> ? = 3 + 1
[1,2,1,2,1,1] => [1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]]
=> ([(0,6),(1,4),(1,7),(2,3),(2,6),(3,7),(4,5)],8)
=> ? = 4 + 1
[1,2,1,2,2] => [2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]]
=> ([(0,5),(1,6),(2,5),(2,7),(3,4),(3,6),(4,7)],8)
=> ? = 5 + 1
[1,2,1,3,1] => [1,3,1,2,1] => [[4,4,3,3,1],[3,2,2]]
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(4,7),(5,7)],8)
=> ? = 4 + 1
[1,2,1,4] => [4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ([(0,6),(1,4),(2,3),(2,6),(3,7),(4,5),(5,7)],8)
=> ? = 3 + 1
[1,2,2,1,1,1] => [1,1,1,2,2,1] => [[3,3,2,1,1,1],[2,1]]
=> ([(0,6),(1,3),(1,7),(2,6),(2,7),(3,5),(5,4)],8)
=> ? = 4 + 1
[1,2,2,1,2] => [2,1,2,2,1] => [[4,4,3,2,2],[3,2,1,1]]
=> ([(0,7),(1,5),(2,5),(2,6),(3,4),(3,6),(4,7)],8)
=> ? = 5 + 1
[1,2,2,2,1] => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]]
=> ([(0,6),(1,5),(1,6),(2,5),(2,7),(3,4),(3,7)],8)
=> ? = 6 + 1
[1,2,2,3] => [3,2,2,1] => [[5,5,4,3],[4,3,2]]
=> ([(0,5),(1,6),(1,7),(2,5),(2,6),(3,4),(4,7)],8)
=> ? = 5 + 1
[1,2,3,1,1] => [1,1,3,2,1] => [[4,4,3,1,1],[3,2]]
=> ([(0,6),(1,6),(1,7),(2,3),(2,4),(3,7),(4,5)],8)
=> ? = 4 + 1
[1,2,3,2] => [2,3,2,1] => [[5,5,4,2],[4,3,1]]
=> ([(0,5),(1,6),(2,5),(2,7),(3,4),(3,6),(4,7)],8)
=> ? = 5 + 1
[1,2,4,1] => [1,4,2,1] => [[5,5,4,1],[4,3]]
=> ([(0,6),(1,6),(1,7),(2,3),(2,4),(4,5),(5,7)],8)
=> ? = 4 + 1
[1,2,5] => [5,2,1] => [[6,6,5],[5,4]]
=> ?
=> ? = 3 + 1
[1,3,1,1,1,1] => [1,1,1,1,3,1] => [[3,3,1,1,1,1],[2]]
=> ?
=> ? = 2 + 1
[1,3,1,1,2] => [2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]]
=> ([(0,7),(1,6),(2,3),(2,4),(3,7),(4,5),(5,6)],8)
=> ? = 3 + 1
[1,3,1,2,1] => [1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]]
=> ([(0,6),(1,3),(1,7),(2,4),(2,5),(4,6),(5,7)],8)
=> ? = 4 + 1
[1,3,1,3] => [3,1,3,1] => [[5,5,3,3],[4,2,2]]
=> ([(0,6),(1,4),(2,3),(2,5),(3,7),(4,7),(5,6)],8)
=> ? = 3 + 1
[1,3,2,1,1] => [1,1,2,3,1] => [[4,4,2,1,1],[3,1]]
=> ([(0,7),(1,3),(1,6),(2,4),(2,6),(3,7),(4,5)],8)
=> ? = 4 + 1
[1,3,2,2] => [2,2,3,1] => [[5,5,3,2],[4,2,1]]
=> ([(0,7),(1,5),(2,5),(2,6),(3,4),(3,6),(4,7)],8)
=> ? = 5 + 1
[1,3,3,1] => [1,3,3,1] => [[5,5,3,1],[4,2]]
=> ([(0,6),(1,5),(1,7),(2,3),(2,4),(4,7),(5,6)],8)
=> ? = 4 + 1
[1,3,4] => [4,3,1] => [[6,6,4],[5,3]]
=> ([(0,7),(1,4),(2,3),(2,6),(3,7),(4,5),(5,6)],8)
=> ? = 3 + 1
[1,4,1,1,1] => [1,1,1,4,1] => [[4,4,1,1,1],[3]]
=> ?
