searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000341
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000341: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 1
[2,1] => 0
[1,2,3] => 4
[1,3,2] => 3
[2,1,3] => 3
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 10
[1,2,4,3] => 9
[1,3,2,4] => 9
[1,3,4,2] => 7
[1,4,2,3] => 7
[1,4,3,2] => 6
[2,1,3,4] => 9
[2,1,4,3] => 8
[2,3,1,4] => 7
[2,3,4,1] => 4
[2,4,1,3] => 5
[2,4,3,1] => 3
[3,1,2,4] => 7
[3,1,4,2] => 5
[3,2,1,4] => 6
[3,2,4,1] => 3
[3,4,1,2] => 2
[3,4,2,1] => 1
[4,1,2,3] => 4
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 0
Description
The non-inversion sum of a permutation.
A pair a<b is an noninversion of a permutation π if π(a)<π(b). The non-inversion sum is given by ∑(b−a) over all non-inversions of π.
Matching statistic: St000055
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
St000055: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000055: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [2,1] => 1
[2,1] => [1,2] => 0
[1,2,3] => [3,2,1] => 4
[1,3,2] => [3,1,2] => 3
[2,1,3] => [2,3,1] => 3
[2,3,1] => [2,1,3] => 1
[3,1,2] => [1,3,2] => 1
[3,2,1] => [1,2,3] => 0
[1,2,3,4] => [4,3,2,1] => 10
[1,2,4,3] => [4,3,1,2] => 9
[1,3,2,4] => [4,2,3,1] => 9
[1,3,4,2] => [4,2,1,3] => 7
[1,4,2,3] => [4,1,3,2] => 7
[1,4,3,2] => [4,1,2,3] => 6
[2,1,3,4] => [3,4,2,1] => 9
[2,1,4,3] => [3,4,1,2] => 8
[2,3,1,4] => [3,2,4,1] => 7
[2,3,4,1] => [3,2,1,4] => 4
[2,4,1,3] => [3,1,4,2] => 5
[2,4,3,1] => [3,1,2,4] => 3
[3,1,2,4] => [2,4,3,1] => 7
[3,1,4,2] => [2,4,1,3] => 5
[3,2,1,4] => [2,3,4,1] => 6
[3,2,4,1] => [2,3,1,4] => 3
[3,4,1,2] => [2,1,4,3] => 2
[3,4,2,1] => [2,1,3,4] => 1
[4,1,2,3] => [1,4,3,2] => 4
[4,1,3,2] => [1,4,2,3] => 3
[4,2,1,3] => [1,3,4,2] => 3
[4,2,3,1] => [1,3,2,4] => 1
[4,3,1,2] => [1,2,4,3] => 1
[4,3,2,1] => [1,2,3,4] => 0
Description
The inversion sum of a permutation.
A pair a<b is an inversion of a permutation π if π(a)>π(b). The inversion sum is given by ∑(b−a) over all inversions of π.
This is also half of the metric associated with Spearmans coefficient of association ρ, ∑i(πi−i)2, see [5].
This is also equal to the total number of occurrences of the classical permutation patterns [2,1],[2,3,1],[3,1,2], and [3,2,1], see [2].
This is also equal to the rank of the permutation inside the alternating sign matrix lattice, see references [2] and [3].
This lattice is the MacNeille completion of the strong Bruhat order on the symmetric group [1], which means it is the smallest lattice containing the Bruhat order as a subposet. This is a distributive lattice, so the rank of each element is given by the cardinality of the associated order ideal. The rank is calculated by summing the entries of the corresponding ''monotone triangle'' and subtracting \binom{n+2}{3}, which is the sum of the entries of the monotone triangle corresponding to the identity permutation of n.
This is also the number of bigrassmannian permutations (that is, permutations with exactly one left descent and one right descent) below a given permutation \pi in Bruhat order, see Theorem 1 of [6].
