searching the database
Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001085
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001085: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001085: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1,0]
=> [1] => 0
[.,[.,.]]
=> [2,1] => [1,1,0,0]
=> [1,2] => 0
[[.,.],.]
=> [1,2] => [1,0,1,0]
=> [2,1] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[.,[[.,.],.]]
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => 1
[[.,.],[.,.]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[[.,[.,.]],.]
=> [2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => 0
[[[.,.],.],.]
=> [1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 1
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 0
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 1
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
Description
The number of occurrences of the vincular pattern |21-3 in a permutation.
This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Matching statistic: St000701
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
St000701: Binary trees ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
St000701: Binary trees ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> [.,.]
=> [.,.]
=> 1 = 0 + 1
[.,[.,.]]
=> [[.,.],.]
=> [[.,.],.]
=> [.,[.,.]]
=> 1 = 0 + 1
[[.,.],.]
=> [.,[.,.]]
=> [.,[.,.]]
=> [[.,.],.]
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> [.,[.,[.,.]]]
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [[.,.],[.,.]]
=> 2 = 1 + 1
[[.,.],[.,.]]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [.,[[.,.],.]]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [[.,[.,.]],.]
=> 1 = 0 + 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [[[.,.],.],.]
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> 2 = 1 + 1
[.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> 2 = 1 + 1
[[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> [[[[[.,.],.],.],.],.]
=> [.,[.,[.,[.,[.,.]]]]]
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> 2 = 1 + 1
[.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,.]]]]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> [[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> 2 = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> 2 = 1 + 1
[.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],.]
=> [.,[.,[[.,.],[.,.]]]]
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> [[[.,.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,.]]]
=> 1 = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> [[[.,.],[.,[.,.]]],.]
=> [.,[[[.,.],.],[.,.]]]
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> 2 = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> 2 = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> 2 = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> 2 = 1 + 1
[.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> 2 = 1 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> [.,[.,[.,[[.,.],.]]]]
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
[[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],.]]]
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> [.,[.,[[.,[.,.]],.]]]
=> 1 = 0 + 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [.,[.,[[[.,.],.],.]]]
=> 1 = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> 2 = 1 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> 1 = 0 + 1
[[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],.]]
=> 1 = 0 + 1
[[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],.]]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 1 + 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,[.,[.,[.,.]]]]]
=> ? = 1 + 1
[.,[.,[.,[[.,.],[[[.,.],.],.]]]]]
=> [[[[[.,[.,[.,.]]],[.,.]],.],.],.]
=> [[[[[.,.],.],.],[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],[.,[.,[.,.]]]]]
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,.],[.,.]]],.]]]]
=> [[[[.,[[[.,.],[.,.]],.]],.],.],.]
=> [[[[.,.],.],.],[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],[.,[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> [[[[.,[[[.,.],.],[.,.]]],.],.],.]
=> [[[[.,.],.],.],[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],[.,[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[.,[[[.,[.,.]],[.,.]],.]]]]
=> [[[[.,[[.,.],[[.,.],.]]],.],.],.]
=> [[[[.,.],.],.],[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],[.,[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[.,[[[[.,.],.],[.,.]],.]]]]
=> [[[[.,[[.,.],[.,[.,.]]]],.],.],.]
=> [[[[.,.],.],.],[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],[.,[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> [[[[.,.],.],.],[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[[.,.],[[[[.,.],.],.],.]]]]
=> [[[[.,[.,[.,[.,.]]]],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[[.,.],[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[[.,[.,.]],[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],[[.,.],.]],.],.]
=> [[[[.,.],.],[[.,.],.]],[.,[.,.]]]
=> [[[.,.],.],[[.,[.,.]],[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[[[.,.],.],[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],[.,[.,.]]],.],.]
=> [[[[.,.],.],[.,[.,.]]],[.,[.,.]]]
=> [[[.,.],.],[[[.,.],.],[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [[[.,[[[[[.,.],.],.],.],.]],.],.]
=> [[[.,.],.],[[[[[.,.],.],.],.],.]]
=> [[.,[.,[.,[.,[.,.]]]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> [[[.,[[[[.,.],[.,.]],.],.]],.],.]
=> [[[.,.],.],[[[[.,.],.],[.,.]],.]]
=> [[.,[[.,.],[.,[.,.]]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> [[[.,[[[[.,.],.],[.,.]],.]],.],.]
=> [[[.,.],.],[[[[.,.],[.,.]],.],.]]
=> [[.,[.,[[.,.],[.,.]]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> [[[.,[[[.,.],[[.,.],.]],.]],.],.]
=> [[[.,.],.],[[[.,.],[[.,.],.]],.]]
=> [[.,[[.,[.,.]],[.,.]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [[[.,[[[.,.],[.,[.,.]]],.]],.],.]
=> [[[.,.],.],[[[.,.],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[.,.]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[[.,.],[.,[.,[.,.]]]],.]]]
=> [[[.,[[[[.,.],.],.],[.,.]]],.],.]
=> [[[.,.],.],[[[[.,[.,.]],.],.],.]]
=> [[.,[.,[.,[[.,.],.]]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[[.,[.,.]],[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],[[.,.],.]]],.],.]
=> [[[.,.],.],[[[.,[[.,.],.]],.],.]]
=> [[.,[.,[[.,[.,.]],.]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[[[.,.],.],[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],[.,[.,.]]]],.],.]
=> [[[.,.],.],[[[.,[.,[.,.]]],.],.]]
=> [[.,[.,[[[.,.],.],.]]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [[[.,[[.,.],[[[.,.],.],.]]],.],.]
=> [[[.,.],.],[[.,[[[.,.],.],.]],.]]
=> [[.,[[.,[.,[.,.]]],.]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> [[[.,[[.,.],[[.,.],[.,.]]]],.],.]
=> [[[.,.],.],[[.,[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],.]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[[[[.,.],.],.],[.,.]],.]]]
=> [[[.,[[.,.],[.,[.,[.,.]]]]],.],.]
=> [[[.,.],.],[[.,[.,[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],.],.]],[.,[.,.]]]
=> ? = 1 + 1
[.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 1 + 1
[.,[[.,.],[.,[[[[.,.],.],.],.]]]]
=> [[[[.,[.,[.,[.,.]]]],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,[[.,.],[.,.]]]]
=> ? = 1 + 1
[.,[[.,.],[[.,.],[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],[.,.]],[.,.]],.]
=> [[[[.,.],[.,.]],[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],[[.,.],[.,.]]]]
=> ? = 1 + 1
[.,[[.,.],[[.,[.,[.,[.,.]]]],.]]]
=> [[[.,[[[[.,.],.],.],.]],[.,.]],.]
=> [[[.,.],[.,.]],[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],[[.,.],[.,.]]]
=> ? = 1 + 1
[.,[[.,.],[[[.,.],[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],[.,.]]],[.,.]],.]
