Your data matches 41 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000714
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000714: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
Description
The number of semistandard Young tableau of given shape, with entries at most 2. This is also the dimension of the corresponding irreducible representation of $GL_2$.
Matching statistic: St001123
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001123: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
Description
The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{21^{n-2}}$, for $\lambda\vdash n$.
Matching statistic: St001440
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001440: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
Matching statistic: St001913
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001913: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
Description
The number of preimages of an integer partition in Bulgarian solitaire. A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row. Partitions without preimages are called garden of eden partitions [1].
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001785: Integer partitions ⟶ ℤResult quality: 41% values known / values provided: 41%distinct values known / distinct values provided: 50%
Values
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 0
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 0
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> 0
Description
The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. Given a partition $\lambda\vdash n$, let $\alpha(\lambda)$ be the partition given by the lengths of the antidiagonals of the Ferrers diagram of $\lambda$. Then, the value of the statistic on $\mu$ is the number of times $\mu$ appears in the multiset $\{\{\alpha(\lambda)\mid \lambda\vdash n\}\}$.
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001283: Integer partitions ⟶ ℤResult quality: 40% values known / values provided: 40%distinct values known / distinct values provided: 50%
Values
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 0
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 0
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> 0
Description
The number of finite solvable groups that are realised by the given partition over the complex numbers. A finite group $G$ is ''realised'' by the partition $(a_1,\dots,a_m)$ if its group algebra over the complex numbers is isomorphic to the direct product of $a_i\times a_i$ matrix rings over the complex numbers. The smallest partition which does not realise a solvable group, but does realise a finite group, is $(5,4,3,3,1)$.
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001284: Integer partitions ⟶ ℤResult quality: 40% values known / values provided: 40%distinct values known / distinct values provided: 50%
Values
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 0
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 0
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 0
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 0
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> 0
Description
The number of finite groups that are realised by the given partition over the complex numbers. A finite group $G$ is 'realised' by the partition $(a_1,...,a_m)$ if its group algebra over the complex numbers is isomorphic to the direct product of $a_i\times a_i$ matrix rings over the complex numbers.
Matching statistic: St001603
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001603: Integer partitions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 50%
Values
[1,1,1,0,0,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [4,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [4,1]
=> [1]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [4,1]
=> [1]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [5,1]
=> [1]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [5,1]
=> [1]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [5,1]
=> [1]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [4,2]
=> [2]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,5,6,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,1,2,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,1,6,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,1,6,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,1,5,2,6,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,1,6,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,1,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,6,7,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,2,4,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,7,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,2,4,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,2,5,7,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,2,6,7,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,4,5,2,3,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,5,2,7,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,2,3,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. Two colourings are considered equal, if they are obtained by an action of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001604
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001604: Integer partitions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 50%
Values
[1,1,1,0,0,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [4,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [4,1]
=> [1]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [4,1]
=> [1]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [5,1]
=> [1]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [5,1]
=> [1]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [5,1]
=> [1]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [4,2]
=> [2]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,5,6,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,1,2,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,1,6,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,1,6,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,1,5,2,6,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,1,6,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,1,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,6,7,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,2,4,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,7,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,2,4,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,2,5,7,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,2,6,7,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,4,5,2,3,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,5,2,7,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,2,3,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001605
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 50%
Values
[1,1,1,0,0,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [4,1]
=> [1]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [4,1]
=> [1]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [3,2]
=> [2]
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [3,2]
=> [2]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [4,1]
=> [1]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [5,1]
=> [1]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [5,1]
=> [1]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [5,1]
=> [1]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [4,2]
=> [2]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [4,2]
=> [2]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,5,6,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,1,2,6,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,1,6,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,1,6,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,1,5,2,6,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,1,6,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,1,2,3] => [3,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,6,7,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,2,4,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,7,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,2,4,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,2,5,7,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,2,6,7,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,4,5,2,3,7,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,5,2,7,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,2,3,7,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [4,3]
=> [3]
=> 1 = 0 + 1
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
The following 31 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001593This is the number of standard Young tableaux of the given shifted shape. St000929The constant term of the character polynomial of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000661The number of rises of length 3 of a Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001498The normalised height of a Nakayama algebra with magnitude 1. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000264The girth of a graph, which is not a tree. St001330The hat guessing number of a graph. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001488The number of corners of a skew partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001964The interval resolution global dimension of a poset.