searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001067
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001067: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001067: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St001189
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001189: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001189: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000932
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> ? = 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
Description
The number of occurrences of the pattern UDU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St001223
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001223: Dyck paths ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 86%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001223: Dyck paths ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 86%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,3,4,5,6,7] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,2,3,4,5,7,6] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,2,3,4,6,5,7] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,3,4,6,7,5] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,2,3,4,7,5,6] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,3,4,7,6,5] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,2,3,5,4,6,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,2,3,5,4,7,6] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,5,6,4,7] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,3,5,6,7,4] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,2,3,5,7,4,6] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,3,5,7,6,4] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,2,3,6,4,5,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,2,3,6,4,7,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,6,5,4,7] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,2,3,6,5,7,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,6,7,4,5] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,3,6,7,5,4] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,2,3,7,4,5,6] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,2,3,7,4,6,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,7,5,4,6] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,2,3,7,5,6,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,7,6,4,5] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,2,3,7,6,5,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
[1,2,4,3,5,6,7] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,2,4,3,5,7,6] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,2,4,3,6,5,7] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,4,3,6,7,5] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,2,4,3,7,5,6] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,4,3,7,6,5] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,2,4,5,3,6,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,2,4,5,3,7,6] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,5,6,3,7] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,4,5,6,7,3] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,2,4,5,7,3,6] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,4,5,7,6,3] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,2,4,6,3,5,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,2,4,6,3,7,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,6,5,3,7] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,2,4,6,5,7,3] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,6,7,3,5] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,2,4,6,7,5,3] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,2,4,7,3,5,6] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,2,4,7,3,6,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,7,5,3,6] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,2,4,7,5,6,3] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,7,6,3,5] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,2,4,7,6,5,3] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
[1,2,5,3,4,6,7] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,2,5,3,4,7,6] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
Matching statistic: St001233
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001233: Dyck paths ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 86%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001233: Dyck paths ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 86%
Values
[1] => [1] => [1] => [1,0]
=> 0
[1,2] => [2,1] => [1,1] => [1,0,1,0]
=> 0
[2,1] => [1,2] => [2] => [1,1,0,0]
=> 1
[1,2,3] => [3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,3,2] => [3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[2,1,3] => [2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[2,3,1] => [2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 0
[3,1,2] => [1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[3,2,1] => [1,2,3] => [3] => [1,1,1,0,0,0]
=> 2