=> [[[.,.],[.,.]],[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],[[.,.],[.,.]]]
=> ? = 1 + 1
[.,[[.,.],[[[[[.,.],.],.],.],.]]]
=> [[[.,[.,[.,[.,[.,.]]]]],[.,.]],.]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],[[.,.],[.,.]]]
=> ? = 1 + 1
[.,[[.,[.,.]],[.,[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],.],[[.,.],.]],.]
=> [[[[.,.],[[.,.],.]],.],[.,[.,.]]]
=> [[[.,.],.],[.,[[.,[.,.]],[.,.]]]]
=> ? = 1 + 1
[.,[[[.,.],.],[.,[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],.],[.,[.,.]]],.]
=> [[[[.,.],[.,[.,.]]],.],[.,[.,.]]]
=> [[[.,.],.],[.,[[[.,.],.],[.,.]]]]
=> ? = 1 + 1
[.,[[[.,.],.],[[[[.,.],.],.],.]]]
=> [[[.,[.,[.,[.,.]]]],[.,[.,.]]],.]
=> [[[.,.],[.,[.,.]]],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[[[.,.],.],[.,.]]]
=> ? = 1 + 1
[.,[[.,[.,[.,.]]],[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],[[[.,.],.],.]],.]
=> [[[.,.],[[[.,.],.],.]],[.,[.,.]]]
=> [[[.,.],.],[[.,[.,[.,.]]],[.,.]]]
=> ? = 1 + 1
[.,[[.,[[.,.],.]],[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],[[.,[.,.]],.]],.]
=> [[[.,.],[[.,.],[.,.]]],[.,[.,.]]]
=> [[[.,.],.],[[[.,.],[.,.]],[.,.]]]
=> ? = 1 + 1
[.,[[[.,.],[.,.]],[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],[[.,.],[.,.]]],.]
=> [[[.,.],[[.,[.,.]],.]],[.,[.,.]]]
=> [[[.,.],.],[[.,[[.,.],.]],[.,.]]]
=> ? = 1 + 1
[.,[[[.,[.,.]],.],[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],[.,[[.,.],.]]],.]
=> [[[.,.],[.,[[.,.],.]]],[.,[.,.]]]
=> [[[.,.],.],[[[.,[.,.]],.],[.,.]]]
=> ? = 1 + 1
[.,[[[[.,.],.],.],[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],[.,[.,[.,.]]]],.]
=> [[[.,.],[.,[.,[.,.]]]],[.,[.,.]]]
=> [[[.,.],.],[[[[.,.],.],.],[.,.]]]
=> ? = 1 + 1
[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [[.,[[[[[[.,.],.],.],.],.],.]],.]
=> [[.,.],[[[[[[.,.],.],.],.],.],.]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> [[.,[[[[[.,.],[.,.]],.],.],.]],.]
=> [[.,.],[[[[[.,.],.],.],[.,.]],.]]
=> [[.,[[.,.],[.,[.,[.,.]]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[.,[[.,.],[.,[.,.]]]]],.]]
=> [[.,[[[[[.,.],.],[.,.]],.],.]],.]
=> [[.,.],[[[[[.,.],.],[.,.]],.],.]]
=> [[.,[.,[[.,.],[.,[.,.]]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[.,[[[.,.],.],[.,.]]]],.]]
=> [[.,[[[[.,.],[.,[.,.]]],.],.]],.]
=> [[.,.],[[[[.,.],.],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[.,[.,.]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[.,.],[.,[.,[.,.]]]]],.]]
=> [[.,[[[[[.,.],.],.],[.,.]],.]],.]
=> [[.,.],[[[[[.,.],[.,.]],.],.],.]]
=> [[.,[.,[.,[[.,.],[.,.]]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[.,.],[[.,.],[.,.]]]],.]]
=> [[.,[[[[.,.],[.,.]],[.,.]],.]],.]
=> [[.,.],[[[[.,.],[.,.]],[.,.]],.]]
=> [[.,[[.,.],[[.,.],[.,.]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[.,[.,.]],[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],[[.,.],.]],.]],.]
=> [[.,.],[[[[.,.],[[.,.],.]],.],.]]
=> [[.,[.,[[.,[.,.]],[.,.]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[[.,.],.],[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],[.,[.,.]]],.]],.]
=> [[.,.],[[[[.,.],[.,[.,.]]],.],.]]
=> [[.,[.,[[[.,.],.],[.,.]]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[.,[.,[.,.]]],[.,.]]],.]]
=> [[.,[[[.,.],[[[.,.],.],.]],.]],.]
=> [[.,.],[[[.,.],[[[.,.],.],.]],.]]
=> [[.,[[.,[.,[.,.]]],[.,.]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[.,[[.,.],.]],[.,.]]],.]]
=> [[.,[[[.,.],[[.,[.,.]],.]],.]],.]
=> [[.,.],[[[.,.],[[.,.],[.,.]]],.]]
=> [[.,[[[.,.],[.,.]],[.,.]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[[.,.],[.,.]],[.,.]]],.]]
=> [[.,[[[.,.],[[.,.],[.,.]]],.]],.]
=> [[.,.],[[[.,.],[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],[.,.]]],[.,.]]
=> ? = 1 + 1
[.,[[.,[[[[.,.],.],.],[.,.]]],.]]
=> [[.,[[[.,.],[.,[.,[.,.]]]],.]],.]
=> [[.,.],[[[.,.],[.,[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],.],[.,.]]],[.,.]]
=> ? = 1 + 1
[.,[[[.,.],[.,[.,[.,[.,.]]]]],.]]
=> [[.,[[[[[.,.],.],.],.],[.,.]]],.]
=> [[.,.],[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],[.,.]]
=> ? = 1 + 1
[.,[[[.,.],[.,[[.,.],[.,.]]]],.]]
=> [[.,[[[[.,.],[.,.]],.],[.,.]]],.]
=> [[.,.],[[[[.,[.,.]],.],[.,.]],.]]
=> [[.,[[.,.],[.,[[.,.],.]]]],[.,.]]
=> ? = 1 + 1
Description
The protection number of a binary tree.
This is the minimal distance from the root to a leaf.
Matching statistic: St001744
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00329: Permutations —Tanimoto⟶ Permutations
St001744: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 100%
Mp00329: Permutations —Tanimoto⟶ Permutations
St001744: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => 0
[.,[.,.]]
=> [2,1] => [2,1] => 0
[[.,.],.]
=> [1,2] => [1,2] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 0
[.,[[.,.],.]]
=> [2,3,1] => [3,1,2] => 1
[[.,.],[.,.]]