=> ? = 2 + 1
[1,4,1,2] => [2,1,4,1] => [[5,5,2,2],[4,1,1]]
=> ?
=> ? = 3 + 1
[1,4,2,1] => [1,2,4,1] => [[5,5,2,1],[4,1]]
=> ?
=> ? = 4 + 1
[1,4,3] => [3,4,1] => [[6,6,3],[5,2]]
=> ([(0,6),(1,3),(2,4),(2,7),(3,7),(4,5),(5,6)],8)
=> ? = 3 + 1
[1,5,1,1] => [1,1,5,1] => [[5,5,1,1],[4]]
=> ?
=> ? = 2 + 1
[1,5,2] => [2,5,1] => [[6,6,2],[5,1]]
=> ?
=> ? = 3 + 1
[1,6,1] => [1,6,1] => [[6,6,1],[5]]
=> ?
=> ? = 2 + 1
[1,7] => [7,1] => [[7,7],[6]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,1,1,1,1,2] => [2,1,1,1,1,2] => [[3,2,2,2,2,2],[1,1,1,1,1]]
=> ([(0,7),(1,2),(1,6),(3,7),(4,5),(5,3),(6,4)],8)
=> ? = 2 + 1
[2,1,1,1,2,1] => [1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]]
=> ([(0,4),(0,7),(1,2),(1,6),(3,7),(5,3),(6,5)],8)
=> ? = 3 + 1
[2,1,1,1,3] => [3,1,1,1,2] => [[4,3,3,3,3],[2,2,2,2]]
=> ?
=> ? = 2 + 1
[2,1,1,2,1,1] => [1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]]
=> ([(0,6),(0,7),(1,3),(1,5),(4,7),(5,4),(6,2)],8)
=> ? = 3 + 1
[2,1,1,2,2] => [2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]]
=> ([(0,6),(1,6),(1,7),(2,3),(2,4),(4,5),(5,7)],8)
=> ? = 4 + 1
[2,1,1,3,1] => [1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]]
=> ([(0,3),(0,5),(1,4),(1,6),(2,7),(5,7),(6,2)],8)
=> ? = 3 + 1
[2,1,1,4] => [4,1,1,2] => [[5,4,4,4],[3,3,3]]
=> ([(0,6),(1,2),(1,5),(3,7),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[2,1,2,1,1,1] => [1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]]
=> ([(0,6),(0,7),(1,3),(1,4),(4,7),(5,2),(6,5)],8)
=> ? = 3 + 1
[2,1,2,1,2] => [2,1,2,1,2] => [[4,3,3,2,2],[2,2,1,1]]
=> ([(0,6),(1,5),(1,7),(2,3),(2,4),(4,7),(5,6)],8)
=> ? = 4 + 1
Description
The number of maximal chains in a poset.
Mp00231: Integer compositions bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
St001499: Dyck paths ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 86%
Values
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 1 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 4 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 3 = 2 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,2,4] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 3 + 1
[1,1,3,1,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 3 + 1
[1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 4 + 1
[1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,1,0,0,0]
=> ? = 3 + 1
[1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,1,4,2] => [1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> ? = 3 + 1
[1,1,5,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,1,6] => [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 3 + 1
[1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 4 + 1
[1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 3 + 1
[1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 4 + 1
[1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 4 + 1
[1,2,1,4] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 3 + 1
[1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 4 + 1
[1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 5 + 1
[1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6 + 1
[1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> ? = 4 + 1
[1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 5 + 1
[1,2,4,1] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 4 + 1
[1,2,5] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 3 + 1
[1,3,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 3 + 1
[1,3,1,2,1] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 4 + 1
[1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 3 + 1
[1,3,2,1,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 4 + 1
[1,3,2,2] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 4 + 1
[1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 3 + 1
[1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 3 + 1
[1,4,2,1] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 4 + 1
[1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 3 + 1
[1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 3 + 1
[1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 + 1
[2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2 + 1
[2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 3 + 1
[2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 2 + 1
[2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 3 + 1
[2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4 + 1
[2,1,1,3,1] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 3 + 1
[2,1,1,4] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 3 + 1
Description
The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. We use the bijection in the code by Christian Stump to have a bijection to Dyck paths.