[1,2,3,4] => [4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,3,2,4] => [4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,3,4,2] => [4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,4,2,3] => [4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,4,3,2] => [4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[2,3,1,4] => [3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[2,3,4,1] => [3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[2,4,1,3] => [3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[2,4,3,1] => [3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[3,1,2,4] => [2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[3,2,1,4] => [2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[3,2,4,1] => [2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[3,4,1,2] => [2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[3,4,2,1] => [2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,1,2,3] => [1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[4,2,1,3] => [1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[4,2,3,1] => [1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[4,3,1,2] => [1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[4,3,2,1] => [1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 3
[1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [5,4,3,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,2,4,3,5] => [5,4,2,3,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,2,4,5,3] => [5,4,2,1,3] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,2,5,3,4] => [5,4,1,3,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,2,5,4,3] => [5,4,1,2,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,3,2,4,5] => [5,3,4,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,3,2,5,4] => [5,3,4,1,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [5,3,2,4,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,3,5,2,4] => [5,3,1,4,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,3,5,4,2] => [5,3,1,2,4] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,4,2,3,5] => [5,2,4,3,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,4,2,5,3] => [5,2,4,1,3] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2,5] => [5,2,3,4,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [5,2,3,1,4] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,4,5,2,3] => [5,2,1,4,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,2,3,4,5,7,6] => [7,6,5,4,3,1,2] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,2,3,4,6,5,7] => [7,6,5,4,2,3,1] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,4,6,7,5] => [7,6,5,4,2,1,3] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,2,3,4,7,5,6] => [7,6,5,4,1,3,2] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,4,7,6,5] => [7,6,5,4,1,2,3] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,2,3,5,4,6,7] => [7,6,5,3,4,2,1] => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,2,3,5,4,7,6] => [7,6,5,3,4,1,2] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,3,5,6,4,7] => [7,6,5,3,2,4,1] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,5,6,7,4] => [7,6,5,3,2,1,4] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,2,3,5,7,4,6] => [7,6,5,3,1,4,2] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,5,7,6,4] => [7,6,5,3,1,2,4] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,2,3,6,4,5,7] => [7,6,5,2,4,3,1] => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,2,3,6,4,7,5] => [7,6,5,2,4,1,3] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,3,6,5,4,7] => [7,6,5,2,3,4,1] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,2,3,6,5,7,4] => [7,6,5,2,3,1,4] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,3,6,7,4,5] => [7,6,5,2,1,4,3] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,3,6,7,5,4] => [7,6,5,2,1,3,4] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,2,3,7,4,5,6] => [7,6,5,1,4,3,2] => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,2,3,7,4,6,5] => [7,6,5,1,4,2,3] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,3,7,5,4,6] => [7,6,5,1,3,4,2] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,2,3,7,5,6,4] => [7,6,5,1,3,2,4] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,3,7,6,4,5] => [7,6,5,1,2,4,3] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,2,3,7,6,5,4] => [7,6,5,1,2,3,4] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 2
[1,2,4,3,5,6,7] => [7,6,4,5,3,2,1] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,2,4,3,5,7,6] => [7,6,4,5,3,1,2] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0
[1,2,4,3,6,5,7] => [7,6,4,5,2,3,1] => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,3,6,7,5] => [7,6,4,5,2,1,3] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0