=> [1,3,2] => [2,1,3] => 0
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => 0
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [3,1,4,2] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,1,2] => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,4,1,2] => 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,1,4,3] => 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,1,3] => 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,2,1,4] => 0
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [2,3,1,4] => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,3,2] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,3,4,2] => 0
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,2,4,3] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,2,4] => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,4,3,2] => 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [4,1,5,3,2] => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,1,3,2] => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [4,5,1,3,2] => 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [3,1,5,4,2] => 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [3,5,1,4,2] => 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [4,3,1,5,2] => 0
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [3,4,1,5,2] => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,3,1,2] => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [4,5,3,1,2] => 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [3,5,4,1,2] => 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [4,3,5,1,2] => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [3,4,5,1,2] => 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,1,5,4,3] => 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [2,5,1,4,3] => 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [2,4,1,5,3] => 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,5,4,1,3] => 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [2,4,5,1,3] => 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [3,2,1,5,4] => 0
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,2,5,1,4] => 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [2,3,1,5,4] => 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [2,3,5,1,4] => 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,3,2,1,5] => 0
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,4,2,1,5] => 0
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 0
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 0
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ? = 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [7,1,6,5,4,3,2] => ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => [6,1,7,5,4,3,2] => ? = 0
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [7,6,1,5,4,3,2] => ? = 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [6,7,1,5,4,3,2] => ? = 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => [5,1,7,6,4,3,2] => ? = 0
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => [5,7,1,6,4,3,2] => ? = 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => [6,5,1,7,4,3,2] => ? = 0
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => [5,6,1,7,4,3,2] => ? = 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [7,6,5,1,4,3,2] => ? = 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => [5,7,6,1,4,3,2] => ? = 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [5,6,7,1,4,3,2] => ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => [4,1,7,6,5,3,2] => ? = 0
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => [4,7,1,6,5,3,2] => ? = 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => [4,6,1,7,5,3,2] => ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => [4,7,6,1,5,3,2] => ? = 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => [4,6,7,1,5,3,2] => ? = 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => [5,4,1,7,6,3,2] => ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => [5,4,7,1,6,3,2] => ? = 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => [4,5,1,7,6,3,2] => ? = 0
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => [4,5,7,1,6,3,2] => ? = 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => [6,5,4,1,7,3,2] => ? = 0
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => [5,6,4,1,7,3,2] => ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => [4,6,5,1,7,3,2] => ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => [5,4,6,1,7,3,2] => ? = 0
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => [4,5,6,1,7,3,2] => ? = 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => [7,6,5,4,1,3,2] => ? = 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => [5,7,6,4,1,3,2] => ? = 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [3,6,5,4,7,2,1] => [4,7,6,5,1,3,2] => ? = 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => [5,4,7,6,1,3,2] => ? = 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [3,4,6,5,7,2,1] => [4,5,7,6,1,3,2] => ? = 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => [4,5,6,7,1,3,2] => ? = 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => [3,1,7,6,5,4,2] => ? = 0
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [2,6,7,5,4,3,1] => [3,7,1,6,5,4,2] => ? = 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [2,5,7,6,4,3,1] => [3,6,1,7,5,4,2] => ? = 0
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [2,6,5,7,4,3,1] => [3,7,6,1,5,4,2] => ? = 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [2,5,6,7,4,3,1] => [3,6,7,1,5,4,2] => ? = 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [2,4,7,6,5,3,1] => [3,5,1,7,6,4,2] => ? = 0
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [2,4,6,7,5,3,1] => [3,5,7,1,6,4,2] => ? = 1
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [2,5,4,7,6,3,1] => [3,6,5,1,7,4,2] => ? = 0
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> [2,4,5,7,6,3,1] => [3,5,6,1,7,4,2] => ? = 0
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [2,6,5,4,7,3,1] => [3,7,6,5,1,4,2] => ? = 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [2,4,6,5,7,3,1] => [3,5,7,6,1,4,2] => ? = 1
[.,[[.,.],[[[[.,.],.],.],.]]]
=> [2,4,5,6,7,3,1] => [3,5,6,7,1,4,2] => ? = 1
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [3,2,7,6,5,4,1] => [4,3,1,7,6,5,2] => ? = 0
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [3,2,6,7,5,4,1] => [4,3,7,1,6,5,2] => ? = 1
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [3,2,5,7,6,4,1] => [4,3,6,1,7,5,2] => ? = 0
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [3,2,6,5,7,4,1] => [4,3,7,6,1,5,2] => ? = 1
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [3,2,5,6,7,4,1] => [4,3,6,7,1,5,2] => ? = 1
[.,[[[.,.],.],[.,[.,[.,.]]]]]
=> [2,3,7,6,5,4,1] => [3,4,1,7,6,5,2] => ? = 0
Description
The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation.
Let $\nu$ be a (partial) permutation of $[k]$ with $m$ letters together with dashes between some of its letters. An occurrence of $\nu$ in a permutation $\tau$ is a subsequence $\tau_{a_1},\dots,\tau_{a_m}$
such that $a_i + 1 = a_{i+1}$ whenever there is a dash between the $i$-th and the $(i+1)$-st letter of $\nu$, which is order isomorphic to $\nu$.
Thus, $\nu$ is a vincular pattern, except that it is not required to be a permutation.
An arrow pattern of size $k$ consists of such a generalized vincular pattern $\nu$ and arrows $b_1\to c_1, b_2\to c_2,\dots$, such that precisely the numbers $1,\dots,k$ appear in the vincular pattern and the arrows.
Let $\Phi$ be the map [[Mp00087]]. Let $\tau$ be a permutation and $\sigma = \Phi(\tau)$. Then a subsequence $w = (x_{a_1},\dots,x_{a_m})$ of $\tau$ is an occurrence of the arrow pattern if $w$ is an occurrence of $\nu$, for each arrow $b\to c$ we have $\sigma(x_b) = x_c$ and $x_1 < x_2 < \dots < x_k$.
Matching statistic: St001086
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00329: Permutations —Tanimoto⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St001086: Permutations ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 100%
Mp00329: Permutations —Tanimoto⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St001086: Permutations ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [1] => 0
[.,[.,.]]
=> [2,1] => [2,1] => [1,2] => 0
[[.,.],.]
=> [1,2] => [1,2] => [2,1] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [1,2,3] => 0
[.,[[.,.],.]]
=> [2,3,1] => [3,1,2] => [1,3,2] => 1
[[.,.],[.,.]]