Mp00184: Integer compositions to threshold graphGraphs
St000388: Graphs ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 86%
Values
[1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2] => ([],2)
=> 1 = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3] => ([],3)
=> 1 = 0 + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4] => ([],4)
=> 1 = 0 + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4] => ([(3,4)],5)
=> 2 = 1 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3] => ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5] => ([],5)
=> 1 = 0 + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,5] => ([(4,5)],6)
=> 2 = 1 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,1,2,4] => ([(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,3,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,4,2] => ([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,6] => ([(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,1,3] => ([(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,4] => ([(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,5] => ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,7] => ([(6,7)],8)
=> ? = 1 + 1
[2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[2,1,1,1,2,1] => ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[2,1,1,1,3] => ([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[2,1,1,2,1,1] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[2,1,1,2,2] => ([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[2,1,1,3,1] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[2,1,1,4] => ([(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
Description
The number of orbits of vertices of a graph under automorphisms.
Mp00184: Integer compositions to threshold graphGraphs
St001951: Graphs ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 86%
Values
[1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2] => ([],2)
=> 1 = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3] => ([],3)
=> 1 = 0 + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4] => ([],4)
=> 1 = 0 + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4] => ([(3,4)],5)
=> 2 = 1 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3] => ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5] => ([],5)
=> 1 = 0 + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,5] => ([(4,5)],6)
=> 2 = 1 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,1,2,4] => ([(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,3,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,4,2] => ([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,6] => ([(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,1,3] => ([(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,4] => ([(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,5] => ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,7] => ([(6,7)],8)
=> ? = 1 + 1
[2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[2,1,1,1,2,1] => ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[2,1,1,1,3] => ([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[2,1,1,2,1,1] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[2,1,1,2,2] => ([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[2,1,1,3,1] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[2,1,1,4] => ([(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
Description
The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. The disjoint direct product decomposition of a permutation group factors the group corresponding to the product $(G, X) \ast (H, Y) = (G\times H, Z)$, where $Z$ is the disjoint union of $X$ and $Y$. In particular, for an asymmetric graph, i.e., with trivial automorphism group, this statistic equals the number of vertices, because the trivial action factors completely.
Matching statistic: St001304
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
Mp00198: Posets incomparability graphGraphs
St001304: Graphs ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 71%
Values
[1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[2] => [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
[1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
[3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,1,3] => [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 3 + 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,4] => [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,2,3] => [[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 3 + 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,3,2] => [[4,3,1],[2]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,4,1] => [[4,4,1],[3]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,5] => [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[1,1,2,4] => [[5,2,1,1],[1]]
=> ?
=> ?
=> ? = 3 + 1
[1,1,3,1,1,1] => [[3,3,3,3,1,1],[2,2,2]]
=> ?
=> ?
=> ? = 2 + 1
[1,1,3,1,2] => [[4,3,3,1,1],[2,2]]
=> ([(0,3),(0,4),(1,5),(1,6),(4,7),(5,7),(6,2)],8)
=> ?
=> ? = 3 + 1
[1,1,3,2,1] => [[4,4,3,1,1],[3,2]]
=> ([(0,6),(1,6),(1,7),(2,3),(2,4),(3,7),(4,5)],8)
=> ?
=> ? = 4 + 1
[1,1,3,3] => [[5,3,1,1],[2]]
=> ([(0,6),(0,7),(1,4),(1,5),(4,7),(5,3),(6,2)],8)
=> ?
=> ? = 3 + 1
[1,1,4,1,1] => [[4,4,4,1,1],[3,3]]
=> ?
=> ?
=> ? = 2 + 1
[1,1,4,2] => [[5,4,1,1],[3]]
=> ?
=> ?
=> ? = 3 + 1
[1,1,5,1] => [[5,5,1,1],[4]]
=> ?
=> ?
=> ? = 2 + 1
[1,1,6] => [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 1 + 1
[1,2,1,1,1,1,1] => [[2,2,2,2,2,2,1],[1,1,1,1,1]]
=> ([(0,6),(1,3),(1,7),(2,7),(4,5),(5,2),(6,4)],8)
=> ?