[1,2,4,3,7,5,6] => [7,6,4,5,1,3,2] => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,3,7,6,5] => [7,6,4,5,1,2,3] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[1,2,4,5,3,6,7] => [7,6,4,3,5,2,1] => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,2,4,5,3,7,6] => [7,6,4,3,5,1,2] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,4,5,6,3,7] => [7,6,4,3,2,5,1] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,5,6,7,3] => [7,6,4,3,2,1,5] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,2,4,5,7,3,6] => [7,6,4,3,1,5,2] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,5,7,6,3] => [7,6,4,3,1,2,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,2,4,6,3,5,7] => [7,6,4,2,5,3,1] => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,2,4,6,3,7,5] => [7,6,4,2,5,1,3] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,4,6,5,3,7] => [7,6,4,2,3,5,1] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,2,4,6,5,7,3] => [7,6,4,2,3,1,5] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,4,6,7,3,5] => [7,6,4,2,1,5,3] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,2,4,6,7,5,3] => [7,6,4,2,1,3,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,2,4,7,3,5,6] => [7,6,4,1,5,3,2] => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,2,4,7,3,6,5] => [7,6,4,1,5,2,3] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,4,7,5,3,6] => [7,6,4,1,3,5,2] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,2,4,7,5,6,3] => [7,6,4,1,3,2,5] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,2,4,7,6,3,5] => [7,6,4,1,2,5,3] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,2,4,7,6,5,3] => [7,6,4,1,2,3,5] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 2
[1,2,5,3,4,6,7] => [7,6,3,5,4,2,1] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,2,5,3,4,7,6] => [7,6,3,5,4,1,2] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0
Description
The number of indecomposable 2-dimensional modules with projective dimension one.
Matching statistic: St001948
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
St001948: Permutations ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 71%
St001948: Permutations ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 71%
Values
[1] => [1] => ? = 0
[1,2] => [2,1] => 0
[2,1] => [1,2] => 1
[1,2,3] => [3,2,1] => 0
[1,3,2] => [3,1,2] => 0
[2,1,3] => [2,3,1] => 1
[2,3,1] => [2,1,3] => 0
[3,1,2] => [1,3,2] => 1
[3,2,1] => [1,2,3] => 2
[1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [4,3,1,2] => 0
[1,3,2,4] => [4,2,3,1] => 0
[1,3,4,2] => [4,2,1,3] => 0
[1,4,2,3] => [4,1,3,2] => 0
[1,4,3,2] => [4,1,2,3] => 1
[2,1,3,4] => [3,4,2,1] => 1
[2,1,4,3] => [3,4,1,2] => 1
[2,3,1,4] => [3,2,4,1] => 0
[2,3,4,1] => [3,2,1,4] => 0
[2,4,1,3] => [3,1,4,2] => 0
[2,4,3,1] => [3,1,2,4] => 1
[3,1,2,4] => [2,4,3,1] => 1
[3,1,4,2] => [2,4,1,3] => 1
[3,2,1,4] => [2,3,4,1] => 2
[3,2,4,1] => [2,3,1,4] => 1
[3,4,1,2] => [2,1,4,3] => 0
[3,4,2,1] => [2,1,3,4] => 1
[4,1,2,3] => [1,4,3,2] => 1
[4,1,3,2] => [1,4,2,3] => 1
[4,2,1,3] => [1,3,4,2] => 2
[4,2,3,1] => [1,3,2,4] => 1
[4,3,1,2] => [1,2,4,3] => 2
[4,3,2,1] => [1,2,3,4] => 3
[1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [5,4,3,1,2] => 0
[1,2,4,3,5] => [5,4,2,3,1] => 0
[1,2,4,5,3] => [5,4,2,1,3] => 0
[1,2,5,3,4] => [5,4,1,3,2] => 0
[1,2,5,4,3] => [5,4,1,2,3] => 1
[1,3,2,4,5] => [5,3,4,2,1] => 0
[1,3,2,5,4] => [5,3,4,1,2] => 0
[1,3,4,2,5] => [5,3,2,4,1] => 0
[1,3,4,5,2] => [5,3,2,1,4] => 0
[1,3,5,2,4] => [5,3,1,4,2] => 0
[1,3,5,4,2] => [5,3,1,2,4] => 1
[1,4,2,3,5] => [5,2,4,3,1] => 0
[1,4,2,5,3] => [5,2,4,1,3] => 0
[1,4,3,2,5] => [5,2,3,4,1] => 1
[1,4,3,5,2] => [5,2,3,1,4] => 0
[1,4,5,2,3] => [5,2,1,4,3] => 0
[1,4,5,3,2] => [5,2,1,3,4] => 1
[1,2,3,4,5,6] => [6,5,4,3,2,1] => ? = 0
[1,2,3,4,6,5] => [6,5,4,3,1,2] => ? = 0
[1,2,3,5,4,6] => [6,5,4,2,3,1] => ? = 0
[1,2,3,5,6,4] => [6,5,4,2,1,3] => ? = 0
[1,2,3,6,4,5] => [6,5,4,1,3,2] => ? = 0
[1,2,3,6,5,4] => [6,5,4,1,2,3] => ? = 1
[1,2,4,3,5,6] => [6,5,3,4,2,1] => ? = 0
[1,2,4,3,6,5] => [6,5,3,4,1,2] => ? = 0
[1,2,4,5,3,6] => [6,5,3,2,4,1] => ? = 0
[1,2,4,5,6,3] => [6,5,3,2,1,4] => ? = 0
[1,2,4,6,3,5] => [6,5,3,1,4,2] => ? = 0
[1,2,4,6,5,3] => [6,5,3,1,2,4] => ? = 1
[1,2,5,3,4,6] => [6,5,2,4,3,1] => ? = 0
[1,2,5,3,6,4] => [6,5,2,4,1,3] => ? = 0
[1,2,5,4,3,6] => [6,5,2,3,4,1] => ? = 1
[1,2,5,4,6,3] => [6,5,2,3,1,4] => ? = 0
[1,2,5,6,3,4] => [6,5,2,1,4,3] => ? = 0
[1,2,5,6,4,3] => [6,5,2,1,3,4] => ? = 1
[1,2,6,3,4,5] => [6,5,1,4,3,2] => ? = 0
[1,2,6,3,5,4] => [6,5,1,4,2,3] => ? = 0
[1,2,6,4,3,5] => [6,5,1,3,4,2] => ? = 1
[1,2,6,4,5,3] => [6,5,1,3,2,4] => ? = 0
[1,2,6,5,3,4] => [6,5,1,2,4,3] => ? = 1
[1,2,6,5,4,3] => [6,5,1,2,3,4] => ? = 2
[1,3,2,4,5,6] => [6,4,5,3,2,1] => ? = 0
[1,3,2,4,6,5] => [6,4,5,3,1,2] => ? = 0
[1,3,2,5,4,6] => [6,4,5,2,3,1] => ? = 0
[1,3,2,5,6,4] => [6,4,5,2,1,3] => ? = 0
[1,3,2,6,4,5] => [6,4,5,1,3,2] => ? = 0
[1,3,2,6,5,4] => [6,4,5,1,2,3] => ? = 1
[1,3,4,2,5,6] => [6,4,3,5,2,1] => ? = 0
[1,3,4,2,6,5] => [6,4,3,5,1,2] => ? = 0
[1,3,4,5,2,6] => [6,4,3,2,5,1] => ? = 0
[1,3,4,5,6,2] => [6,4,3,2,1,5] => ? = 0
[1,3,4,6,2,5] => [6,4,3,1,5,2] => ? = 0
[1,3,4,6,5,2] => [6,4,3,1,2,5] => ? = 1
[1,3,5,2,4,6] => [6,4,2,5,3,1] => ? = 0
[1,3,5,2,6,4] => [6,4,2,5,1,3] => ? = 0
[1,3,5,4,2,6] => [6,4,2,3,5,1] => ? = 1
[1,3,5,4,6,2] => [6,4,2,3,1,5] => ? = 0
[1,3,5,6,2,4] => [6,4,2,1,5,3] => ? = 0
[1,3,5,6,4,2] => [6,4,2,1,3,5] => ? = 1
[1,3,6,2,4,5] => [6,4,1,5,3,2] => ? = 0
[1,3,6,2,5,4] => [6,4,1,5,2,3] => ? = 0
[1,3,6,4,2,5] => [6,4,1,3,5,2] => ? = 1
[1,3,6,4,5,2] => [6,4,1,3,2,5] => ? = 0
[1,3,6,5,2,4] => [6,4,1,2,5,3] => ? = 1
[1,3,6,5,4,2] => [6,4,1,2,3,5] => ? = 2
[1,4,2,3,5,6] => [6,3,5,4,2,1] => ? = 0
Description
The number of augmented double ascents of a permutation.