=> [1,3,2] => [2,1,3] => [2,3,1] => 0
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => [3,1,2] => 0
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [1,4,2,3] => 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [3,1,4,2] => [2,4,1,3] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,1,2] => [1,2,4,3] => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,4,1,2] => [2,1,4,3] => 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,1,4,3] => [3,4,1,2] => 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,1,3] => [3,1,4,2] => 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,2,1,4] => [2,3,4,1] => 0
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [2,3,1,4] => [3,2,4,1] => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,3,2] => [4,1,2,3] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,3,4,2] => [4,2,1,3] => 0
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,2,4,3] => [4,3,1,2] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,2,4] => [4,2,3,1] => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,2,3,4,5] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,4,3,2] => [1,5,2,3,4] => 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [4,1,5,3,2] => [2,5,1,3,4] => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,1,3,2] => [1,2,5,3,4] => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [4,5,1,3,2] => [2,1,5,3,4] => 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [3,1,5,4,2] => [3,5,1,2,4] => 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [3,5,1,4,2] => [3,1,5,2,4] => 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [4,3,1,5,2] => [2,3,5,1,4] => 0
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [3,4,1,5,2] => [3,2,5,1,4] => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,3,1,2] => [1,2,3,5,4] => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [4,5,3,1,2] => [2,1,3,5,4] => 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [3,5,4,1,2] => [3,1,2,5,4] => 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [4,3,5,1,2] => [2,3,1,5,4] => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [3,4,5,1,2] => [3,2,1,5,4] => 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,1,5,4,3] => [4,5,1,2,3] => 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [2,5,1,4,3] => [4,1,5,2,3] => 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [2,4,1,5,3] => [4,2,5,1,3] => 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,5,4,1,3] => [4,1,2,5,3] => 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [2,4,5,1,3] => [4,2,1,5,3] => 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [3,2,1,5,4] => [3,4,5,1,2] => 0
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,2,5,1,4] => [3,4,1,5,2] => 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [2,3,1,5,4] => [4,3,5,1,2] => 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [2,3,5,1,4] => [4,3,1,5,2] => 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,3,2,1,5] => [2,3,4,5,1] => 0
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,4,2,1,5] => [3,2,4,5,1] => 0
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [2,4,3,1,5] => [4,2,3,5,1] => 0
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [3,2,4,1,5] => [3,4,2,5,1] => 0
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [2,3,4,1,5] => [4,3,2,5,1] => 0
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => [5,1,7,6,4,3,2] => [3,7,1,2,4,5,6] => ? = 0
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => [5,7,1,6,4,3,2] => [3,1,7,2,4,5,6] => ? = 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => [6,5,1,7,4,3,2] => [2,3,7,1,4,5,6] => ? = 0
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => [5,6,1,7,4,3,2] => [3,2,7,1,4,5,6] => ? = 0
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => [5,7,6,1,4,3,2] => [3,1,2,7,4,5,6] => ? = 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [5,6,7,1,4,3,2] => [3,2,1,7,4,5,6] => ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => [4,1,7,6,5,3,2] => [4,7,1,2,3,5,6] => ? = 0
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => [4,7,1,6,5,3,2] => [4,1,7,2,3,5,6] => ? = 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => [4,6,1,7,5,3,2] => [4,2,7,1,3,5,6] => ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => [4,7,6,1,5,3,2] => [4,1,2,7,3,5,6] => ? = 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => [4,6,7,1,5,3,2] => [4,2,1,7,3,5,6] => ? = 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => [5,4,1,7,6,3,2] => [3,4,7,1,2,5,6] => ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => [5,4,7,1,6,3,2] => [3,4,1,7,2,5,6] => ? = 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => [4,5,1,7,6,3,2] => [4,3,7,1,2,5,6] => ? = 0
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => [4,5,7,1,6,3,2] => [4,3,1,7,2,5,6] => ? = 1
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => [5,6,4,1,7,3,2] => [3,2,4,7,1,5,6] => ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => [4,6,5,1,7,3,2] => [4,2,3,7,1,5,6] => ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => [5,4,6,1,7,3,2] => [3,4,2,7,1,5,6] => ? = 0
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => [4,5,6,1,7,3,2] => [4,3,2,7,1,5,6] => ? = 0
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => [5,7,6,4,1,3,2] => [3,1,2,4,7,5,6] => ? = 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [3,6,5,4,7,2,1] => [4,7,6,5,1,3,2] => [4,1,2,3,7,5,6] => ? = 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => [5,4,7,6,1,3,2] => [3,4,1,2,7,5,6] => ? = 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [3,4,6,5,7,2,1] => [4,5,7,6,1,3,2] => [4,3,1,2,7,5,6] => ? = 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => [4,5,6,7,1,3,2] => [4,3,2,1,7,5,6] => ? = 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => [3,1,7,6,5,4,2] => [5,7,1,2,3,4,6] => ? = 0
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [2,6,7,5,4,3,1] => [3,7,1,6,5,4,2] => [5,1,7,2,3,4,6] => ? = 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [2,5,7,6,4,3,1] => [3,6,1,7,5,4,2] => [5,2,7,1,3,4,6] => ? = 0
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [2,6,5,7,4,3,1] => [3,7,6,1,5,4,2] => [5,1,2,7,3,4,6] => ? = 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [2,5,6,7,4,3,1] => [3,6,7,1,5,4,2] => [5,2,1,7,3,4,6] => ? = 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [2,4,7,6,5,3,1] => [3,5,1,7,6,4,2] => [5,3,7,1,2,4,6] => ? = 0
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [2,4,6,7,5,3,1] => [3,5,7,1,6,4,2] => [5,3,1,7,2,4,6] => ? = 1
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [2,5,4,7,6,3,1] => [3,6,5,1,7,4,2] => [5,2,3,7,1,4,6] => ? = 0
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> [2,4,5,7,6,3,1] => [3,5,6,1,7,4,2] => [5,3,2,7,1,4,6] => ? = 0
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [2,4,6,5,7,3,1] => [3,5,7,6,1,4,2] => [5,3,1,2,7,4,6] => ? = 1
[.,[[.,.],[[[[.,.],.],.],.]]]
=> [2,4,5,6,7,3,1] => [3,5,6,7,1,4,2] => [5,3,2,1,7,4,6] => ? = 1
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [3,2,7,6,5,4,1] => [4,3,1,7,6,5,2] => [4,5,7,1,2,3,6] => ? = 0
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [3,2,6,7,5,4,1] => [4,3,7,1,6,5,2] => [4,5,1,7,2,3,6] => ? = 1
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [3,2,5,7,6,4,1] => [4,3,6,1,7,5,2] => [4,5,2,7,1,3,6] => ? = 0
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [3,2,6,5,7,4,1] => [4,3,7,6,1,5,2] => [4,5,1,2,7,3,6] => ? = 1
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [3,2,5,6,7,4,1] => [4,3,6,7,1,5,2] => [4,5,2,1,7,3,6] => ? = 1
[.,[[[.,.],.],[.,[.,[.,.]]]]]
=> [2,3,7,6,5,4,1] => [3,4,1,7,6,5,2] => [5,4,7,1,2,3,6] => ? = 0
[.,[[[.,.],.],[.,[[.,.],.]]]]