=> ? = 2 + 1
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]]
=> ([(0,4),(0,7),(1,2),(1,6),(3,7),(5,3),(6,5)],8)
=> ?
=> ? = 3 + 1
[1,2,1,1,2,1] => [[3,3,2,2,2,1],[2,1,1,1]]
=> ([(0,6),(1,4),(1,6),(2,3),(2,7),(4,5),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,2,1,1,3] => [[4,2,2,2,1],[1,1,1]]
=> ?
=> ?
=> ? = 3 + 1
[1,2,1,2,1,1] => [[3,3,3,2,2,1],[2,2,1,1]]
=> ([(0,5),(1,4),(1,7),(2,3),(2,6),(4,6),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,2,1,2,2] => [[4,3,2,2,1],[2,1,1]]
=> ([(0,4),(0,7),(1,3),(1,6),(2,5),(2,6),(5,7)],8)
=> ?
=> ? = 5 + 1
[1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]]
=> ([(0,6),(1,3),(1,7),(2,4),(2,5),(4,6),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,2,1,4] => [[5,2,2,1],[1,1]]
=> ?
=> ?
=> ? = 3 + 1
[1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]]
=> ([(0,6),(0,7),(1,4),(2,3),(2,6),(4,5),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,2,2,1,2] => [[4,3,3,2,1],[2,2,1]]
=> ([(0,6),(0,7),(1,4),(1,6),(2,3),(2,5),(5,7)],8)
=> ?
=> ? = 5 + 1
[1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]]
=> ([(0,6),(1,5),(1,6),(2,5),(2,7),(3,4),(3,7)],8)
=> ?
=> ? = 6 + 1
[1,2,2,3] => [[5,3,2,1],[2,1]]
=> ([(0,6),(0,7),(1,3),(1,6),(2,4),(2,7),(4,5)],8)
=> ?
=> ? = 5 + 1
[1,2,3,1,1] => [[4,4,4,2,1],[3,3,1]]
=> ([(0,5),(1,4),(1,6),(2,3),(2,6),(4,7),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,2,3,2] => [[5,4,2,1],[3,1]]
=> ([(0,4),(0,7),(1,3),(1,6),(2,5),(2,6),(5,7)],8)
=> ?
=> ? = 5 + 1
[1,2,4,1] => [[5,5,2,1],[4,1]]
=> ?
=> ?
=> ? = 4 + 1
[1,2,5] => [[6,2,1],[1]]
=> ?
=> ?
=> ? = 3 + 1
[1,3,1,1,1,1] => [[3,3,3,3,3,1],[2,2,2,2]]
=> ?
=> ?
=> ? = 2 + 1
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]]
=> ([(0,3),(0,5),(1,4),(1,6),(2,7),(5,7),(6,2)],8)
=> ?
=> ? = 3 + 1
[1,3,1,2,1] => [[4,4,3,3,1],[3,2,2]]
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(4,7),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,3,1,3] => [[5,3,3,1],[2,2]]
=> ([(0,3),(0,4),(1,5),(1,6),(4,7),(5,7),(6,2)],8)
=> ?
=> ? = 3 + 1
[1,3,2,1,1] => [[4,4,4,3,1],[3,3,2]]
=> ([(0,6),(0,7),(1,5),(2,3),(2,4),(4,6),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,3,2,2] => [[5,4,3,1],[3,2]]
=> ([(0,6),(0,7),(1,4),(1,6),(2,3),(2,5),(5,7)],8)
=> ?
=> ? = 5 + 1
[1,3,3,1] => [[5,5,3,1],[4,2]]
=> ([(0,6),(1,5),(1,7),(2,3),(2,4),(4,7),(5,6)],8)
=> ?
=> ? = 4 + 1
[1,3,4] => [[6,3,1],[2]]
=> ?
=> ?
=> ? = 3 + 1
[1,4,1,1,1] => [[4,4,4,4,1],[3,3,3]]
=> ([(0,6),(1,2),(1,5),(3,7),(4,7),(5,4),(6,3)],8)
=> ?
=> ? = 2 + 1
[1,4,1,2] => [[5,4,4,1],[3,3]]
=> ([(0,3),(0,5),(1,4),(1,6),(2,7),(5,7),(6,2)],8)
=> ?
