Identifier
-
Mp00180:
Integer compositions
—to ribbon⟶
Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001304: Graphs ⟶ ℤ
Values
[1] => [[1],[]] => ([],1) => ([],1) => 1
[1,1] => [[1,1],[]] => ([(0,1)],2) => ([],2) => 1
[2] => [[2],[]] => ([(0,1)],2) => ([],2) => 1
[1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => ([],3) => 1
[1,2] => [[2,1],[]] => ([(0,1),(0,2)],3) => ([(1,2)],3) => 2
[2,1] => [[2,2],[1]] => ([(0,2),(1,2)],3) => ([(1,2)],3) => 2
[3] => [[3],[]] => ([(0,2),(2,1)],3) => ([],3) => 1
[1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,2] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(1,3),(2,3)],4) => 2
[1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => 3
[1,3] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(1,3),(2,3)],4) => 2
[2,1,1] => [[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 2
[2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => 3
[3,1] => [[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 2
[4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => 2
[1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[1,1,3] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
[1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[1,2,2] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 4
[1,3,1] => [[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
[1,4] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => 2
[2,1,1,1] => [[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 2
[2,1,2] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
[2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 4
[2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[3,1,1] => [[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
[3,2] => [[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[4,1] => [[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 2
[5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,2] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,2,1] => [[2,2,1,1,1],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,1,1,3] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,1,2,2] => [[3,2,1,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[1,1,3,1] => [[3,3,1,1],[2]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[1,1,4] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,2,1,2] => [[3,2,2,1],[1,1]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,2,2,1] => [[3,3,2,1],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,2,3] => [[4,2,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[1,3,1,1] => [[3,3,3,1],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[1,3,2] => [[4,3,1],[2]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,4,1] => [[4,4,1],[3]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[2,1,1,2] => [[3,2,2,2],[1,1,1]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[2,1,3] => [[4,2,2],[1,1]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[2,2,2] => [[4,3,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,3,1] => [[4,4,2],[3,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[2,4] => [[5,2],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
[3,1,1,1] => [[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[3,1,2] => [[4,3,3],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[3,2,1] => [[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[3,3] => [[5,3],[2]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 3
[4,1,1] => [[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[4,2] => [[5,4],[3]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
[5,1] => [[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 1
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => ([(0,6),(1,5),(1,6),(3,4),(4,2),(5,3)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
[1,1,1,1,3] => [[3,1,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => ([(0,3),(1,5),(1,6),(3,6),(4,2),(5,4)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => 4
[1,1,1,3,1] => [[3,3,1,1,1],[2]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7) => ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,1,1,4] => [[4,1,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 2
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => ([(0,4),(1,5),(1,6),(3,6),(4,3),(5,2)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 5
[1,1,2,3] => [[4,2,1,1],[1]] => ([(0,5),(0,6),(1,4),(1,6),(4,2),(5,3)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 4
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => ([(0,4),(1,3),(1,5),(3,6),(4,6),(5,2)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
[1,1,3,2] => [[4,3,1,1],[2]] => ([(0,4),(0,6),(1,3),(1,5),(3,6),(5,2)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 4
[1,1,4,1] => [[4,4,1,1],[3]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
[1,1,5] => [[5,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => ([(0,5),(1,3),(1,6),(2,6),(4,2),(5,4)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => ([(0,5),(1,3),(1,6),(2,4),(2,5),(4,6)],7) => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 5
[1,2,1,3] => [[4,2,2,1],[1,1]] => ([(0,4),(0,6),(1,3),(1,5),(3,6),(5,2)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 4
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 5
[1,2,3,1] => [[4,4,2,1],[3,1]] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7) => ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 5
[1,2,4] => [[5,2,1],[1]] => ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => 4
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => ([(0,5),(1,2),(1,4),(3,6),(4,6),(5,3)],7) => ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,3,1,2] => [[4,3,3,1],[2,2]] => ([(0,3),(0,5),(1,2),(1,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,3,2,1] => [[4,4,3,1],[3,2]] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(4,6)],7) => ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 5
[1,3,3] => [[5,3,1],[2]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,4,1,1] => [[4,4,4,1],[3,3]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
[1,4,2] => [[5,4,1],[3]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[1,5,1] => [[5,5,1],[4]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,6] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[2,1,1,3] => [[4,2,2,2],[1,1,1]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,1,2,2] => [[4,3,2,2],[2,1,1]] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7) => ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 5
[2,1,3,1] => [[4,4,2,2],[3,1,1]] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
>>> Load all 125 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of maximally independent sets of vertices of a graph.
An independent set of vertices of a graph is a set of vertices no two of which are adjacent. If a set of vertices is independent then so is every subset. This statistic counts the number of maximally independent sets of vertices.
An independent set of vertices of a graph is a set of vertices no two of which are adjacent. If a set of vertices is independent then so is every subset. This statistic counts the number of maximally independent sets of vertices.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!