=> [2,3,6,7,5,4,1] => [3,4,7,1,6,5,2] => [5,4,1,7,2,3,6] => ? = 1
[.,[[[.,.],.],[[.,.],[.,.]]]]
=> [2,3,5,7,6,4,1] => [3,4,6,1,7,5,2] => [5,4,2,7,1,3,6] => ? = 0
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> [2,3,6,5,7,4,1] => [3,4,7,6,1,5,2] => [5,4,1,2,7,3,6] => ? = 1
[.,[[[.,.],.],[[[.,.],.],.]]]
=> [2,3,5,6,7,4,1] => [3,4,6,7,1,5,2] => [5,4,2,1,7,3,6] => ? = 1
[.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [4,3,2,7,6,5,1] => [5,4,3,1,7,6,2] => [3,4,5,7,1,2,6] => ? = 0
[.,[[.,[.,[.,.]]],[[.,.],.]]]
=> [4,3,2,6,7,5,1] => [5,4,3,7,1,6,2] => [3,4,5,1,7,2,6] => ? = 1
[.,[[.,[[.,.],.]],[.,[.,.]]]]
=> [3,4,2,7,6,5,1] => [4,5,3,1,7,6,2] => [4,3,5,7,1,2,6] => ? = 0
[.,[[.,[[.,.],.]],[[.,.],.]]]
=> [3,4,2,6,7,5,1] => [4,5,3,7,1,6,2] => [4,3,5,1,7,2,6] => ? = 1
[.,[[[.,.],[.,.]],[.,[.,.]]]]
=> [2,4,3,7,6,5,1] => [3,5,4,1,7,6,2] => [5,3,4,7,1,2,6] => ? = 0
Description
The number of occurrences of the consecutive pattern 132 in a permutation.
This is the number of occurrences of the pattern $132$, where the matched entries are all adjacent.
Matching statistic: St000317
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00329: Permutations —Tanimoto⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000317: Permutations ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 100%
Mp00329: Permutations —Tanimoto⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000317: Permutations ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [1] => 0
[.,[.,.]]
=> [2,1] => [2,1] => [2,1] => 0
[[.,.],.]
=> [1,2] => [1,2] => [1,2] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [2,3,1] => 0
[.,[[.,.],.]]
=> [2,3,1] => [3,1,2] => [3,1,2] => 1
[[.,.],[.,.]]
=> [1,3,2] => [2,1,3] => [2,1,3] => 0
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => [1,3,2] => 0
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,3,2] => [4,3,1,2] => 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [3,1,4,2] => [3,4,1,2] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,1,2] => [3,1,4,2] => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,4,1,2] => [4,1,3,2] => 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,1,4,3] => [2,1,4,3] => 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,1,3] => [4,2,1,3] => 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,2,1,4] => [2,3,1,4] => 0
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [2,3,1,4] => [3,2,1,4] => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,3,2] => [1,3,4,2] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,3,4,2] => [1,4,3,2] => 0
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,2,4,3] => [1,2,4,3] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,2,4] => [1,3,2,4] => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [2,3,4,5,1] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,4,3,2] => [5,3,4,1,2] => 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [4,1,5,3,2] => [4,3,5,1,2] => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,1,3,2] => [4,3,1,5,2] => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [4,5,1,3,2] => [5,3,1,4,2] => 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [3,1,5,4,2] => [3,4,1,5,2] => 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [3,5,1,4,2] => [5,4,3,1,2] => 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [4,3,1,5,2] => [3,4,5,2,1] => 0
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [3,4,1,5,2] => [4,5,3,1,2] => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,3,1,2] => [3,1,4,5,2] => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [4,5,3,1,2] => [3,1,5,4,2] => 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [3,5,4,1,2] => [4,1,3,5,2] => 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [4,3,5,1,2] => [5,1,4,3,2] => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [3,4,5,1,2] => [5,1,3,4,2] => 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,1,5,4,3] => [2,1,4,5,3] => 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [2,5,1,4,3] => [5,2,4,1,3] => 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [2,4,1,5,3] => [4,2,5,1,3] => 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,5,4,1,3] => [4,2,1,5,3] => 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [2,4,5,1,3] => [5,2,1,4,3] => 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [3,2,1,5,4] => [2,3,1,5,4] => 0
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,2,5,1,4] => [5,3,2,1,4] => 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [2,3,1,5,4] => [3,2,1,5,4] => 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [2,3,5,1,4] => [5,2,3,1,4] => 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,3,2,1,5] => [2,3,4,1,5] => 0
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,4,2,1,5] => [2,4,3,1,5] => 0
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [2,4,3,1,5] => [3,2,4,1,5] => 0
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [3,2,4,1,5] => [4,3,2,1,5] => 0
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [2,3,4,1,5] => [4,2,3,1,5] => 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => [2,3,4,5,6,7,1] => ? = 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [7,1,6,5,4,3,2] => [7,3,4,5,6,1,2] => ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => [6,1,7,5,4,3,2] => [6,3,4,5,7,1,2] => ? = 0
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [7,6,1,5,4,3,2] => [6,3,4,5,1,7,2] => ? = 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [6,7,1,5,4,3,2] => [7,3,4,5,1,6,2] => ? = 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => [5,1,7,6,4,3,2] => [5,3,4,6,1,7,2] => ? = 0
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => [5,7,1,6,4,3,2] => [7,3,4,6,5,1,2] => ? = 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => [6,5,1,7,4,3,2] => [5,3,4,6,7,2,1] => ? = 0
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => [5,6,1,7,4,3,2] => [6,3,4,7,5,1,2] => ? = 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [7,6,5,1,4,3,2] => [5,3,4,1,6,7,2] => ? = 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => [5,7,6,1,4,3,2] => [6,3,4,1,5,7,2] => ? = 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [5,6,7,1,4,3,2] => [7,3,4,1,5,6,2] => ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => [4,1,7,6,5,3,2] => [4,3,5,1,6,7,2] => ? = 0
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => [4,7,1,6,5,3,2] => [7,3,5,4,6,1,2] => ? = 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => [4,6,1,7,5,3,2] => [6,3,5,4,7,1,2] => ? = 0
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => [4,7,6,1,5,3,2] => [6,3,5,4,1,7,2] => ? = 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => [4,6,7,1,5,3,2] => [7,3,5,4,1,6,2] => ? = 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => [5,4,1,7,6,3,2] => [4,3,5,6,2,7,1] => ? = 0