An augmented double ascent of a permutation $\pi$ is a double ascent of the augmented permutation $\tilde\pi$ obtained from $\pi$ by adding an initial $0$.
A double ascent of $\tilde\pi$ then is a position $i$ such that $\tilde\pi(i) < \tilde\pi(i+1) < \tilde\pi(i+2)$.
Matching statistic: St000454
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 100%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2] => ([],2)
=> 0
[2,1] => [2,1] => [1,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0
[1,3,2] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0
[2,1,3] => [2,1,3] => [1,2] => ([(1,2)],3)
=> 1
[2,3,1] => [2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0
[3,1,2] => [3,1,2] => [1,2] => ([(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,3,4] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,2,4,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,3,2,4] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,3,4,2] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,4,2,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,4,3,2] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,1,3,4] => [2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,1,4,3] => [2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,3,1,4] => [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0
[2,3,4,1] => [2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[2,4,1,3] => [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0
[2,4,3,1] => [2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[3,1,2,4] => [3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[3,1,4,2] => [3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[3,2,1,4] => [3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[3,2,4,1] => [3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[3,4,1,2] => [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0
[3,4,2,1] => [3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,1,2,3] => [4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,1,3,2] => [4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,2,1,3] => [4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[4,2,3,1] => [4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,3,1,2] => [4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[4,3,2,1] => [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,2,3,4,5] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,2,3,5,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,2,4,3,5] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,2,4,5,3] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,2,5,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,2,5,4,3] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,3,2,4,5] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,3,2,5,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,3,4,2,5] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,3,4,5,2] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,3,5,2,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,3,5,4,2] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,4,2,3,5] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,4,2,5,3] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,4,3,2,5] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,4,3,5,2] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,4,5,2,3] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,4,5,3,2] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,2,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,5,2,4,3] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,5,3,2,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,3,4,2] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,5,4,2,3] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,4,3,2] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,1,3,4,5] => [2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,1,3,5,4] => [2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,1,4,3,5] => [2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[4,3,2,1,5] => [4,3,2,1,5] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,3,2,1,4] => [5,3,2,1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,2,1,3] => [5,4,2,1,3] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,3,1,2] => [5,4,3,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[5,4,3,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[6,4,3,2,1,5] => [6,4,3,2,1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[6,5,3,2,1,4] => [6,5,3,2,1,4] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[6,5,4,2,1,3] => [6,5,4,2,1,3] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[6,5,4,3,1,2] => [6,5,4,3,1,2] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[6,5,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[7,5,4,3,2,1,6] => [7,5,4,3,2,1,6] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[7,6,4,3,2,1,5] => [7,6,4,3,2,1,5] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[7,6,5,3,2,1,4] => [7,6,5,3,2,1,4] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[7,6,5,4,2,1,3] => [7,6,5,4,2,1,3] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[7,6,5,4,3,1,2] => [7,6,5,4,3,1,2] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!