Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 259 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St001086: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [1,2] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [5,6,4,3,2,1] => [1,5,2,6,3,4] => 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,3,4,5,6] => 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,5,6] => 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,4,5,6] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,6,7,8] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,5,6,7,8] => 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => 0
[]
=> []
=> [] => [] => 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => 0
Description
The number of occurrences of the consecutive pattern 132 in a permutation. This is the number of occurrences of the pattern $132$, where the matched entries are all adjacent.
Matching statistic: St000371
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00238: Permutations Clarke-Steingrimsson-ZengPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
St000371: Permutations ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [2,4,3,1] => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,4,1,3] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,1,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [4,3,1,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [3,1,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,3,1,2] => [1,4,3,2] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => [4,1,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [1,3,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [4,1,2,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [3,5,1,2,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [1,3,2,4,5] => 0
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [4,1,2,3,5] => [1,2,4,3,5] => 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => [2,1,3,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => [3,5,1,2,4,6] => 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => [6,1,3,4,5,2] => [1,3,6,4,5,2] => 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [3,1,2,6,4,5] => [3,1,2,6,4,5] => [3,1,6,2,4,5] => 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => [3,1,2,4,5,6] => [1,3,2,4,5,6] => 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => [4,6,1,2,3,5] => 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => [1,2,3,6,4,5] => [1,6,2,3,4,5] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,2,3,4,7,5,6] => [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,2,3,7,4,5,6] => [1,2,3,7,4,5,6] => [1,2,7,3,4,5,6] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,8,7] => [8,1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,8,6,7] => [1,8,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,8,5,6,7] => [1,2,8,3,4,5,6,7] => ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => 0
[]
=> [] => [] => [] => 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => 0
Description
The number of mid points of decreasing subsequences of length 3 in a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima. This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence. See also [[St000119]].
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
St000373: Permutations ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [2,1,3,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,3,2,5,4,6] => 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0]]
=> [1,6,5,4,3,2] => 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,3,2,4,6,5] => 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,3,2,4,5,6] => 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,2,4,3,6,5] => 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,2,3,4,6,5] => 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,2,3,4,6,5] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,2,3,4,5,6] => 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,4,5,7,6] => 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,4,5,7,6] => 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,4,5,7,6] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7,8] => 0
[]
=> []
=> []
=> ? => ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7,8,9] => 0
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j \geq j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
St001394: Permutations ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [2,1,3,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,3,2,5,4,6] => 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[0,0,0,0,1,0],[1,0,0,0,-1,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,6,2,3,4,5] => 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,3,2,4,6,5] => 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,3,2,4,5,6] => 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,2,4,3,6,5] => 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,2,3,4,6,5] => 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,2,3,4,6,5] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,2,3,4,5,6] => 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,4,5,7,6] => 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,4,5,7,6] => 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,4,5,7,6] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7,8] => 0
[]
=> []
=> []
=> ? => ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7,8,9] => 0
Description
The genus of a permutation. The genus $g(\pi)$ of a permutation $\pi\in\mathfrak S_n$ is defined via the relation $$ n+1-2g(\pi) = z(\pi) + z(\pi^{-1} \zeta ), $$ where $\zeta = (1,2,\dots,n)$ is the long cycle and $z(\cdot)$ is the number of cycles in the permutation.
Matching statistic: St000527
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000527: Posets ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
[]
=> []
=> []
=> ?
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1 = 0 + 1
Description
The width of the poset. This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St000223
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00238: Permutations Clarke-Steingrimsson-ZengPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
St000223: Permutations ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [2,4,3,1] => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,4,1,3] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,1,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [4,3,1,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [3,1,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,3,1,2] => [1,4,3,2] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => [4,1,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [1,3,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [4,1,2,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [3,5,1,2,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [1,3,2,4,5] => 0
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [4,1,2,3,5] => [1,2,4,3,5] => 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => [2,1,3,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => [3,5,1,2,4,6] => 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => [6,1,3,4,5,2] => [1,3,6,4,5,2] => 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [3,1,2,6,4,5] => [3,1,2,6,4,5] => [3,1,6,2,4,5] => 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => [3,1,2,4,5,6] => [1,3,2,4,5,6] => 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => [4,6,1,2,3,5] => 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => [1,2,3,6,4,5] => [1,6,2,3,4,5] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,2,3,4,7,5,6] => [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,2,3,7,4,5,6] => [1,2,3,7,4,5,6] => [1,2,7,3,4,5,6] => ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,8,7] => [8,1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,8,6,7] => [1,8,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,8,5,6,7] => [1,2,8,3,4,5,6,7] => ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => 0
[]
=> [] => [] => [] => 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => 0
Description
The number of nestings in the permutation.
Matching statistic: St001584
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001584: Dyck paths ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[]
=> [] => ?
=> ?
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
Description
The area statistic between a Dyck path and its bounce path. The bounce path [[Mp00099]] is weakly below a given Dyck path and this statistic records the number of boxes between the two paths.
Matching statistic: St000196
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
St000196: Binary trees ⟶ ℤResult quality: 88% values known / values provided: 88%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [.,.]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [[.,.],.]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[.,[[.,[[.,.],.]],.]]]]
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 0
[]
=> []
=> []
=> ?
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 0
Description
The number of occurrences of the contiguous pattern {{{[[.,.],[.,.]]}}} in a binary tree. Equivalently, this is the number of branches in the tree, i.e. the number of nodes with two children. Binary trees avoiding this pattern are counted by $2^{n-2}$.