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => [5,4,7,1,6,3,2] => [7,3,6,5,4,1,2] => ? = 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => [4,5,1,7,6,3,2] => [5,3,6,4,1,7,2] => ? = 0
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => [4,5,7,1,6,3,2] => [7,3,6,4,5,1,2] => ? = 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => [6,5,4,1,7,3,2] => [4,3,5,6,7,1,2] => ? = 0
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => [5,6,4,1,7,3,2] => [4,3,6,7,5,2,1] => ? = 0
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => [4,6,5,1,7,3,2] => [5,3,6,4,7,2,1] => ? = 0
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => [5,4,6,1,7,3,2] => [6,3,7,5,4,1,2] => ? = 0
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => [4,5,6,1,7,3,2] => [6,3,7,4,5,1,2] => ? = 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => [7,6,5,4,1,3,2] => [4,3,1,5,6,7,2] => ? = 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => [5,7,6,4,1,3,2] => [4,3,1,6,5,7,2] => ? = 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [3,6,5,4,7,2,1] => [4,7,6,5,1,3,2] => [5,3,1,4,6,7,2] => ? = 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => [5,4,7,6,1,3,2] => [6,3,1,5,4,7,2] => ? = 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [3,4,6,5,7,2,1] => [4,5,7,6,1,3,2] => [6,3,1,4,5,7,2] => ? = 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => [4,5,6,7,1,3,2] => [7,3,1,4,5,6,2] => ? = 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => [3,1,7,6,5,4,2] => [3,4,1,5,6,7,2] => ? = 0
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [2,6,7,5,4,3,1] => [3,7,1,6,5,4,2] => [7,4,3,5,6,1,2] => ? = 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [2,5,7,6,4,3,1] => [3,6,1,7,5,4,2] => [6,4,3,5,7,1,2] => ? = 0
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [2,6,5,7,4,3,1] => [3,7,6,1,5,4,2] => [6,4,3,5,1,7,2] => ? = 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [2,5,6,7,4,3,1] => [3,6,7,1,5,4,2] => [7,4,3,5,1,6,2] => ? = 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [2,4,7,6,5,3,1] => [3,5,1,7,6,4,2] => [5,4,3,6,1,7,2] => ? = 0
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [2,4,6,7,5,3,1] => [3,5,7,1,6,4,2] => [7,4,3,6,5,1,2] => ? = 1
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [2,5,4,7,6,3,1] => [3,6,5,1,7,4,2] => [5,4,3,6,7,2,1] => ? = 0
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> [2,4,5,7,6,3,1] => [3,5,6,1,7,4,2] => [6,4,3,7,5,1,2] => ? = 0
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [2,6,5,4,7,3,1] => [3,7,6,5,1,4,2] => [5,4,3,1,6,7,2] => ? = 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [2,4,6,5,7,3,1] => [3,5,7,6,1,4,2] => [6,4,3,1,5,7,2] => ? = 1
[.,[[.,.],[[[[.,.],.],.],.]]]
=> [2,4,5,6,7,3,1] => [3,5,6,7,1,4,2] => [7,4,3,1,5,6,2] => ? = 1
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [3,2,7,6,5,4,1] => [4,3,1,7,6,5,2] => [3,4,5,2,6,7,1] => ? = 0
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [3,2,6,7,5,4,1] => [4,3,7,1,6,5,2] => [7,5,4,3,6,1,2] => ? = 1
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [3,2,5,7,6,4,1] => [4,3,6,1,7,5,2] => [6,5,4,3,7,1,2] => ? = 0
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [3,2,6,5,7,4,1] => [4,3,7,6,1,5,2] => [6,5,4,3,1,7,2] => ? = 1
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [3,2,5,6,7,4,1] => [4,3,6,7,1,5,2] => [7,5,4,3,1,6,2] => ? = 1
[.,[[[.,.],.],[.,[.,[.,.]]]]]
=> [2,3,7,6,5,4,1] => [3,4,1,7,6,5,2] => [4,5,3,1,6,7,2] => ? = 0
Description
The cycle descent number of a permutation.
Let $(i_1,\ldots,i_k)$ be a cycle of a permutation $\pi$ such that $i_1$ is its smallest element. A **cycle descent** of $(i_1,\ldots,i_k)$ is an $i_a$ for $1 \leq a < k$ such that $i_a > i_{a+1}$. The **cycle descent set** of $\pi$ is then the set of descents in all the cycles of $\pi$, and the **cycle descent number** is its cardinality.
Matching statistic: St000700
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00008: Binary trees —to complete tree⟶ Ordered trees
Mp00048: Ordered trees —left-right symmetry⟶ Ordered trees
Mp00246: Ordered trees —rotate⟶ Ordered trees
St000700: Ordered trees ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 100%
Mp00048: Ordered trees —left-right symmetry⟶ Ordered trees
Mp00246: Ordered trees —rotate⟶ Ordered trees
St000700: Ordered trees ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [[],[]]
=> [[],[]]
=> [[],[]]
=> 1 = 0 + 1
[.,[.,.]]
=> [[],[[],[]]]
=> [[[],[]],[]]
=> [[],[[],[]]]
=> 1 = 0 + 1
[[.,.],.]
=> [[[],[]],[]]
=> [[],[[],[]]]
=> [[[],[]],[]]
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> [[[[],[]],[]],[]]
=> [[],[[],[[],[]]]]
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [[],[[[],[]],[]]]
=> [[[],[[],[]]],[]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> [[[],[]],[[],[]]]
=> [[],[[[],[]],[]]]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> [[],[[[],[]],[]]]
=> [[[[],[]],[]],[]]
=> 1 = 0 + 1
[[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> [[],[[],[[],[]]]]
=> [[[],[[],[]]],[]]
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> [[[[[],[]],[]],[]],[]]
=> [[],[[],[[],[[],[]]]]]
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [[],[[],[[[],[]],[]]]]
=> [[[[],[[],[]]],[]],[]]
=> [[[],[]],[[],[[],[]]]]
=> 2 = 1 + 1
[.,[[.,.],[.,.]]]
=> [[],[[[],[]],[[],[]]]]
=> [[[[],[]],[[],[]]],[]]
=> [[],[[[],[]],[[],[]]]]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [[],[[[],[[],[]]],[]]]
=> [[[],[[[],[]],[]]],[]]
=> [[[[],[]],[]],[[],[]]]
=> 2 = 1 + 1
[.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> [[[],[[],[[],[]]]],[]]
=> [[[],[[],[]]],[[],[]]]
=> 2 = 1 + 1
[[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> [[[[],[]],[]],[[],[]]]
=> [[],[[],[[[],[]],[]]]]
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> [[[],[[],[]]],[[],[]]]
=> [[[],[]],[[[],[]],[]]]
=> 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> [[[],[]],[[[],[]],[]]]
=> [[],[[[[],[]],[]],[]]]
=> 1 = 0 + 1
[[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> [[[],[]],[[],[[],[]]]]
=> [[],[[[],[[],[]]],[]]]
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> [[],[[[[],[]],[]],[]]]
=> [[[[[],[]],[]],[]],[]]
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> [[],[[[],[[],[]]],[]]]
=> [[[[],[[],[]]],[]],[]]
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> [[],[[[],[]],[[],[]]]]
=> [[[[],[]],[[],[]]],[]]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [[[[],[[],[]]],[]],[]]
=> [[],[[],[[[],[]],[]]]]
=> [[[],[[[],[]],[]]],[]]
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> [[],[[],[[],[[],[]]]]]
=> [[[],[[],[[],[]]]],[]]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> [[[[[[],[]],[]],[]],[]],[]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [[],[[],[[],[[[],[]],[]]]]]
=> [[[[[],[[],[]]],[]],[]],[]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> 2 = 1 + 1
[.,[.,[[.,.],[.,.]]]]