Matching statistic: St001171
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
St001171: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001171: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [2,1] => 1
[2,1] => [1,2] => 0
[1,2,3] => [3,2,1] => 4
[1,3,2] => [3,1,2] => 3
[2,1,3] => [2,3,1] => 3
[2,3,1] => [2,1,3] => 1
[3,1,2] => [1,3,2] => 1
[3,2,1] => [1,2,3] => 0
[1,2,3,4] => [4,3,2,1] => 10
[1,2,4,3] => [4,3,1,2] => 9
[1,3,2,4] => [4,2,3,1] => 9
[1,3,4,2] => [4,2,1,3] => 7
[1,4,2,3] => [4,1,3,2] => 7
[1,4,3,2] => [4,1,2,3] => 6
[2,1,3,4] => [3,4,2,1] => 9
[2,1,4,3] => [3,4,1,2] => 8
[2,3,1,4] => [3,2,4,1] => 7
[2,3,4,1] => [3,2,1,4] => 4
[2,4,1,3] => [3,1,4,2] => 5
[2,4,3,1] => [3,1,2,4] => 3
[3,1,2,4] => [2,4,3,1] => 7
[3,1,4,2] => [2,4,1,3] => 5
[3,2,1,4] => [2,3,4,1] => 6
[3,2,4,1] => [2,3,1,4] => 3
[3,4,1,2] => [2,1,4,3] => 2
[3,4,2,1] => [2,1,3,4] => 1
[4,1,2,3] => [1,4,3,2] => 4
[4,1,3,2] => [1,4,2,3] => 3
[4,2,1,3] => [1,3,4,2] => 3
[4,2,3,1] => [1,3,2,4] => 1
[4,3,1,2] => [1,2,4,3] => 1
[4,3,2,1] => [1,2,3,4] => 0
Description
The vector space dimension of Ext_A^1(I_o,A) when I_o is the tilting module corresponding to the permutation o in the Auslander algebra A of K[x]/(x^n).
Matching statistic: St000076
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
St000076: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
St000076: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [[1]]
=> 0
[1,2] => [2,1] => [[0,1],[1,0]]
=> 1
[2,1] => [1,2] => [[1,0],[0,1]]
=> 0
[1,2,3] => [3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> 4
[1,3,2] => [3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> 3
[2,1,3] => [2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[2,3,1] => [2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[3,1,2] => [1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[3,2,1] => [1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,2,3,4] => [4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 10
[1,2,4,3] => [4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 9
[1,3,2,4] => [4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 9
[1,3,4,2] => [4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 7
[1,4,2,3] => [4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 7
[1,4,3,2] => [4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 6
[2,1,3,4] => [3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 9
[2,1,4,3] => [3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 8
[2,3,1,4] => [3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 7
[2,3,4,1] => [3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 4
[2,4,1,3] => [3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 5
[2,4,3,1] => [3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 3
[3,1,2,4] => [2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 7
[3,1,4,2] => [2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 5
[3,2,1,4] => [2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 6
[3,2,4,1] => [2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[3,4,1,2] => [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[3,4,2,1] => [2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[4,1,2,3] => [1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 4
[4,1,3,2] => [1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 3
[4,2,1,3] => [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[4,2,3,1] => [1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[4,3,1,2] => [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[4,3,2,1] => [1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
Description
The rank of the alternating sign matrix in the alternating sign matrix poset.
This rank is the sum of the entries of the monotone triangle minus \binom{n+2}{3}, which is the smallest sum of the entries in the set of all monotone triangles with bottom row 1\dots n.
Alternatively, rank(A)=\frac{1}{2} \sum_{i,j=1}^n (i-j)^2 a_{ij}, see [3, thm.5.1].
