Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001121
St001121: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 0
[3]
=> 1
[2,1]
=> 1
[1,1,1]
=> 0
[4]
=> 1
[3,1]
=> 1
[2,2]
=> 1
[2,1,1]
=> 1
[1,1,1,1]
=> 0
[5]
=> 1
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 1
[2,2,1]
=> 1
[2,1,1,1]
=> 0
[1,1,1,1,1]
=> 0
[6]
=> 1
[5,1]
=> 1
[4,2]
=> 2
[4,1,1]
=> 1
[3,3]
=> 0
[3,2,1]
=> 5
[3,1,1,1]
=> 1
[2,2,2]
=> 1
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 0
[1,1,1,1,1,1]
=> 0
[7]
=> 1
[6,1]
=> 1
[5,2]
=> 2
[5,1,1]
=> 1
[4,3]
=> 1
[4,2,1]
=> 9
[4,1,1,1]
=> 1
[3,3,1]
=> 1
[3,2,2]
=> 2
[3,2,1,1]
=> 8
[3,1,1,1,1]
=> 1
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> 0
[8]
=> 1
[7,1]
=> 1
[6,2]
=> 2
[6,1,1]
=> 1
[5,3]
=> 1
[5,2,1]
=> 9
Description
The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^\lambda$.