=> [[],[[],[[[],[]],[[],[]]]]]
=> [[[[[],[]],[[],[]]],[]],[]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [[],[[],[[[],[[],[]]],[]]]]
=> [[[[],[[[],[]],[]]],[]],[]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> 2 = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> [[[[],[[],[[],[]]]],[]],[]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> 2 = 1 + 1
[.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> [[[[[],[]],[]],[[],[]]],[]]
=> [[],[[],[[[],[]],[[],[]]]]]
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> [[[[],[[],[]]],[[],[]]],[]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> 2 = 1 + 1
[.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> [[[[],[]],[[[],[]],[]]],[]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> 1 = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> [[[[],[]],[[],[[],[]]]],[]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> [[[],[[[[],[]],[]],[]]],[]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> 2 = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> [[],[[[],[[[],[]],[]]],[]]]
=> [[[],[[[],[[],[]]],[]]],[]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> 2 = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> [[],[[[[],[]],[[],[]]],[]]]
=> [[[],[[[],[]],[[],[]]]],[]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> 2 = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> [[],[[[[],[[],[]]],[]],[]]]
=> [[[],[[],[[[],[]],[]]]],[]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> 2 = 1 + 1
[.,[[[[.,.],.],.],.]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> [[[],[[],[[],[[],[]]]]],[]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> 2 = 1 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> [[],[[],[[],[[[],[]],[]]]]]
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> 2 = 1 + 1
[[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> 2 = 1 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> 1 = 0 + 1
[[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> [[],[[],[[[],[[],[]]],[]]]]
=> 1 = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> 2 = 1 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> 1 = 0 + 1
[[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> [[],[[[[],[[],[]]],[]],[]]]
=> 1 = 0 + 1
[[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> [[],[[[[],[]],[[],[]]],[]]]
=> 1 = 0 + 1
[[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> [[],[[[],[[[],[]],[]]],[]]]
=> 1 = 0 + 1
[[[[.,.],.],.],[.,.]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [[],[[],[[],[[],[[],[[],[[],[]]]]]]]]
=> [[[[[[[[],[]],[]],[]],[]],[]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [[],[[],[[],[[],[[],[[[],[]],[]]]]]]]
=> [[[[[[[],[[],[]]],[]],[]],[]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [[],[[],[[],[[],[[[],[]],[[],[]]]]]]]
=> [[[[[[[],[]],[[],[]]],[]],[]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [[],[[],[[],[[],[[[],[[],[]]],[]]]]]]
=> [[[[[[],[[[],[]],[]]],[]],[]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [[],[[],[[],[[],[[[[],[]],[]],[]]]]]]
=> [[[[[[],[[],[[],[]]]],[]],[]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [[],[[],[[],[[[],[]],[[],[[],[]]]]]]]
=> [[[[[[[],[]],[]],[[],[]]],[]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [[],[[],[[],[[[],[]],[[[],[]],[]]]]]]
=> [[[[[[],[[],[]]],[[],[]]],[]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [[],[[],[[],[[[],[[],[]]],[[],[]]]]]]
=> [[[[[[],[]],[[[],[]],[]]],[]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [[],[[],[[],[[[[],[]],[]],[[],[]]]]]]
=> [[[[[[],[]],[[],[[],[]]]],[]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [[],[[],[[],[[[],[[],[[],[]]]],[]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [[],[[],[[],[[[[],[]],[[],[]]],[]]]]]
=> [[[[[],[[[],[]],[[],[]]]],[]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [[],[[],[[],[[[[[],[]],[]],[]],[]]]]]
=> [[[[[],[[],[[],[[],[]]]]],[]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [[],[[],[[[],[]],[[],[[],[[],[]]]]]]]
=> [[[[[[[],[]],[]],[]],[[],[]]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [[],[[],[[[],[]],[[],[[[],[]],[]]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [[],[[],[[[],[]],[[[],[]],[[],[]]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [[],[[],[[[],[]],[[[],[[],[]]],[]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [[],[[],[[[],[]],[[[[],[]],[]],[]]]]]
=> [[[[[],[[],[[],[]]]],[[],[]]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [[],[[],[[[],[[],[]]],[[],[[],[]]]]]]
=> [[[[[[],[]],[]],[[[],[]],[]]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [[],[[],[[[],[[],[]]],[[[],[]],[]]]]]
=> [[[[[],[[],[]]],[[[],[]],[]]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [[],[[],[[[[],[]],[]],[[],[[],[]]]]]]
=> [[[[[[],[]],[]],[[],[[],[]]]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [[],[[],[[[[],[]],[]],[[[],[]],[]]]]]
=> [[[[[],[[],[]]],[[],[[],[]]]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [[],[[],[[[],[[],[[],[]]]],[[],[]]]]]
=> [[[[[],[]],[[[[],[]],[]],[]]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [[],[[],[[[],[[[],[]],[]]],[[],[]]]]]
=> [[[[[],[]],[[[],[[],[]]],[]]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [[],[[],[[[[],[]],[[],[]]],[[],[]]]]]
=> [[[[[],[]],[[[],[]],[[],[]]]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [[],[[],[[[[],[[],[]]],[]],[[],[]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [[],[[],[[[[[],[]],[]],[]],[[],[]]]]]
=> [[[[[],[]],[[],[[],[[],[]]]]],[]],[]]
=> ?
=> ? = 0 + 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [[],[[],[[[],[[],[[],[[],[]]]]],[]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [[],[[],[[[],[[[],[]],[[],[]]]],[]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [[],[[],[[[[],[]],[[],[[],[]]]],[]]]]
=> [[[[],[[[[],[]],[]],[[],[]]]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [[],[[],[[[[],[[],[]]],[[],[]]],[]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [[],[[],[[[[[],[]],[]],[[],[]]],[]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [[],[[],[[[[[[],[]],[]],[]],[]],[]]]]
=> [[[[],[[],[[],[[],[[],[]]]]]],[]],[]]
=> ?
=> ? = 1 + 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [[],[[[],[]],[[],[[],[[],[[],[]]]]]]]
=> [[[[[[[],[]],[]],[]],[]],[[],[]]],[]]
=> ?