Matching statistic: St001848
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001848: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001848: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [2,1] => [2,1] => 1
[2,1] => [1,2] => [1,2] => 0
[1,2,3] => [3,2,1] => [3,2,1] => 4
[1,3,2] => [3,1,2] => [3,1,2] => 3
[2,1,3] => [2,3,1] => [2,3,1] => 3
[2,3,1] => [2,1,3] => [2,1,3] => 1
[3,1,2] => [1,3,2] => [1,3,2] => 1
[3,2,1] => [1,2,3] => [1,2,3] => 0
[1,2,3,4] => [4,3,2,1] => [4,3,2,1] => 10
[1,2,4,3] => [4,3,1,2] => [4,3,1,2] => 9
[1,3,2,4] => [4,2,3,1] => [4,2,3,1] => 9
[1,3,4,2] => [4,2,1,3] => [4,2,1,3] => 7
[1,4,2,3] => [4,1,3,2] => [4,1,3,2] => 7
[1,4,3,2] => [4,1,2,3] => [4,1,2,3] => 6
[2,1,3,4] => [3,4,2,1] => [3,4,2,1] => 9
[2,1,4,3] => [3,4,1,2] => [3,4,1,2] => 8
[2,3,1,4] => [3,2,4,1] => [3,2,4,1] => 7
[2,3,4,1] => [3,2,1,4] => [3,2,1,4] => 4
[2,4,1,3] => [3,1,4,2] => [3,1,4,2] => 5
[2,4,3,1] => [3,1,2,4] => [3,1,2,4] => 3
[3,1,2,4] => [2,4,3,1] => [2,4,3,1] => 7
[3,1,4,2] => [2,4,1,3] => [2,4,1,3] => 5
[3,2,1,4] => [2,3,4,1] => [2,3,4,1] => 6
[3,2,4,1] => [2,3,1,4] => [2,3,1,4] => 3
[3,4,1,2] => [2,1,4,3] => [2,1,4,3] => 2
[3,4,2,1] => [2,1,3,4] => [2,1,3,4] => 1
[4,1,2,3] => [1,4,3,2] => [1,4,3,2] => 4
[4,1,3,2] => [1,4,2,3] => [1,4,2,3] => 3
[4,2,1,3] => [1,3,4,2] => [1,3,4,2] => 3
[4,2,3,1] => [1,3,2,4] => [1,3,2,4] => 1
[4,3,1,2] => [1,2,4,3] => [1,2,4,3] => 1
[4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 0
Description
The atomic length of a signed permutation.
The atomic length of an element w of a Weyl group is the sum of the heights of the inversions of w.
Matching statistic: St001330
Values
[1] => ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
[2,1] => ([],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 + 2
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 2
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 2
[2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,2,1] => ([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 10 + 2
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 9 + 2
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 9 + 2
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7 + 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7 + 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6 + 2
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 9 + 2
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 8 + 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7 + 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 2
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 + 2
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7 + 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 + 2
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6 + 2
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 2
[3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 2
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[4,3,2,1] => ([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000112
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
St000112: Semistandard tableaux ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
St000112: Semistandard tableaux ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Values
[1] => [1] => [[1]]
=> [[1]]
=> 0
[1,2] => [2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> 1
[2,1] => [1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> 0
[1,2,3] => [3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ? = 4
[1,3,2] => [3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ? = 3
[2,1,3] => [2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ? = 3
[2,3,1] => [2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ? = 1
[3,1,2] => [1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ? = 1
[3,2,1] => [1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ? = 0
[1,2,3,4] => [4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ? = 10
[1,2,4,3] => [4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ? = 9
[1,3,2,4] => [4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ? = 9
[1,3,4,2] => [4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ? = 7
[1,4,2,3] => [4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ? = 7
[1,4,3,2] => [4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ? = 6
[2,1,3,4] => [3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ? = 9
[2,1,4,3] => [3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ? = 8
[2,3,1,4] => [3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ? = 7
[2,3,4,1] => [3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ? = 4
[2,4,1,3] => [3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ? = 5
[2,4,3,1] => [3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ? = 3
[3,1,2,4] => [2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ? = 7
[3,1,4,2] => [2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ? = 5
[3,2,1,4] => [2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ? = 6
[3,2,4,1] => [2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ? = 3
[3,4,1,2] => [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ? = 2
[3,4,2,1] => [2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ? = 1
[4,1,2,3] => [1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ? = 4
[4,1,3,2] => [1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ? = 3
[4,2,1,3] => [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ? = 3
[4,2,3,1] => [1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ? = 1
[4,3,1,2] => [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ? = 1
[4,3,2,1] => [1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ? = 0
Description
The sum of the entries reduced by the index of their row in a semistandard tableau.
