Identifier
- St001121: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>0
[3]=>1
[2,1]=>1
[1,1,1]=>0
[4]=>1
[3,1]=>1
[2,2]=>1
[2,1,1]=>1
[1,1,1,1]=>0
[5]=>1
[4,1]=>1
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>1
[2,1,1,1]=>0
[1,1,1,1,1]=>0
[6]=>1
[5,1]=>1
[4,2]=>2
[4,1,1]=>1
[3,3]=>0
[3,2,1]=>5
[3,1,1,1]=>1
[2,2,2]=>1
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>0
[7]=>1
[6,1]=>1
[5,2]=>2
[5,1,1]=>1
[4,3]=>1
[4,2,1]=>9
[4,1,1,1]=>1
[3,3,1]=>1
[3,2,2]=>2
[3,2,1,1]=>8
[3,1,1,1,1]=>1
[2,2,2,1]=>1
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>0
[8]=>1
[7,1]=>1
[6,2]=>2
[6,1,1]=>1
[5,3]=>1
[5,2,1]=>9
[5,1,1,1]=>1
[4,4]=>1
[4,3,1]=>8
[4,2,2]=>6
[4,2,1,1]=>17
[4,1,1,1,1]=>1
[3,3,2]=>1
[3,3,1,1]=>5
[3,2,2,1]=>8
[3,2,1,1,1]=>4
[3,1,1,1,1,1]=>0
[2,2,2,2]=>1
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>0
[9]=>1
[8,1]=>1
[7,2]=>2
[7,1,1]=>1
[6,3]=>2
[6,2,1]=>9
[6,1,1,1]=>1
[5,4]=>1
[5,3,1]=>15
[5,2,2]=>7
[5,2,1,1]=>18
[5,1,1,1,1]=>1
[4,4,1]=>2
[4,3,2]=>12
[4,3,1,1]=>27
[4,2,2,1]=>28
[4,2,1,1,1]=>17
[4,1,1,1,1,1]=>1
[3,3,3]=>1
[3,3,2,1]=>11
[3,3,1,1,1]=>5
[3,2,2,2]=>2
[3,2,2,1,1]=>7
[3,2,1,1,1,1]=>0
[3,1,1,1,1,1,1]=>0
[2,2,2,2,1]=>0
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>0
[10]=>1
[9,1]=>1
[8,2]=>2
[8,1,1]=>1
[7,3]=>2
[7,2,1]=>9
[7,1,1,1]=>1
[6,4]=>2
[6,3,1]=>19
[6,2,2]=>7
[6,2,1,1]=>18
[6,1,1,1,1]=>1
[5,5]=>0
[5,4,1]=>9
[5,3,2]=>29
[5,3,1,1]=>53
[5,2,2,1]=>39
[5,2,1,1,1]=>21
[5,1,1,1,1,1]=>1
[4,4,2]=>6
[4,4,1,1]=>5
[4,3,3]=>2
[4,3,2,1]=>117
[4,3,1,1,1]=>40
[4,2,2,2]=>10
[4,2,2,1,1]=>46
[4,2,1,1,1,1]=>11
[4,1,1,1,1,1,1]=>1
[3,3,3,1]=>2
[3,3,2,2]=>2
[3,3,2,1,1]=>21
[3,3,1,1,1,1]=>1
[3,2,2,2,1]=>5
[3,2,2,1,1,1]=>1
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>0
[2,2,2,2,2]=>0
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>1
[10,1]=>1
[9,2]=>2
[9,1,1]=>1
[8,3]=>2
[8,2,1]=>9
[8,1,1,1]=>1
[7,4]=>2
[7,3,1]=>19
[7,2,2]=>7
[7,2,1,1]=>18
[7,1,1,1,1]=>1
[6,5]=>1
[6,4,1]=>19
[6,3,2]=>39
[6,3,1,1]=>62
[6,2,2,1]=>39
[6,2,1,1,1]=>21
[6,1,1,1,1,1]=>1
[5,5,1]=>1
[5,4,2]=>29
[5,4,1,1]=>40
[5,3,3]=>6
[5,3,2,1]=>312
[5,3,1,1,1]=>89
[5,2,2,2]=>17
[5,2,2,1,1]=>86
[5,2,1,1,1,1]=>20
[5,1,1,1,1,1,1]=>1
[4,4,3]=>2
[4,4,2,1]=>53
[4,4,1,1,1]=>14
[4,3,3,1]=>37
[4,3,2,2]=>53
[4,3,2,1,1]=>301