=> ? = 0 + 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [[],[[[],[]],[[],[[],[[[],[]],[]]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [[],[[[],[]],[[],[[[],[]],[[],[]]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [[],[[[],[]],[[],[[[],[[],[]]],[]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [[],[[[],[]],[[],[[[[],[]],[]],[]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [[],[[[],[]],[[[],[]],[[],[[],[]]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [[],[[[],[]],[[[],[]],[[[],[]],[]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [[],[[[],[]],[[[],[[],[]]],[[],[]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> [[],[[[],[]],[[[[],[]],[]],[[],[]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [[],[[[],[]],[[[],[[],[[],[]]]],[]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [[],[[[],[]],[[[[],[]],[[],[]]],[]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[[.,.],[[[[.,.],.],.],.]]]
=> [[],[[[],[]],[[[[[],[]],[]],[]],[]]]]
=> [[[[],[[],[[],[[],[]]]]],[[],[]]],[]]
=> ?
=> ? = 1 + 1
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [[],[[[],[[],[]]],[[],[[],[[],[]]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [[],[[[],[[],[]]],[[],[[[],[]],[]]]]]
=> ?
=> ?
=> ? = 1 + 1
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [[],[[[],[[],[]]],[[[],[]],[[],[]]]]]
=> ?
=> ?
=> ? = 0 + 1
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [[],[[[],[[],[]]],[[[],[[],[]]],[]]]]
=> [[[[],[[[],[]],[]]],[[[],[]],[]]],[]]
=> ?
=> ? = 1 + 1
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [[],[[[],[[],[]]],[[[[],[]],[]],[]]]]
=> [[[[],[[],[[],[]]]],[[[],[]],[]]],[]]
=> ?
=> ? = 1 + 1
[.,[[[.,.],.],[.,[.,[.,.]]]]]
=> [[],[[[[],[]],[]],[[],[[],[[],[]]]]]]
=> ?
=> ?
=> ? = 0 + 1
Description
The protection number of an ordered tree.
This is the minimal distance from the root to a leaf.
Matching statistic: St000456
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 50%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 50%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> ? = 0 + 1
[.,[.,.]]
=> [2,1] => ([],2)
=> ([],2)
=> ? = 0 + 1
[[.,.],.]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> ([],3)
=> ? = 0 + 1
[.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[[.,.],[.,.]]
=> [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 1
[[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> ([],4)
=> ? = 0 + 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 0 + 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1 + 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1 + 1
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 0 + 1
[[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 0 + 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> ([],5)
=> ? = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 1 + 1
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 1 + 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 0 + 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([],6)
=> ([],6)
=> ? = 0 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(3,4),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 1 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ? = 1 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 0 + 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[[.,.],[[.,.],.]]],.]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[.,[[.,[.,.]],[.,.]]],.]
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[[[.,.],.],[.,.]]],.]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[.,[[[.,.],[.,.]],.]],.]
=> [4,2,3,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
[[[.,.],[.,[.,[.,.]]]],.]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[.,.],[.,[[.,.],.]]],.]
=> [4,5,3,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[.,.],[[.,.],[.,.]]],.]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[.,.],[[.,[.,.]],.]],.]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[.,.],[[[.,.],.],.]],.]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
[[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
[[[.,[.,[.,.]]],[.,.]],.]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[.,[[.,.],.]],[.,.]],.]
=> [5,2,3,1,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[[.,.],[.,.]],[.,.]],.]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[[[.,.],.],.],[.,.]],.]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001330
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 50%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 50%
Values
[.,.]
=> [1,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[.,[.,.]]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[.,.],.]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 + 2
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,[.,[[.,.],.]]],.]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,[[.,[.,.]],.]],.]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,[[[.,.],.],.]],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[[.,.],[[.,.],.]],.]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [7,3,4,5,6,1,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 0 + 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,4,5,6,1,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 2
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => ([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0 + 2
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => ([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[[[[.,.],.],.],.]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => ([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [7,3,1,5,6,2,4] => ([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[.,[.,.]],[.,[.,[.,.]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[.,[.,[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[[[.,[.,.]],.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[[.,.],.],.],[.,[.,.]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[.,[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 0 + 2
[[[[.,.],.],[.,.]],[.,.]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[[[.,[.,[.,.]]],.],[.,.]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[[.,.],[.,.]],.],[.,.]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[[[.,[.,.]],.],.],[.,.]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[[[.,.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[.,[.,[.,[.,[.,.]]]]],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[[.,.],[.,[.,[.,.]]]],.]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[.,[.,.]],[.,[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001198
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[.,.]
=> [1] => [1] => [1,0]
=> ? = 0 + 2
[.,[.,.]]
=> [2,1] => [2,1] => [1,1,0,0]
=> ? = 0 + 2
[[.,.],.]
=> [1,2] => [1,2] => [1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 1 + 2
[[.,.],[.,.]]
=> [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],[[.,.],.]]],.]
=> [4,5,2,3,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[.,.]],[.,.]]],.]
=> [5,3,2,4,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,.],.],[.,.]]],.]
=> [5,2,3,4,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,.],[.,.]],.]],.]
=> [4,2,3,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,[.,[.,.]]]],.]
=> [5,4,3,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,[[.,.],.]]],.]
=> [4,5,3,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[.,.],[.,.]]],.]
=> [5,3,4,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[.,[.,.]],.]],.]
=> [4,3,5,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[[.,.],.],.]],.]
=> [3,4,5,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,[.,.]]],[.,.]],.]
=> [5,3,2,1,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[[.,.],.]],[.,.]],.]
=> [5,2,3,1,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],[.,.]],[.,.]],.]
=> [5,3,1,2,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[[.,.],.],.],[.,.]],.]
=> [5,1,2,3,4,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[.,.]
=> [1] => [1] => [1,0]
=> ? = 0 + 2
[.,[.,.]]
=> [2,1] => [2,1] => [1,1,0,0]
=> ? = 0 + 2
[[.,.],.]
=> [1,2] => [1,2] => [1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 1 + 2
[[.,.],[.,.]]
=> [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 + 2
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,.],[[.,.],.]]],.]
=> [4,5,2,3,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[.,.]],[.,.]]],.]
=> [5,3,2,4,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,.],.],[.,.]]],.]
=> [5,2,3,4,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,.],[.,.]],.]],.]
=> [4,2,3,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,[.,[.,.]]]],.]
=> [5,4,3,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[.,[[.,.],.]]],.]
=> [4,5,3,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[.,.],[.,.]]],.]
=> [5,3,4,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[.,[.,.]],.]],.]
=> [4,3,5,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,.],[[[.,.],.],.]],.]
=> [3,4,5,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[.,[.,.]]],[.,.]],.]
=> [5,3,2,1,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[.,[[.,.],.]],[.,.]],.]
=> [5,2,3,1,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,.],[.,.]],[.,.]],.]
=> [5,3,1,2,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[[[[[.,.],.],.],[.,.]],.]
=> [5,1,2,3,4,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000768The number of peaks in an integer composition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!