This is also the depth of a semistandard tableau T in the crystal B(\lambda) where \lambda is the shape of T, independent of the Cartan rank.
Matching statistic: St001520
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00098: Alternating sign matrices —link pattern⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
St001520: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Mp00098: Alternating sign matrices —link pattern⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
St001520: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Values
[1] => [[1]]
=> [(1,2)]
=> [2,1] => 0
[1,2] => [[1,0],[0,1]]
=> [(1,4),(2,3)]
=> [4,3,2,1] => 1
[2,1] => [[0,1],[1,0]]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 0
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => ? = 4
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => ? = 3
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => ? = 3
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => ? = 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => ? = 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => ? = 0
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => ? = 10
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => ? = 9
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 9
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => ? = 7
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 7
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => ? = 6
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => ? = 9
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 8
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 7
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => ? = 4
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 5
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 3
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => ? = 7
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 5
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => ? = 6
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => ? = 3
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 2
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => ? = 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => ? = 4
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => ? = 3
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 3
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => ? = 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => ? = 0
Description
The number of strict 3-descents.
A '''strict 3-descent''' of a permutation \pi of \{1,2, \dots ,n \} is a pair (i,i+3) with i+3 \leq n and \pi(i) > \pi(i+3).
Matching statistic: St001582
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
St001582: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
St001582: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Values
[1] => [1,0]
=> [(1,2)]
=> [2,1] => 0
[1,2] => [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 1
[2,1] => [1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => 0
[1,2,3] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => ? = 4
[1,3,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => ? = 3
[2,1,3] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => ? = 3
[2,3,1] => [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => ? = 1
[3,1,2] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => ? = 1
[3,2,1] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => ? = 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 10
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => ? = 9
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => ? = 9
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => ? = 7
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => ? = 7
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => ? = 6
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => ? = 9
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => ? = 8
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => ? = 7
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => ? = 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => ? = 5
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => ? = 7
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => ? = 5
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => ? = 6
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => ? = 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => ? = 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => ? = 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => ? = 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => ? = 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => ? = 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => ? = 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => ? = 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => ? = 0
Description
The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.
Matching statistic: St001811
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001811: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001811: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 18%
Values
[1] => [1,0]
=> [[1],[2]]
=> [2,1] => 0
[1,2] => [1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 1
[2,1] => [1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 0
[1,2,3] => [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ? = 4
[1,3,2] => [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ? = 3
[2,1,3] => [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ? = 3
[2,3,1] => [1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ? = 1
[3,1,2] => [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ? = 1
[3,2,1] => [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ? = 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => ? = 10
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => ? = 9
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [2,5,6,8,1,3,4,7] => ? = 9
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => ? = 7
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => ? = 7
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => ? = 6
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [3,4,6,8,1,2,5,7] => ? = 9
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [3,4,7,8,1,2,5,6] => ? = 8
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [3,5,6,8,1,2,4,7] => ? = 7
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => ? = 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => ? = 5
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => ? = 7
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => ? = 5
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => ? = 6
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => ? = 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => ? = 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => ? = 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 0
Description
The Castelnuovo-Mumford regularity of a permutation.
The ''Castelnuovo-Mumford regularity'' of a permutation \sigma is the ''Castelnuovo-Mumford regularity'' of the ''matrix Schubert variety'' X_\sigma.
Equivalently, it is the difference between the degrees of the ''Grothendieck polynomial'' and the ''Schubert polynomial'' for \sigma. It can be computed by subtracting the ''Coxeter length'' [[St000018]] from the ''Rajchgot index'' [[St001759]].
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001948The number of augmented double ascents of a permutation. St000736The last entry in the first row of a semistandard tableau. St000958The number of Bruhat factorizations of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001208The number of connected components of the quiver of A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra A of K[x]/(x^n). St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001569The maximal modular displacement of a permutation. St001645The pebbling number of a connected graph. St001722The number of minimal chains with small intervals between a binary word and the top element.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!