[4,3,1,1,1,1]=>30
[4,2,2,2,1]=>37
[4,2,2,1,1,1]=>32
[4,2,1,1,1,1,1]=>4
[4,1,1,1,1,1,1,1]=>0
[3,3,3,2]=>2
[3,3,3,1,1]=>8
[3,3,2,2,1]=>21
[3,3,2,1,1,1]=>11
[3,3,1,1,1,1,1]=>0
[3,2,2,2,2]=>1
[3,2,2,2,1,1]=>1
[3,2,2,1,1,1,1]=>0
[3,2,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,1]=>0
[2,2,2,2,1,1,1]=>0
[2,2,2,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>1
[11,1]=>1
[10,2]=>2
[10,1,1]=>1
[9,3]=>2
[9,2,1]=>9
[9,1,1,1]=>1
[8,4]=>3
[8,3,1]=>19
[8,2,2]=>7
[8,2,1,1]=>18
[8,1,1,1,1]=>1
[7,5]=>1
[7,4,1]=>26
[7,3,2]=>40
[7,3,1,1]=>63
[7,2,2,1]=>39
[7,2,1,1,1]=>21
[7,1,1,1,1,1]=>1
[6,6]=>1
[6,5,1]=>9
[6,4,2]=>71
[6,4,1,1]=>80
[6,3,3]=>13
[6,3,2,1]=>429
[6,3,1,1,1]=>108
[6,2,2,2]=>19
[6,2,2,1,1]=>90
[6,2,1,1,1,1]=>21
[6,1,1,1,1,1,1]=>1
[5,5,2]=>5
[5,5,1,1]=>9
[5,4,3]=>20
[5,4,2,1]=>407
[5,4,1,1,1]=>89
[5,3,3,1]=>146
[5,3,2,2]=>179
[5,3,2,1,1]=>945
[5,3,1,1,1,1]=>91
[5,2,2,2,1]=>94
[5,2,2,1,1,1]=>103
[5,2,1,1,1,1,1]=>17
[5,1,1,1,1,1,1,1]=>1
[4,4,4]=>2
[4,4,3,1]=>46
[4,4,2,2]=>45
[4,4,2,1,1]=>180
[4,4,1,1,1,1]=>18
[4,3,3,2]=>47
[4,3,3,1,1]=>144
[4,3,2,2,1]=>380
[4,3,2,1,1,1]=>312
[4,3,1,1,1,1,1]=>11
[4,2,2,2,2]=>9
[4,2,2,2,1,1]=>35
[4,2,2,1,1,1,1]=>10
[4,2,1,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1,1]=>0
[3,3,3,3]=>1
[3,3,3,2,1]=>15
[3,3,3,1,1,1]=>7
[3,3,2,2,2]=>4
[3,3,2,2,1,1]=>21
[3,3,2,1,1,1,1]=>0
[3,3,1,1,1,1,1,1]=>0
[3,2,2,2,2,1]=>0
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>0
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,2]=>0
[2,2,2,2,2,1,1]=>0
[2,2,2,2,1,1,1,1]=>0
[2,2,2,1,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
[5,4,3,1]=>523
[5,4,2,2]=>333
[5,4,2,1,1]=>1573
[5,3,3,2]=>232
[5,3,3,1,1]=>661
[5,3,2,2,1]=>1580
[4,4,3,2]=>85
[4,4,3,1,1]=>235
[4,4,2,2,1]=>325
[4,3,3,2,1]=>494
[5,4,3,2]=>1169
[5,4,3,1,1]=>2929
[5,4,2,2,1]=>3649
[5,3,3,2,1]=>2933
[4,4,3,2,1]=>1154
[5,4,3,2,1]=>18269
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^\lambda$.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^\lambda$.
References
Code
def statistic(la): s = SymmetricFunctions(ZZ).schur() return s[la].internal_product(s[la]).coefficient(la)
Created
Mar 17, 2018 at 10:22 by Martin Rubey
Updated
Mar 17, 2018 at 10:29 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!