=> ? = 3 + 1
[1,4,2,1] => [[5,5,4,1],[4,3]]
=> ([(0,6),(1,6),(1,7),(2,3),(2,4),(4,5),(5,7)],8)
=> ?
=> ? = 4 + 1
[1,4,3] => [[6,4,1],[3]]
=> ([(0,6),(0,7),(1,3),(1,5),(4,7),(5,4),(6,2)],8)
=> ?
=> ? = 3 + 1
[1,5,1,1] => [[5,5,5,1],[4,4]]
=> ?
=> ?
=> ? = 2 + 1
[1,5,2] => [[6,5,1],[4]]
=> ?
=> ?
=> ? = 3 + 1
[1,6,1] => [[6,6,1],[5]]
=> ?
=> ?
=> ? = 2 + 1
[1,7] => [[7,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 1
[2,1,1,1,1,1,1] => [[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ?
=> ? = 1 + 1
[2,1,1,1,1,2] => [[3,2,2,2,2,2],[1,1,1,1,1]]
=> ([(0,7),(1,2),(1,6),(3,7),(4,5),(5,3),(6,4)],8)
=> ?
=> ? = 2 + 1
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]]
=> ([(0,7),(1,6),(2,3),(2,6),(3,5),(4,7),(5,4)],8)
=> ?
=> ? = 3 + 1
[2,1,1,1,3] => [[4,2,2,2,2],[1,1,1,1]]
=> ?
=> ?
=> ? = 2 + 1
[2,1,1,2,1,1] => [[3,3,3,2,2,2],[2,2,1,1,1]]
=> ([(0,6),(1,3),(2,4),(2,7),(3,7),(4,5),(5,6)],8)
=> ?
=> ? = 3 + 1
[2,1,1,2,2] => [[4,3,2,2,2],[2,1,1,1]]
=> ([(0,7),(1,3),(1,6),(2,4),(2,6),(4,5),(5,7)],8)
=> ?
=> ? = 4 + 1
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]]
=> ([(0,7),(1,6),(2,3),(2,4),(3,7),(4,5),(5,6)],8)
=> ?
=> ? = 3 + 1
Description
The number of maximally independent sets of vertices of a graph. An '''independent set''' of vertices of a graph is a set of vertices no two of which are adjacent. If a set of vertices is independent then so is every subset. This statistic counts the number of maximally independent sets of vertices.
Mp00184: Integer compositions to threshold graphGraphs
St001352: Graphs ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 86%
Values
[1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2] => ([],2)
=> 1 = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3] => ([],3)
=> 1 = 0 + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4] => ([],4)
=> 1 = 0 + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4] => ([(3,4)],5)
=> 2 = 1 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3] => ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5] => ([],5)
=> 1 = 0 + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,5] => ([(4,5)],6)
=> 2 = 1 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,1,2,4] => ([(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,3,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,4,2] => ([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,1,6] => ([(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,1,3] => ([(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,1,4] => ([(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,2,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,5] => ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,3,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,7] => ([(6,7)],8)
=> ? = 1 + 1
[2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
Description
The number of internal nodes in the modular decomposition of a graph.
The following 25 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St000837The number of ascents of distance 2 of a permutation. St000340The number of non-final maximal constant sub-paths of length greater than one. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000836The number of descents of distance 2 of a permutation. St000291The number of descents of a binary word. St000390The number of runs of ones in a binary word. St000871The number of very big ascents of a permutation. St001388The number of non-attacking neighbors of a permutation. St000552The number of cut vertices of a graph. St001692The number of vertices with higher degree than the average degree in a graph. St000259The diameter of a connected graph. St001120The length of a longest path in a graph. St001093The detour number of a graph. St001083The number of boxed occurrences of 132 in a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000670The reversal length of a permutation. St000824The sum of the number of descents and the number of recoils of a permutation. St001902The number of potential covers of a poset. St001488The number of corners of a skew partition. St001537The number of cyclic crossings of a permutation. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000831The number of indices that are either descents or recoils. St000455The second largest eigenvalue of a graph if it is integral. St001649The length of a longest trail in a graph.