Matching statistic: St000201
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
St000201: Binary trees ⟶ ℤResult quality: 88% values known / values provided: 88%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [.,.]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [[.,.],.]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> 1 = 0 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[.,[[.,[[.,.],.]],.]]]]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 0 + 1
[]
=> []
=> []
=> ?
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 0 + 1
Description
The number of leaf nodes in a binary tree. Equivalently, the number of cherries [1] in the complete binary tree. The number of binary trees of size $n$, at least $1$, with exactly one leaf node for is $2^{n-1}$, see [2]. The number of binary tree of size $n$, at least $3$, with exactly two leaf nodes is $n(n+1)2^{n-2}$, see [3].
Matching statistic: St000632
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000632: Posets ⟶ ℤResult quality: 67% values known / values provided: 86%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ([],1)
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[]
=> []
=> []
=> ?
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 0
Description
The jump number of the poset. A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
The following 249 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001728The number of invisible descents of a permutation. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St001597The Frobenius rank of a skew partition. St000538The number of even inversions of a permutation. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St000640The rank of the largest boolean interval in a poset. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St001513The number of nested exceedences of a permutation. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000264The girth of a graph, which is not a tree. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000455The second largest eigenvalue of a graph if it is integral. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001095The number of non-isomorphic posets with precisely one further covering relation. St001964The interval resolution global dimension of a poset. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001586The number of odd parts smaller than the largest even part in an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000928The sum of the coefficients of the character polynomial of an integer partition. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000137The Grundy value of an integer partition. St001060The distinguishing index of a graph. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001570The minimal number of edges to add to make a graph Hamiltonian. St000667The greatest common divisor of the parts of the partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000567The sum of the products of all pairs of parts. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001561The value of the elementary symmetric function evaluated at 1. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000993The multiplicity of the largest part of an integer partition. St001571The Cartan determinant of the integer partition. St001933The largest multiplicity of a part in an integer partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001083The number of boxed occurrences of 132 in a permutation. St001115The number of even descents of a permutation. St000834The number of right outer peaks of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001846The number of elements which do not have a complement in the lattice. St000031The number of cycles in the cycle decomposition of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St001490The number of connected components of a skew partition. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000635The number of strictly order preserving maps of a poset into itself. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001890The maximum magnitude of the Möbius function of a poset. St000842The breadth of a permutation. St000534The number of 2-rises of a permutation. St000153The number of adjacent cycles of a permutation. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000058The order of a permutation. St000451The length of the longest pattern of the form k 1 2. St000405The number of occurrences of the pattern 1324 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St001866The nesting alignments of a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000017The number of inversions of a standard tableau. St000488The number of cycles of a permutation of length at most 2. St000649The number of 3-excedences of a permutation. St000731The number of double exceedences of a permutation. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001061The number of indices that are both descents and recoils of a permutation. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001811The Castelnuovo-Mumford regularity of a permutation. St001856The number of edges in the reduced word graph of a permutation. St001867The number of alignments of type EN of a signed permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001948The number of augmented double ascents of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001591The number of graphs with the given composition of multiplicities of Laplacian eigenvalues. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001768The number of reduced words of a signed permutation. St001720The minimal length of a chain of small intervals in a lattice. St001857The number of edges in the reduced word graph of a signed permutation. St001344The neighbouring number of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St000023The number of inner peaks of a permutation. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000091The descent variation of a composition. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000122The number of occurrences of the contiguous pattern [.,[.,[[.,.],.]]] in a binary tree. St000130The number of occurrences of the contiguous pattern [.,[[.,.],[[.,.],.]]] in a binary tree. St000132The number of occurrences of the contiguous pattern [[.,.],[.,[[.,.],.]]] in a binary tree. St000217The number of occurrences of the pattern 312 in a permutation. St000241The number of cyclical small excedances. St000338The number of pixed points of a permutation. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000370The genus of a graph. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000406The number of occurrences of the pattern 3241 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000562The number of internal points of a set partition. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000624The normalized sum of the minimal distances to a greater element. St000650The number of 3-rises of a permutation. St000666The number of right tethers of a permutation. St000732The number of double deficiencies of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000779The tier of a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000872The number of very big descents of a permutation. St000873The aix statistic of a permutation. St000881The number of short braid edges in the graph of braid moves of a permutation. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St001130The number of two successive successions in a permutation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001301The first Betti number of the order complex associated with the poset. St001309The number of four-cliques in a graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001411The number of patterns 321 or 3412 in a permutation. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001470The cyclic holeyness of a permutation. St001535The number of cyclic alignments of a permutation. St001537The number of cyclic crossings of a permutation. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001705The number of occurrences of the pattern 2413 in a permutation. St001715The number of non-records in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001781The interlacing number of a set partition. St001871The number of triconnected components of a graph. St000078The number of alternating sign matrices whose left key is the permutation. St000099The number of valleys of a permutation, including the boundary. St000239The number of small weak excedances. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000255The number of reduced Kogan faces with the permutation as type. St000570The Edelman-Greene number of a permutation. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001162The minimum jump of a permutation. St001220The width of a permutation. St001413Half the length of the longest even length palindromic prefix of a binary word. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St000236The number of cyclical small weak excedances. St000248The number of anti-singletons of a set partition. St000249The number of singletons (St000247) plus the number of antisingletons (St000248) of a set partition. St000308The height of the tree associated to a permutation. St000504The cardinality of the first block of a set partition. St000636The hull number of a graph. St000907The number of maximal antichains of minimal length in a poset. St001062The maximal size of a block of a set partition. St001654The monophonic hull number of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000879The number of long braid edges in the graph of braid moves of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001651The Frankl number of a lattice. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001330The hat guessing number of a graph. St001624The breadth of a lattice. St000456The monochromatic index of a connected graph. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000939The number of characters of the symmetric group whose value on the partition is positive. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.